Maurice Clerc

Cooperation Mechanisms in Particle Swarm Optimisation

We dene ve cooperation mechanisms in Particle Swarm Optimisation, loosely inspired by some models occurring in nature, and based on two quantities: a help matrix, and a reputation vector. We call these ve mechanisms, respectively, Reciprocity, Vicinity, Kin, Reputation, and Anybody. It appears that Kin is better than the rest by a slight margin, but needs more parameters that have to be tuned (mutation and selection). However, Reciprocity, with less parameters, shows almost equivalent performance. The appendix gives some details about fair comparison of success rates, and the concepts of valued topology and chains of information, which may be worth further investigation.

Introduction

When a bee nds an interesting place, it comes back to the hive, and dances to inform some other bees. But which ones, and how many? As far as we know, it is quite random, and only a few bees are informed; these being just the bees which are present at the hive at that moment. This is the idea that lies behind the variable topology that has been dened in [START_REF] Clerc | L'optimisation par essaims particulaires. Versions paramétriques et adaptatives[END_REF][START_REF] Clerc | Particle Swarm Optimization[END_REF], used by Standard PSO since 2006 PSC, and generalized under the name of stochastic star in [START_REF] Miranda | Stochastic Star Communication Topology in Evolutionary Particle Swarms (EPSO)[END_REF]. More formally, at each time step, and if there has been no global improvement, an agent A may help (inform) an agent B with a probability p. In SPSO, the rule is: each agent informs, at random, K other agents, so the probability is

p SP SO = 1 -1 - 1 S K (1.1)
where S is the population size. Note that this set of information links is modied after an iteration only if there has been no global improvement (i.e. the best position known by the swarm has not been improved). The Stochastic Star of [START_REF] Miranda | Stochastic Star Communication Topology in Evolutionary Particle Swarms (EPSO)[END_REF] uses exactly the opposite criterion, that is, the set of information links is modied after an iteration only if there has been a global improvement, but the two methods seem to be equivalent. At least, there are no 1 signicant dierences on the test functions that they use in their paper. In fact, what seems to be important is to not modify the topology (the set of information links) too often.

However, there are a lot of other cooperation mechanisms in real life, and it would be interesting to apply some of them to PSO, in order to see if they are better in the specic case of optimisation.

2 Five cooperation strategies

In [START_REF] Nowak | Five rules for the evolution of cooperation[END_REF], Nowak denes ve mechanisms for the evolution of cooperation in a population. Loosely inspired by this paper, we dene here ve cooperation rules in a population based optimiser. Each rule given below is complete in itself and is independent of the others. In order to implement these rules in PSO, we need algorithmic denitions that can be coded. Below, we give a few such possible denitions. We use the word possible as these are non-unique; one may come up with alternative denitions. The denitions given here are based on a help matrix H (S × S), and/or a reputation vector R (S), where S is the swarm size. When a particle i has to move, it tries to get some information from the particles j (i.e. the best position known by j), according to a probability vector P (S) dened as follows:

• if the help matrix is used, P is the result of a normalisation of the H (* , i) column, seen as vector;

• if the reputation vector is used, P is the result of a normalisation of the reputation vector.

Each cooperation mechanism uses a specic normalisation method. Then the rule is:

if rand (0, 1) < P (j), i indeed receives information from j

In this study, we apply the standard PSO method to use the information sent by the informants: particle i builds the list of the particles j that send information to it, and select only the best one, to use it in the velocity update formula. Let us see now how H or R can be dened for our ve cases. All the rules below are quite rudimentary and can of course be replaced by more sophisticated ones.

Reciprocity

At the very beginning, all elements of the help matrix have the same initial value h init . After that:

• during each iteration, if j indeed helps i, then H (i, j) is incremented by h incr ;

• after each iteration, all elements of H are decremented by h decr (but with zero as lower bound), in order to simulate a kind of oblivion phenomenon. Note that even for a particlej that has helped particle i in an iteration, and was therefore incremented in H (i, j), we decrement the value;

• the rules of the normalisation are dened below:

