
HAL Id: hal-00868114
https://hal.science/hal-00868114

Submitted on 1 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Local Search to Find and MUSes
Éric Grégoire, Bertrand Mazure, Cédric Piette

To cite this version:
Éric Grégoire, Bertrand Mazure, Cédric Piette. Using Local Search to Find and MUSes. European
Journal of Operational Research, 2009, 199 (3), pp.640-648. �hal-00868114�

https://hal.science/hal-00868114
https://hal.archives-ouvertes.fr

Using Local Search to find MSSes and MUSes

Éric Gŕegoire, Bertrand Mazure and Cédric Piette

Universit́e Lille-Nord de France, Artois, F-62307 Lens
CRIL, F-62307 Lens

CNRS UMR 8188, F-62307 Lens
rue Jean Souvraz SP18 F-62307 Lens France

Abstract

In this paper, a new complete technique to compute Maximal Satisfiable Subsets (MSSes)
and Minimally Unsatisfiable Subformulas (MUSes) of sets of Boolean clausesis intro-
duced. The approach improves the currently most efficient complete technique in several
ways. It makes use of the powerful concept of critical clause and of acomputationally in-
expensive local search oracle to boost an exhaustive algorithm proposed by Liffiton and
Sakallah. These features can allow exponential efficiency gains to be obtained. Accord-
ingly, experimental studies show that this new approach outperforms the best current exist-
ing exhaustive ones.

Key words: SAT, MSSes, MUSes, satisfiability, hybrid algorithm

1 Introduction

This last decade, the SAT problem, namely the issue of checking whether a set
of Boolean clauses is satisfiable or not, has received much attention from the AI
research community. Indeed, SAT appears to be a cornerstonein many domains,
like e.g. nonmonotonic reasoning, automated reasoning, model-based diagnosis,
planning and knowledge bases verification and validation. However, only knowing
that a SAT instance is unsatisfiable is often not satisfactory since we might prefer
knowing what goeswrongwith the instance when this latter one is expected to be
satisfiable.

In this respect, the MUS (Minimally Unsatisfiable Subformula) concept can be cru-
cial since a MUS can be seen as an irreducible cause for infeasibility. Indeed, a

Email addresses:gregoire@cril.fr (Éric Gŕegoire),mazure@cril.fr
(Bertrand Mazure),piette@cril.fr (Cédric Piette).

Preprint submitted to EJOR Special Issue 25 January 2008

MUS is an unsatisfiable set of clauses such that any of its subsets is satisfiable. It
thus provides one explanation for unsatisfiability that cannot be made shorter in
terms of the number of involved clauses. Restoring the satisfiability of an instance
cannot be done without fixing all its MUSes.

Unfortunately, a same instance can exhibit several MUSes. Actually, the number
of these MUSes can be exponential since an-clauses SAT instance can exhibit
Cn/2

n MUSes in the worst case. Moreover, computing MUSes is intractable in the
general case. Indeed, checking whether a set of clauses is a MUS or not is DP-
complete [1] and checking whether a formula belongs to the set (clutter) of MUSes
of an unsatisfiable SAT instance or not, is inΣp

2 [2]. Fortunately, the number of
MUSes remains often tractable in real-life applications. For example, in model-
based diagnosis [3], it is often assumed that single faults occur most often, which
can entail small numbers of MUSes.

A dual concept is the notion ofMaximal Satisfiable Subset(MSS) of a SAT in-
stance, and the complement of a MSS in a SAT instance is calleda CoMSS. The
complete set of MUSes or MSSes is an implicit encoding of the other [4]. Specif-
ically, a CoMSS is a hitting set of the set of MUSes and represent minimal sets of
clauses that should be dropped in order to restore consistency. In this paper, we are
interested in exhaustive approaches to compute these threecorrelated concepts in
the full Boolean clausal framework.

