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ABSTRACT

An acoustic method is proposed for measuring the low frequencies parameters
of porous materials having a rigid frame. The Biot equivalent fluid model is considered,
in which the viscous losses are described by the the static viscous permeability and an
additional viscous parameter. The inertial interactions between fluid and structure are
taken into account by the inertial factor. The thermal couplings are modeled using the
thermal permeability and the thermal tortuosity. The proposed method is based on a
solution of the direct and inverse problems for the propagation of transient audible
frequency waves in a homogeneous isotropic slab of porous material having a rigid
frame. The physical parameters are determined from the solution of the inverse problem
using experimental reflected and transmitted waves by porous samples, in a wave guide
(pipe). The minimization of the objective function, definedas the difference between
experiment and theory, is done in the time domain. Tests are performed using industrial
plastic foams. Experimental and theoretical data are in good agreement. Furthermore,
the prospects are discussed.

1 INTRODUCTION

The acoustic characterization of porous materials saturated by air (Allard and
Atalla, 2009) such as plastic foams, fibrous, or granular materials is of great interest
for a wide range of industrial applications. These materials are frequently used in the
automotive and aeronautics industries and in the building trade. Acoustic damping in
air-saturated porous materials is described by the inertial, viscous, and thermal inter-
actions between the fluid and the structure Depending on the temporal component of
the acoustic excitation (pulse duration), the relaxation times describing the fluid struc-
ture interactions are different. In the high frequency domain (Johnsonet al, 1987), the
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inertial, viscous, and thermal interactions are modeled bycausal integro-differential op-
erators acting as fractional derivatives (Fellah and Depollier 2000) in the time domain.
These interactions are taken into account, by the high approximation of the tortuosity
for the inertial effects, and by the viscous characteristiclength and thermal characteris-
tic length for the viscous and thermal losses. In the low frequency domain, the inertial,
viscous, and thermal interactions are described, respectively, by the inertial factor and
the thermal tortuosity, the viscous and thermal permeability (Lafargeet al 1996, 1993).
In addition to these parameters, the porosity is a key parameter playing an important
role for all relaxation times. The determination of these parameters is crucial for the
prediction of the sound damping in these materials.

2 EQUIVALENT FLUID MODEL

In the acoustics of porous materials, one distinguishes twosituations according
to whether the frame is moving or not. In the first case, the dynamics of the waves due
to the coupling between the solid skeleton and the fluid is well described by the Biot
theory (Biot 1956). In air-saturated porous media, the vibrations of the structure can be
neglected when the excitation is not very important and the waves can be considered to
propagate only in fluid. This case is described by the model ofequivalent fluid which is
a particular case of the Biot model, in which fluid-structureinteractions are taken into
account in two frequency response factors: dynamic tortuosity of the mediumα(ω)
given by Johnson (Johnsonet al, 1987) and revisited by Pride (Prideet al, 1993) and
Lafarge (1993) , the dynamic compressibility of the air in the porous materialβ(ω)
given by Allardetal (1992) and Lafarge (1993). In the frequency domain, these factors
multiply the fluid density and compressibility respectively and show the deviation from
fluid behavior in free space as frequency changes. In the low frequency range,α(ω) and
β(ω) may be expanded in successive powers(jω)n. Exact explicit expressions may be
obtained for the coefficients, in terms of averages (of increasing order) of the velocity
and temperature fields. At low frequencies,α(ω) andβ(ω) are given by:

α(ω) = −
ηφ

jωρk0
+ α0 +

2α∞

4k0
3ρ

ηΛ4φ3p3
jω + ... (1)

β(ω) = γ +
(γ − 1)k′

0
Prρ

ηφ
jω −

α′

0
(γ − 1)k′

0

2
Pr

2ρ2

η2φ2
ω2 + ... (2)

In these equations,j2 = −1, φ is the porosity,k0 the static permeability,α∞ the tortu-
osity,Λ the viscous characteristic length ,p is a geometrical parameter introduced by
Prideetal (1993) and revisited by Lafarge (1993),γ is the adiabatic constant,Pr the
Prandtl number.k′

0
is the thermal permeability equal to the inverse trapping constant

of the solid frame (Lafargeet al 1996).α0 represents the low-frequency approximation
of the tortuosity given by by Norris (1986) from homogenization theory. It should be
noted that the third term written in Eq. 1:2α

4
∞
k0

3ρ

ηΛ4φ3p3
jω does not result from the exact

expansion ofα(ω) andβ(ω), this would involve a new geometrical parameter which
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has not been calculated and measured. This term results fromusing Prideet al′ (1993)
approximate model.
Rewrite the equation (1) so that the parameterα1 will be introduced in the last term;

α(ω) =
ηφ

−jωρk0
+ α0 +

k0ρα1

φη
jω. (3)

α1 is dimensionless parameter and describes the viscous exchange between fluid and
structure at low frequencies. We will try to measure experimentally this parameter us-
ing transmitted waves by a porous material.