H (j, i) > h init ⇒ P (j) = 1 else P (j) = h min (3.1)
Actually, some parameters are common to several mechanisms. In the tests below, we have used the following set:

       h init = 0.5 h incr = 2 h decr = 1 h min = adaptive (3.2)
Some preliminary tests show that a constant h min is not good for any swarm size and any problem. That is why we use an adaptive h min , which is computed by the following empirical formula:

h min = max 0, 1 S -s i (3.3)
where s i is the number of times H (i, j) is greater than h init . This means that while counting s i , we ignore the past and only compare the current values. Thus, at every step, we simply check if H (i, j) > h init , and if so, s i is incremented by 1. 3

Vicinity

Let D be the dimension of the search space. A particle receives information from the D nearest ones. If D is bigger than S, all particles are possible informants. Therefore, if j is one of the D nearest neighbours of i, then P (j) = 1, otherwise P (j) = h min . The adaptive h min is dened in a similar way as in Reciprocity:

h min = max 0, 1 S -D (3.4)
When h min is not null, it means that even particles that are not the nearest ones have a slight chance to be informants.

Kin

This is the most complicated one, for it needs mutation and selection. Though it is commonly said that the position and velocity of a particle structurally dene it, strictly speaking, it is not correct. Instead, the condence coecients that a particle uses in the classical velocity update formula of PSO dene its structure rigorously. Here, we do assume that these coecients can be dierent for each particle (thus, each particle can be structurally dierent). So, every particle has three genes:

• w, the inertia weight

• c 1 , the cognitive condence coecient

• c 2 , the social condence coecient With the genesdened, let us start the formulation of the process. First, we dene the initial values: at the very beginning, all particles have the same genes (w init , c 1,init , c 2,init). Second, we dene a common mutation mechanism for each gene g, which could be w, c 1 , or c 2 g ← g + gρ (1 -2rand (0, 1))

(3.5)
where ρ is the mutation rate in]0, 1] As we can see, g can either slightly increase or decrease.

Third, we dene a genetic distance measure between two triplets (w i , c 1,i , c 2,i) and (w j , c 1,j , c 2,j) associated with two particles x i and x j

d g (x i , x j) = w i -w j w init 2 + c 1,i -c 1,j c 1,init 2 + c 2,i -c 2,j c 2,init 2
(3.6)
Fourth, we dene a selection rate ς in]0, 0.5].

Then the process is the following:

• as said, at the very beginning, all triplets of genes are the same. Therefore a particle may inform any other;

• after each iteration, the ς fraction of best particles generate mutated ones, which replace the ς fraction of worst particles;

• for each particle i, and for the D genetically closest particles j, P (j) is set to 1. It is set to 0 for all other particles j. Here genetically closest means according to the d g distance measure.

Reputation

The reputation of a particle j is a memorised estimate of how many times it has successfully helped another particle. At the very beginning, all elements of the reputation vector R have the same initial value r init . After that:

• during each iteration, if j indeed helps i, and if then i improves its position, then R (j) is incremented by r incr ;

• after each iteration, all elements of R are decremented by r decr (but with zero as lower bound), in order to simulate a kind of oblivion phenomenon.

Note that, as in Reciprocity, we apply this decrement even to a particle j that has helped i during an iteration and was therefore incremented during the iteration.

• the rules of normalisation are dened similarly as in Reciprocity: R (j) > r init ⇒ P (j) = 1 else P (j) = r min For simplicity, the parameter r init , r incr , r decr are set to the same values as h init , h incr , h decr . And r min is dened as h min in Reciprocity:

hr min = max 0, 1 S -s i (3.7)
where s i is the number of times R (j) is greater than r init . As in Reciprocity, while counting s i we ignore the past and simply check if R (j) r j > r init . If so, s i is incremented by 1.

Anybody

This is the easiest one. Any particle has the same (constant) probability to help any other one, which is here simply set to 1.

Experimentation

The above methods have been coded by starting from the C version of SPSO 2011 (PSC). Only the cooperation mechanism has been modied, everything else is the same, for fair comparison. The resulting CooPSO code is freely available on my PSO site Clerc. It has been tested on 13 functions of dimensions between 2 and 42 (see table 1). The exact denitions of the functions are not given here, but they can be found in the C code. The pseudo-random number generator used is KISS PRNG, by Marsaglia, and is included in the code.