Recently, several approaches have been proposed to approximate or compute MUSes
and MSSes, both in the Boolean framework and for other types ofconstraints. Some
of them concern specific classes of clauses or remain tractable for small instances,
only. Among them, let us mention the approach in [5], where itis shown how a
MUS can be extracted in polynomial time through linear programming techniques
for clauses exhibiting a so-called integral property. However, only restrictive classes
of clauses obey such a property (mainly Horn, renamable Horn, extended Horn,
balanced and matched ones). Let us also mention [6][7][8], which contain stud-
ies of the complexity and the algorithmic aspects of extracting MUSes for specific
classes of clauses. In [9], an approach is proposed that approximates MUSes by
means of an adaptative search guided by clauses hardness. In[10] a technique is
described, that extracts MUSes by learning nogoods involved in the derivation of
the empty clause by resolution. In [11], a complete and exhaustive technique to
extract smallest MUSes is introduced. In [12], a DPLL-oriented approach has been
presented that is based on a marked clauses concept to allow one to approximate
MUSes. In [13], Gŕegoire, Mazure and Piette have proposed a heuristic-based in-
complete approach to compute MUSes, which outperforms competing ones from a
computational point of view.

Interestingly, in [14] the same authors have introduced a concept of inconsistent
covers to circumvent the possible intractable number of MUSes, and presented
a technique to compute them. Roughly, an inconsistent cover of an unsatisfiable

2

SAT instance represents a set of MUSes that covers enough independent causes
of inconsistency that would allow the instance to regain consistency if they were
repaired. Although an inconsistent cover does not provide us with the set of all
MUSes that may be present in a formula, it does however provide us with a series
of minimal explanations of inconsistency that are sufficient to explain and poten-
tially ”fix” enough causes of inconsistency in order for the whole instance to regain
consistency.

These latter techniques are incomplete ones in the sense that they do not necessarily
deliver all MUSes. However, in some application domains, itcan be necessary to
find the set ofall MUSes, because diagnosing infeasibility is hard, if not impossible,
without a complete view of its causes [4]. Obviously enough,such techniques can
only remain tractable provided that the number of MUSes remains itself tractable.
Likewise, the number of MSSes and CoMSSes can be exponential in the worst case.
It should be noted that many domains in Artificial Intelligence like belief revision
(see e.g. [15]) involve conceptual approaches to handle unsatisfiability that can
require the complete sets of MUSes, MSSes, and CoMSSes to be computed in the
worst case, even when additional epistemological ingredients like e.g. stratification
are introduced in the logical framework.

In this paper, the focus is on complete techniques. We introduce a new complete
technique to compute all MUSes, MSSes and CoMSSes of a SAT instance, pro-
vided obvious tractability limitations. It improves the currently most efficient com-
plete technique, namely Liffiton and Sakallah’one [4] (in short L&S), which in turn
was shown more competitive than previous approaches by Bailey and Stuckey [16],
and by de la Banda, Stuckey and Wazny [17], which were introduced in somewhat
different contexts.

Our approach exhibits two main features. First, it is a hybridization of the L&S
complete approach with a local search pretreatment. A localsearch technique is
indeed used as an oracle to find potential CoMSSes of the SAT instance, which
are themselves hitting sets of MUSes. We show that such a hybridization can yield
exponential efficiency gains. Second, the efficiency of the approach relies on the
crucial concept of critical clause, which appears to be a powerful ingredient of our
technique to locate MUSes.

The rest of the paper is organized as follows. First, the reader is provided with
the necessary background about SAT, MUSes and the dual concepts of MSSes and
CoMSSes. Then, Liffiton and Sakallah’s exhaustive approach is briefly presented.
In Section 4, we show how this technique can be valuably hybridized with a local
search pretreatment, making use of the critical clause concept. It is shown how
this pretreatment can be theoretically valuable from a computational point of view.
In Section 5, we compare this new approach with Liffiton and Sakallah’s one on
various benchmarks.

3

2 Background

In this section, the reader is provided with basic notions about SAT, MUSes, MSSes
and CoMSSes.

Let L be a standard Boolean logical language built on a finite set of Boolean vari-
ables, noteda, b, c, etc. The∧, ∨, ¬ and⇒ symbols represent the standard con-
junctive, disjunctive, negation and material implicationconnectives, respectively.
Formulas and clauses will be noted using upper-case letterssuch asC. Sets of for-
mulas will be represented using Greek letters likeΓ or Σ. An interpretation is a
truth assignment function that assigns values from{true, false} to every Boolean
variable. A formula is satisfiable when there is at least one interpretation (called
model) that satisfies it, i.e. that makes it becometrue. An interpretation will be
noted by upper-case letters likeI and will be represented by the set of literals that
it satisfies. Actually, any formula inL can be represented (while preserving satis-
fiability) using a set (interpreted as a conjunction) of clauses, where a clause is a
finite disjunction of literals, where a literal is a Boolean variable that is possibly
negated. SAT is the NP-complete problem that consists in checking whether a set
of Boolean clauses is satisfiable or not, i.e. whether there exists an interpretation
that satisfies all clauses in the set or not.