3 DIRECT PROBLEM

The direct scattering problem is that of determining the scattered field (trans-
mitted and reflected) as well as the internal field (incident), that arises when a known
incident field impinges on the porous material with known physical properties. To com-
pute the solution of the direct problem one need to know the reflection and transmission
coefficients of the porous medium. Consider a homogeneous porous material that oc-
cupies the region0 ≤ x ≤ L.

The expression of the transmission coefficient for a wave propagating inside a
porous material is given by

T (ω) =
2D

2D cosh(jqL) + (1 +D2) sinh(jqL)
, (4)

with

q = ω

√

ρf

Ka

α(ω)β(ω), D = φ

√

β(ω)

α(ω)
. (5)

The incidentpi(t) and transmittedpt(t) fields are related in time domain by the trans-
mission scattering operator:

pt(x, t) =

∫ t

0

T̃ (τ)pi
(

t− τ −
(x− L)

c0

)

dτ. (6)

T̃ (t) is the temporal operator of transmission (inverse Fourier transform ofT (ω)). Us-
ing the theoretical expression of the transmission coefficient (4) and the experimental
transmitted data, we will try to solve the inverse problem for the acoustic characteriza-
tion of the porous material.

4 INVERSE PROBLEM

The inverse problem is to find the following parameters: viscous permeabil-
ity k0, thermal permeabilityk′

0
, inertial factor α0, thermal tortuosityα′

0
and the
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Figure 1. Experimental setup of acoustic measurements.

new viscous parameterα1 which minimize numerically the discrepancy function
U(k0, k

′

0, α0, α
′

0, α1) =
∑i=N

i=1
(ptexp(x, ti) − pt(x, ti))

2, whereinptexp(x, ti)i=1,2,...n is
the discrete set of values of the experimental transmitted signal andpt(x, ti)i=1,2,...n the
discrete set of values of the simulated transmitted signal predicted from Eq. (6). The
inverse problem is solved numerically by the least-square method. For its iterative so-
lution, we used the simplex search method (Nedler Meadet al (1998)) which does not
require numerical or analytic gradients.

Experiments are performed in a guide (pipe), having a diameter of 5 cm. ex-
perimental set up is given in Fig. 1. A sound source Driver unit ”Brand” constituted
by loudspeaker Realistic 40-9000 is used. Bursts are provided by synthesized func-
tion generator Standford Research Systems model DS345-30MHz. The signals are am-
plified and filtered using model SR 650-Dual channel filter, Standford Research Sys-
tems. The signals (incident and transmitted) are measured using the same microphone
(Bruel&Kjaer, 4190) in the same position in the tube. The incident signal is measured
without porous sample, however, the transmitted signal is measured with the porous
sample.

Consider a cylindrical sample of plastic foam M of diameter 5cm, poros-
ity φ = 0.95 and thickness 5 cm. The viscous permeabilityk0 of the porous sam-
ple is measured using standard methods (Stinsonet al 1988) obtaining the value of
k0 = (3±0.5)10−9. Fig. 2 shows the experimental incident signal (solid line)generated
by the loudspeaker and its spectrum. After solving the inverse problem numerically for
the viscousk0 and thermal permeabilityk′

0
, the inertial factorα0, the thermal tortuosity

α′

0, and the new viscous parameterα1, we find the optimized values given in Table 1.
We present in Figs. 3 the variation of the minimization function U with the inverted
parameters. In Fig. 4, we show a comparison between an experimental transmitted
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Figure 2. Incident experimental signal and its spectrum.

Table 1. Inverted parameters.

Material k0 (10−9m) α0 k′

0
(10−9m) α′

0
α1

Sample 2.89 3.36 8.67 1.03 0.25

signal and simulated transmitted signal for the optimized values of the physical pa-
rameters. The difference between the two curves is small with a slight temporal delay
between the theoretical and experimental curves, probablydue to the uncertainties of
experimental measurements. This results leads us to conclude that the optimized val-
ues of physical parameters are correct. This study has been extended to other frequency
bandwidths (1-3)kHz and has also given good results. The Biot’s vibrations which in-
duced structural disturbance resulting from elasticity, prevent applying the method for
the resistive porous materials having a low viscous permeability value.

CONCLUSION

In this paper, a complete characterization of porous materials with rigid structure has
been given in the low frequency range. A new parameter describing the viscous ex-
change between fluid and structure was introduced. The inverse problem has allowed
to the experimental estimation of the physical parameters describing the propagation in
this domain of frequency (viscous and thermal permeability, inertial parameter, thermal
tortuosity and the new viscous parameter). The reconstructed value of viscous perme-
ability is in agreement with this obtained using classical methods. The proposed exper-
imental method has the advantage of being simple, rapid, andefficient for estimating
those parameters and further characterizing porous materials.
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Figure 3. Minima of the inverse problem.
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Figure 4. Comparison between the experimental transmitted signal (solid line)
and the simulated transmitted signals (dashed line).
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