Comparisons

What is important in this study is not the results themselves, but the comparisons between six cooperation mechanisms (including the one originally used in SPSO 2011). As SPSO 2007 is still often used for its simplicity, I also present the results with this variant. Note that SPSO 2007 makes use of the same cooperation mechanism as SPSO 2011, but the velocity update formula is dierent (for more details, see Standard PSO Descriptions on Clerc). For all variants the swarm size is S = 40, and the values of (w init , c 1,init , c 2,init) are (0.721, 1.193, 1.193). For Kin, these are just the initial values, the mutation rate is 1/S, and the selection rate is 0.5. Let us comment on table 2. As usual, we can classify the problems into two groups: the ones for which the seven methods are more or less equivalent, and the ones for which some methods are pretty good, and some others very bad. The rst group contains Tripod, Network, Perm, Sphere, Rastrigin, and Ackley, and the second group has the rest. On the whole, SPSO 2007 is the worst (mainly because of its bad performance on Step and Rosenbrock that are not compensated by excellent ones on some other problems). The cooperation scheme Anybody is also not very good.

Kin is the best by a very slight margin, and Reciprocity comes next; and Reciprocity is simpler. However, the dierences are not very signicant (it is even more obvious if you consider the results after 1000 runs, see 7.1, gure 7.3).

For the dierent mechanisms , the weaknesses are not always on the same problems. For example, Kin is rarely better than both Vicinity and Reciprocity. So dening some hybrids may be fruitful. Let us try that. There is a very simple way to dene some hybrids: if a given variant does not give a global improvement for one iteration, try another one for the next iteration.

Let us apply this method, by trying all unordered pairs chosen from the four best cooperation mechanisms (as Anybody is clearly not very good). As we can see from table 3, no such hybrid is signicantly better. For a more synthetic view, we can sort our 17 mechanisms by increasing order of the mean success rate over the benchmark, and plot the results. Figure 5.1 shows that the mechanisms that use Vicinity, Reciprocity, Kin, or their hybrids are more or less equivalent, although Kin alone seems to be the best by a small margin.

Discussion

The cooperation method used in SPSO (2006SPSO (, 2007SPSO (, 2011, see PSC) can be compactly and roughly described as follows: Each agent informs at random a few other agents. If, after a while, there is no improvement, another random selection is performed. It performs quite well (and, in passing, it may be interesting to simulate the behaviour of a social system based on this kind of cooperation), but

this study shows that some mechanisms coming from real life can improve the optimisation process, particularly Kin and Reciprocity. The rst one needs to dene two additional parameters, for mutation and selection. The second one is simpler, and on the whole almost equivalent. On the other hand, precisely because Kin has more parameters, it may be possible to nd good values of these parameters to improve the performance even more (see 7.3).

Some concepts may need further investigation. In particular:

-the genome of a particle represented by the parameter values that it uses to compute its displacement, and not, as is usually done, by its position;

-the valued topology, which is a generalisation of the classical one, and which can be represented by a valued graph or, equivalently, by a help matrix. In particular, the method presented here to build and update such a matrix is very rudimentary, and can certainly be improved.

Appendix

About the success rate

This study suggests that some cooperation mechanisms are better than some others, but the comparisons are not very rigorous. There is no statistical analysis like Wilcoxon, Friedman or t-test. In particular, how much can the success rates over 100 runs be trusted? After all, when you plot the curve success rate vs number of runs, you always get some oscillations, before reaching a level that can be reasonably said to be stable. Actually, it is easy to see that between r and r + 1 runs, the jump of the estimated success rate can be as big as 100/r.

In other words, after one run, the success rate is necessarily either 0% or 100%, after two runs, only the three values 0%, 50%, 100% are possible, etc.

As we can see from gure 7.1, even with 100 runs such a stabilisation is not completely certain. In passing, note that a lot of studies make use of 30 runs or even less. In such a case, the estimation of the success rate may be quite bad. On the example here, it would be 73% after 30 runs, while the true value is about 61%.

In the literature, a standard deviation or a condence interval is usually given with the mean best value, so that the reader may have an idea of how precise the estimate is. However, it is rarely done when the success rate is used as the comparison criterion. Let us try to do it.