When a SAT instance is unsatisfiable, it exhibits at least oneMinimally Unsatisfi-
able Subformula, in short oneMUS.

Definition 1 A MUSΓ of a SAT instanceΣ is a set of clauses s.t.

(1) Γ ⊆ Σ
(2) Γ is unsatisfiable
(3) ∀∆ ⊂ Γ, ∆ is satisfiable

Example 2 Let Σ = {a, ¬c, ¬b ∨ ¬a, b, ¬b ∨ c}. Σ exhibits two MUSes, namely
{a, b, ¬b ∨ ¬a} and{¬c, b, ¬b ∨ c}.

A dual concept is the notion ofMaximal Satisfiable Subset(MSS) of a SAT in-
stance.

Definition 3 A MSSΓ of a SAT instanceΣ is a set of clauses s.t.

(1) Γ ⊆ Σ
(2) Γ is satisfiable
(3) ∀∆ ⊆ (Σ \ Γ) s.t.∆ 6= ∅, Γ ∪ ∆ is unsatisfiable.

The set-theoretical complement of a MSS w.r.t. a SAT instance is called aCoMSS.

Definition 4 The CoMSS of a MSSΓ of a SAT instanceΣ is given byΣ \ Γ

4

Example 5 Let us consider the formulaΣ from the previous example.Σ exhibits
five MSSes:{b}, {¬c, a}, {¬c,¬b ∨ c}, {¬b ∨ c,¬b ∨ ¬a}, {¬c,¬b ∨ ¬a}

As shown by several authors [4], these concepts are correlated. Mainly, a CoMSS
contains at least one clause from each MUS. Actually, a CoMSS is an irreducible
hitting set of the set of MUSes. In a dual way, every MUS of a SATinstance is
an irreducible hitting set of the CoMSSes. Accordingly, as emphasized by [4], al-
thoughMINIMAL-HITTING-SET is a NP-hard problem, irreducibility is a less
strict requirement than minimal cardinality. Actually, a MUS can be generated in
polynomial time from the set of CoMSSes.

3 Liffiton and Sakallah’s Exhaustive Approach

Liffiton and Sakallah’s approach [4] to compute all MUSes (inshort L&S) is based
on the strong duality between MUSes and MSSes. To the best of our knowledge,
it is currently the most efficient one. First it computes all MSSes before it extracts
the corresponding set of MUSes. Here, the focus is on L&S firststep since we shall
improve it and adopt the second step as such.

L&S is integrated with a modern SAT solver and takes advantage of it. Roughly,
everyith clauseCi = x1 ∨ ...∨xm of the SAT instance is augmented with a negated
clause selector variableyi to yieldC

′

i = x1∨ ...∨xm∨¬yi. While solving these new
clauses, assigningyi to falsehas the effect of disabling or removingCi from the in-
stance. Accordingly, a MSS can be obtained by finding a satisfying assignment with
a minimal number ofyi variables assignedfalse. The algorithm makes use of a slid-
ing objective approach allowing for an incremental search.A bound on the number
of yi that may be assigned tofalse is set. For each value of the bound, starting at
0 and incrementing by 1, an exhaustive search is performed for all satisfiable as-
signments to the augmented formulaC

′

i , which will find all CoMSSes having their
size equal to the bound. Whenever one solution is found, it is recorded, and a corre-
sponding clause forcing out that solution (and any supersets of it) is inserted. This
blocking clause is a disjunction of theyi variables for the clauses in that CoMSS.

Before beginning the search with the next bound, the algorithm checks that the
new instance augmented with all the blocking clauses is still satisfiable without any
bound on theyi variables. If there is no such satisfying assignment, the entire set of
CoMSSes has been found and the algorithm terminates.

The second part of the algorithm computes the complete set ofMUSes from the set
of CoMSSes in a direct way. The approach that we shall introduce will include this
second step as such.