We can perform 100 runs 100 times. Then, we get 100 success rate values, from which we can have an idea of its distribution, compute a mean value, and a standard deviation. For the Rosenbrock function, and the Reciprocity mechanism, the result is given in gure 7.2. Here, the mean is 61.7%, and the standard deviation 4.3%. A complete analysis is possible, for the estimated success rate follows a binomial law, but it is out of the scope of this paper. However, it is worth nothing if we want a standard deviation not greater than 1%. In such a case, we must perform at least 1000 runs (with only 30 runs, the standard deviation would be greater than 6%). Fortunately, as we can see from gure 7.3, for the four best mechanisms, the order is almost the same (the last two exchange places, but the standard deviation is only one percent, and thus the dierence is not signicant), even if the mean success rate values are smaller.

Also note that the performance criteria, including the success rate, may largely depend on the random number generator that is being used. That is why the RNG must be seen as a part of the algorithm Clerc (2012).

About the Reciprocity mechanism

To initialise the mechanism, we have to assign a non null probability h init to any particle so that it can be an informant. After that, though, because of the decay process, this probability may become h min . What happens if h min is equal to zero, i.e. what happens if a particle tends to inform only the ones that have already After 30 runs, the success rate is 73%, but in fact the true value is about 61%. informed it? As we can see from table 4, the mean performance then is not as good, and on some problems it is very poor .

More generally, if h min is kept constant the performance depends on its value.

Is there an optimal one? Let us try dierent values, and plot the curve Mean success rate vs h min . There is indeed a best value, near 0.024, which leads to a global performance very near to the optimal one (at least on average for the 13 benchmark functions used here), both for a swarm size S = 20, and S = 40, as we can see from gure 7.4.

For all swarm sizes, a constant h min = 0 would be the worst choice. From a sociological point of view: helping only people that have helped you (except at the very beginning) is not very ecient, and with just a bit of altruism, the eciency increases.

Anyway, using the same h min value is just a compromise, for the true optimal value in fact depends on the swarm size, and on the problem being solved. That is why we use adaptive formulae here. Even if they are quite simple, the mean performance is improved. For example, for Reciprocity, and S = 40, we have seen it reaches 60.1%, whereas with a constant h min its maximum value is 59.1%.

About the Kin mechanism

As we have seen, Kin is globally the best though slightly so, and the most robust. .4: If h min is kept constant, the average mean performance (here for Reciprocity) depends on its value and on the swarm size S, and there is an optimum for each swarm size. A h min value near to 0.024 leads to nearly optimal performances, but is of course just a compromise. Using an adaptive h min is a better approach. Tripod function, successful run.

7.4

Spreading the word When a particle is aware of a good position, how long does it take to inform others?

Or, said dierently, what is the probability that a given other particle is informed, directly or not, after t time steps? If we consider only the information links that exist at each time step, we can speak of a potential spreading. However, not all information is used, only the information given by the best informant is taken into account (in SPSO, it is dierent; for example in FIPS [START_REF] Mendes | Fully Informed Particle Swarm: Simpler, Maybe Better[END_REF]). So, if we consider what really happens, we can speak of the real spreading.

Potential spreading

For SPSO, the potential spreading is easy to compute. Formula 1.1 gives the probability of being informed, for a given particle, at a given time step. So the probability of being informed at time t or before is simply p spread,SP SO (t) = 1 -(1 -p SP SO) t (7.1)

For the Anybody strategy, it is even easier, for we obviously have p spread,Anybody (t) = 1

(7.2)
Unfortunately, for the other cooperation strategies studied here, the potential spreading is problem dependent, so we can just estimate some lower bounds (the upper bound is always 1). For Reciprocity, Vicinity, and Reputation the probability that particle j does inform the particle i is at least h min . Therefore, we have p spread (t) ≥ 1 -(1 -h min) t (7.3) For Kin, each particle is informed by the D nearest ones (according to the genetic distance), but a given particle may perfectly be never informed by another one. So, the lower bound is simply 0.

Real spreading

Now, we want to know the real probability. It depends on the problem to be solved, so we can approximate it by experiments. The method that has been used here is based on chains of information. Such a chain is a temporal sequence of particles {i 1 , i 2 , . . . , i T } so that at time t, the particle i t+1 has really used the information sent by i t . In practice, for SPSO or similar variants, it means that at time t there is an information link from i t to i t+1 and that i t is the best informant of i t+1 .

Then, for a given problem, and a given cooperation mechanism, we estimate the real spreading as follows:

• randomly select two particles, i and j; to induce long chains for some problems. However, there is no clear relationship with the diculty of the problem. Indeed, Reputation also sometimes induces long chains, but is nevertheless not very good on average.

As a next step, an obvious and even more general mechanism could be the same as the last one given above, but with all parameters being adaptive (see in particular 3.2).

 1. Reciprocity Rule: An agent A may help an agent B if B has helped A in the past 2. Vicinity Rule: An agent A may help an agent B if B is a neighbour of A 3. Kin Rule: An agent A may help an agent B if B is similar to A 4. Reputation Rule: An agent A may help an agent B if A has a good reputation 5. Anybody Rule: An agent A may help an agent B if B is any agent 3 Implementation in PSO

Figure 5 . 1 :

 51 Figure 5.1: Comparison of the 17 mechanisms. SPSO 2007 is clearly the worst. Kin seems to be the best by a small margin, but in fact the three mechanisms Vicinty, Reciprocity, Kin, and their hybrids are more or less equivalent.

Figure 7 . 1 :

 71 Figure 7.1: Evolution of the success rate over 100 runs (Rosenbrock, with Kin).After 30 runs, the success rate is 73%, but in fact the true value is about 61%.

Figure 7

 7 Figure 7.2: Rosenbrock with Reciprocity. Distribution of the success rate over 100x100 runs.

Figure 7

 7 Figure 7.3: Mean success rate for 100 runs and 1000 runs. Comparison for the four best mechanisms. The improved estimates, after 1000 runs, are always a bit smaller than after 100 runs. The two best mechanisms keep their rank. For the two others, the order changes, but the dierence is not very signicant.

 This is probably due to the permanent adaptation of the parameters (w, c 1 , c 2) , but to what extent? The diagrams in gure7.5 for the Tripod problem show that

Figure 7

 7 Figure7.4: If h min is kept constant, the average mean performance (here for Reciprocity) depends on its value and on the swarm size S, and there is an optimum for each swarm size. A h min value near to 0.024 leads to nearly optimal performances, but is of course just a compromise. Using an adaptive h min is a better approach.

Figure 7 . 5 :

 75 Figure7.5: Evolution of (w, c 1 , c 2). Every colour denotes a particular particle.

Figure 7 . 6 :

 76 Figure 7.6: Cumulative probability of the length of the chains of information. The worst mechanism (Anybody) induces very short chains. The best one (Kin) tends

Table 1 :

 1 Test functions.

	Name	Search space	Max. eval.	Objective (adm. error)	Comment
	Tripod	[-100, 100] 2	10000	0 (0.0001)	Two local
					optima
	Network	{0, 1} 38 × [0, 20] 4	5000	0 (0)	Partly binary
	Step	[-100, 100] 10	2500	0 (0)	Biased
	Lennard-Jones	[-2, 2] 15	65000	-9.103852 (10 -6)	Five atoms
	Gear Train	{12, 13, . . . , 60} 4	20000	2.7 × 10 -12 (10 -13)	Discrete
	Perm	{-5, -4, . . . , 5} 5	10000	0(0)	Discrete
		{1, 2, . . . , 70}			
	Compression	× [0.6, 3]	20000	2.6254214578(10 -10)	Partly discrete
	Spring	× {0.207, 0.208, . . . , 0.5}			
	Sphere	[-100, 100] 30	300 000	-450(10 -6)	Shifted CEC
					(2005)Unimodal
	Rosenbrock	[-100, 100] 10	100 000	390(0.01)	Shifted CEC
					(2005)
	Rastrigin	[-5.12, 5.12] 30	300 000	-330(0.01)	Shifted CEC
					(2005)
	Schwefel	[-100, 100] 10	100 000	-450(10 -5)	Shifted CEC
					(2005)
	Griewank	[-600, 600] 10	100 000	-180(0.01)	Shifted CEC
					(2005) Not
					rotated
	Ackley	[-32, 32] 10	100 000	-140(10 -4)	Shifted CEC
					(2005) Not
					rotated

Table 2 :