5

4 Local Search and Critical Clauses

In this section, it is shown how the aforementioned exhaustive search algorithm can
be improved in a dramatic manner by hybridizing it with an initial local search step,
which provides valuable oracles for the subsequent exhaustive search process. We
shall call the new approach HYCAM (HYbridization for Computing All Muses).

First, let us motivate our approach in an intuitive manner. Clearly, a (fast) initial lo-
cal search run for satisfiability on the initial instance might encounter some actual
MSSes. Whenever this phenomenon happens, it can prove valuable to record the
corresponding CoMSSes in order to avoid computing them during the subsequent
exhaustive search. Moreover, rather than checking whetherwe are faced with an ac-
tual MSS or not, it can prove useful to record the corresponding candidate CoMSS
that will be checked later during the exhaustive search. Obviously enough, we must
study which interpretations encountered during the local search process yield can-
didate MSSes and criteria must be defined in order to record a limited number of
potentially candidate CoMSSes only. In this respect, a concept of critical clause will
prove extremely valuable in the sense that it allows us to state necessary conditions
for being a CoMSS that can be checked quickly. When all the remaining candidate
CoMSSes are recorded, the incremental approach by Liffiton and Sakallah allows
us to exploit this information in a very valuable and efficient way. Let us describe
this in a more detailed manner.

A local search algorithm is thus run on the initial SAT instance. The goal is to record
as many candidate CoMSSes as possible, based on the intuitiveheuristics that local
search often converges towards local minima, which could translate possibly good
approximations of MSSes. A straightforward approach wouldconsist in recording
for each visited interpretation the set of unsatisfied clauses. Obviously enough, we
do not need to record supersets of already recorded candidate CoMSSes since they
cannot be actual CoMSSes as they are not minimal with respect to set-theoretic
inclusion. More generally, we have adapted the technique proposed by Zhang in
[18] to sets of clauses in order to record the currently smaller candidates CoMSSes
among the already encountered series of sets of unsatisfied clauses. Now, crucial
ingredients in our approach are the concepts of once-satisfied and critical clauses.
Moreover, we have also exploited the following concept of critical clause, which
has already proved valuable for locating MUSes and inconsistent covers using an
incomplete technique based on local search [13][14].

Definition 6 A clauseC is once-satisfied by an interpretationI iff exactly one
literal of C is satisfied byI. A clauseC that is falsified by the interpretationI is
critical w.r.t. I iff the opposite of each literal ofC belongs to at least one once-
satisfied clause byI.

Intuitively, a critical clause is thus a falsified clause that requires at least another

6

Algorithm 1 : Local Search approximation
Input : a CNF formulaΣ
Output : Set of candidate CoMSS
begin

candidates ←− ∅ ;
#fail ←− 0 ;
I ←− generate random interpretation() ;
while (#fail < PRESET#FAILURESAUTHORIZED) do

newcandidates ←− FALSE ;
for j = 1 to #FLIPSdo

Let ∆ be the set of falsified clauses byI ;
if ∀C ∈ ∆, C is critical and ∆ is not implied incandidates then

removeAllSetImplied(∆,candidates) ;
candidates ←− ∆ ∪ candidates ;
newcandidates ←− TRUE ;

flip(I) ;
if not(newcandidates) then #fail ←− #fail + 1;

return candidates ;
end

clause to be falsified in order to become satisfied, performing a flip. The follow-
ing proposition shows how this concept allows us to eliminate wrong candidates
CoMSSes.

Proposition 7 Let Σ be a SAT instance and letI be an interpretation. LetΓ be a
non-empty subset ofΣ s.t. all clauses ofΓ are all falsified byI. When at least one
clause ofΓ is not critical w.r.t.I, thenΓ is not a CoMSS ofΣ.

PROOF. By definition, when a clauseCf of Γ is not critical w.r.t.I, there exists
at least one literalc ∈ Cf whose truth-value can be inversed (i.e. flipped) without
falsifying any other clause ofΣ. Accordingly,Γ is not minimal and cannot be a
CoMSS ofΣ. ¤

In practice, testing whether all falsified clauses are critical or not can be performed
quickly and prevents many sets of clauses to be recorded as candidate CoMSSes.

Using these features, the local search run on the initial SATinstance, as described
in Algorithm 1, yields a series of candidate CoMSSes. This information proves
valuable and allows us to boost L&S complete search.