 2 Success rate and Mean best over 100 runs. Swarm size S = 40. For Kin, ρ = 1/S, and ς = 0.5

		SPSO 2007	SPSO 2011	Reciprocity Vicinity	Kin	Reputation Anybody
	Tripod	63% 0.31	79% 0.14	90% 0.1	90% 0.09	86% 0.08	48% 0.73	48% 0.71
	Network	0% 106	0% 109	0% 151.8	0% 163.1	0% 160.7	0% 159.2	0% 150.7
	Step	3% 4.53	99% 0.01	100% 0	100% 0	100% 0	100% 0	100% 0
	Lennard-Jones	68% 0.077	50% 0.168	100% 7.09E-7	100% 7.37E-7	100% 7.46E-7	99% 0.007	100% 7.27E-7
	Gear Train	16% 2.47E-10 0.19E-10 0.49E-10 0.45E-10 0.14E-10 8.22E-10 12.1E-10 58% 40% 31% 53% 14% 4%
	Perm	46% 292	36% 309	26% 379.3	26% 350.2	26% 394.4	10% 618.7	12% 731.9
	Compression Spring	72% 0.0019	81% 0.0032	73% 0.002	70% 0.0027	72% 0.0043	19% 0.069	14% 0.063
	Sphere	100% 9.00E-7	100% 0	100% 9.01E-7	100% 9.15E-7	100% 9.18E-7	100% 9.13E-7	100% 9.18E-7
	Rosenbrock *	9% 1.8	50% 57.7	62% 178.8	55% 102.31	61% 68.5	69% 40.83	67% 44.90
	Rastrigin	0% 38.9	1% 5.4	0% 118.4	0% 121.9	0% 113.8	0% 124.61	0% 118.98
	Schwefel	100% 8.75E-5	100% 0	100% 0.87E-5	100% 0.88E-5	100% 0.87E-5	100% 0.86E-5	100% 0.86E-5
	Griewank	18% 0.030	9% 0.021	1% 0.076	2% 0.073	9% 0.041	1% 0.099	1% 0.123
	Ackley	98% 0.019	100% 0	80% 0.028	75% 0.359	97% 0.039	63% 0.577	70% 0.510
	Mean rate success	45.6%	54.7%	59.4%	57.6% 61.8%	47.9%	47.4%

Table 3 :

 3 Results for some hybrids. For easier comparison, only the success rates are given. No hybrid is signicantly better than all the pure mechanisms.

		Reciprocity	Reciprocity↔	Reciprocity	Vicinity	Vicinity	Kin
		↔Vicinity	Kin	↔Reputation	↔Kin	↔Reputation	↔Reputation
	Tripod	94	84	61	80	61	44
	Network	0	0	0	0	0	0
	Step	100	100	100	100	100	100
	Lennard-	100	100	100	100	100	100
	Jones						
	Gear Train	34	45	21	49	30	18
	Perm	17	31	29	28	22	16
	Compression	76	73	37	68	46	36
	Spring						
	Sphere	100	100	100	100	100	100
	Rosenbrock	57	56	66	54	60	74
	Rastrigin	0	0	0	0	0	0
	Schwefel	100	100	100	100	100	100
	Griewank	2	7	0	11	3	7
	Ackley	75	86	72	85	70	83
	Mean	58.1	60.1	52.8	59.6	53.2	52.1
	success						
	rate						
	5 Hybrids					

Table 4 :

 4 Pure Reciprocity, i.e. with h min = 0. The cooperation mechanism is then almost always less ecient.

	Tripod Network Step Lennard-Jones Gear Train Perm Compression Spring Sphere Rosenbrock Rastrigin Schwefel Griewank Ackley	Success rate over 100 runs 100 0 100 100 9 8 31 100 54 0 100 6 69	Mean best 7.04E-5 161.6 0 7.45E-7 1.05E-9 454.81 0.016 9.14E-7 70.49 118.95 8.77E-6 0.059 0.498
	Mean success rate	52.1	

Table 5 :

 5 Parameter tuning for Kin. A small mutation rate ρ w for the inertia weight w is enough, but by using a bigger one ρ c for the cognitive and social coecients c 1 and c 2 , the performance can be slightly improved. The selection rate is kept

	constant (0.5).					
	w	c 1	c 2	ρ w	ρ c	Mean success rate
						over the 13 test
						functions
	0.721	1.481	1.481	0.025	0.025	59.3%
	0.721	1.193	1.193	0.025	0.025	61.8%
	0.721 0.721	1.193 1.193	1.193 1.193	0.025 0.025	0.1 0.2	61.6% 63.3%
	0.721	1.193	1.193	0.025	0.3	60.4%
	0.4	0.4	0.4	0.5	0.5	34.8%
	0.4	0.4	0.4	0.5	1	39.7%
	39.70.4	0.4	0.4	1	1	37.7%
	they are not largely modied during a run, just oscillating for w, which suggests
	that the initial values are already pretty good. For the best particle (the one
	that nds a solution rst), the coecients stabilize very quickly, but the nal
	values of c 1 and c 2 are both smaller than the initial ones. It probably means
	that for this specic problem, the initial values chosen are slightly high. The
	initial values are (0.721348, 0.721348, 0.721348) , and the means of all nal values
	are (0.720712, 1.196748, 1.172209). Moreover, if we use these new values as initial
	ones, the success rate improves only slightly, in a way that is not statistically
	signicant.					
	However, it is also interesting to see what happens if we start from apparently
	bad parameter values, say (0.4, 0.4, 0.4). If we keep the same small mutation
	rate, i.e. 0.025, then the performance is very poor, for example, 3% for Tripod
	(instead of 86%). However, if we use a high mutation rate, say 0.5, the results
	are signicantly improved, though they are not as good as when starting from the
	initial parameter values chosen before. We get 57% for Tripod (instead of 86%),
	and 35.8% in average, instead of 61.8%. In this case, the nal mean values are
	(0.63, 0.38, 0.46).					

So w has increased to a good value, but neither c 1 nor c 2 has improved well. It suggests that it may be better to dene at least two mutation rates: a small one for w, say ρ w , and a bigger one for c 1 and c 2 , say ρ c . Table

5

summarises a few experiments. It shows that the global performance can indeed be a bit improved this way, but not enough if the initial values are too bad.

* For Rosenbrock, the Mean best is meaningless, for its estimation does not converge as number of runs increases. From time to time, a bad run occurs, with a very high nal value.

Acknowledgements

I am particularly grateful for the assistance given by Abhi Dattasharma, who has carefully read the draft of this chapter, and helped me to write it in a more readable English.

• on a complete run, save the distribution of the lengths of the chains of information between i and j, i.e. for each length T how many times a chain of this length is generated;

• repeat the above two steps many times, and compute the average distribution.

So, for each problem, and each kind of cooperation, we can plot the cumulative average distribution (see gure7.6). The details of these distributions are not important, and, anyway, dicult to read (particularly if you have a black and white copy of this paper!). However, two points are obvious:

• for the worst kind of cooperation (Anybody), all chains are very short, at most two particles;

• the best mechanism (Kin), tends to produce long chains for some problems, and short chains for some other ones. There may be a relationship with the diculty of these problems, but nothing is very clear. So this point needs further investigation.

Anyway, a good cooperation mechanism will certainly induce a distribution of the chain lengths with neither too many short values nor too many high values. How to dene such a good compromise is still an open question. For example, it is probably possible to force the information chain lengths to be between a minimal and a maximal value.

Help matrix and valued topology

In the PSO context, the topology at time t is the graph of information links. The nodes are the particles, and there is a link from j to i if j is an informant of i. Such a graph can be represented by a binary S × S matrix. The help matrix is a generalisation of this. Instead of having 0 (j does not inform i) or 1 (j does inform i), we have a probability (j may inform i, with the probability H (j, i)).

Conversely, the help matrix can be seen as a representation of a valued graph, which can therefore be named a valued topology. So, we can see a clear evolution of the cooperation mechanisms that are used in the context of PSO:

• fully connected graph (often called global best topology). Example: the very rst PSO version [START_REF] Kennedy | Particle Swarm Optimization[END_REF];

• static local best, connected graph. Examples: Ring, Von Neumann, Four Clusters, etc. (see [START_REF] Mendes | Population Topologies and Their Inuence in Particle Swarm Performance[END_REF] for a quite complete list);

• variable graph (informants selected from time to time). Clerc • variable valued graph (informants selected from time to time, and with a probability to use them). Example: the present study.