L&S is incremental in the sense that it computes CoMSSes of increasing sizes,
progressively. Aftern iterations have been performed, all CoMSSes of cardinality
lower or equal thann have been obtained. Accordingly, if we have recorded can-
didate CoMSSes containingn + 1 clauses, and if they are not supersets of already

7

obtained CoMSSes, we are sure that they are actual CoMSSes. In this respect, we
do not need to search them, and their corresponding blockingclauses can be in-
serted directly. Moreover, we do not need to perform the SAT test at the end of the
n-th iteration, since we are then aware of the existence of larger CoMSSes.

It is also easy to show that the insertion of these blocking clauses can allow both
NP-complete and CoNP-complete tests to be avoided. Let us illustrate this on an
example.

Example 8 LetΣ be the following SAT instance.

Σ =

c0 : (d)

c1 : (b ∨ c)

c2 : (a ∨ b)

c3 : (a ∨ ¬c)

c4 : (¬b ∨ ¬e)

c5 : (¬a ∨ ¬b)

c6 : (a ∨ e)

c7 : (¬a ∨ ¬e)

c8 : (b ∨ e)

c9 : (¬a ∨ b ∨ ¬c)

c10 : (¬a ∨ b ∨ ¬d)

c11 : (a ∨ ¬b ∨ c)

c12 : (a ∨ ¬b ∨ ¬d)

Σ is an unsatisfiable SAT instance made of13 clauses and making use of5 vari-
ables. It exhibits3 MUSes, which are illustrated in Figure 1, and admits19 MSSes.
Assume that both L&S and HYCAM are run on this instance. Its clauses are aug-
mented by the¬yi negated clause selector variables. Assume also that the lo-
cal search performed by HYCAM provides 4 candidate CoMSSes:{c5}, {c3, c2},
{c0, c1, c2} and{c3, c8, c10}.

If the branching variables are chosen based on the lexical order, thena andb are
assigned totrue andc5 is falsified. Thus, L&S tries to prove that this clause forms
a CoMSS, which requires a NP-complete test (because it has to find a model of
Σ\{¬a∨¬b}∪{a, b}). On the contrary, when HYCAM is run, the blocking clause
y5 is added before the first iteration of the complete algorithmis performed, sincey5

is the clause selector variable ofc5 and since the local search has already delivered

8

c3 : (a ∨ ¬c)
c1 : (b ∨ c)

c11 : (a ∨ ¬b ∨ c)
c9 : (¬a ∨ b ∨ ¬c)

c5 : (¬a ∨ ¬b)

c2 : (a ∨ b)

c10 : (¬a ∨ b ∨ ¬d)

c12 : (a ∨ ¬b ∨ ¬d)

c0 : (d)

c4 : (¬b ∨ ¬e)
c6 : (a ∨ e)

c7 : (¬a ∨ ¬e)
c8 : (b ∨ e)

Fig. 1. MUSes of Example 8

this CoMSS. In consequence, whena andb are assignedtrue, the DPLL-algorithm
backtracks immediately as the{y5,¬y5} unsatisfiable set has been obtained, with-
out requiring any further NP-complete test.

Similarly, the introduction of additional clause selectorvariables by HYCAM can
reduce the number of CoNP-complete tests. For example, let usassume thate is
the first branching variable, thate is assignedfalse and that the next variables are
selected according to the lexical order. Whena andb are assignedtrue, L&S tries
to prove that{c5} is a CoMSS. Since¬e is tautological consequence ofΣ\{¬a ∨
¬b} ∪ {a, b}, no model exists forΣ\{¬a ∨ ¬b} ∪ {a, b,¬e}. Clearly, such a test is
in CoNP. Thanks to the previously delivered candidate CoMSSes, HYCAM avoids
this part of the search space to be explored. Indeed, since weknow that{c5} is a
CoMSS, whena andb are assignedtrue, no further CoNP tests are performed with
respect to this partial assignment.

In fact, from a computational point of vue, the preliminary non-expensive local
search eliminates nodes in the search tree, avoiding both NPand CoNP tests.

The HYCAM algorithm is depicted in Algorithm 2.

5 Experimental Evaluation

HYCAM has been implemented and compared to L&S from a practical point of
view. For both algorithms, the complete search step is basedon the use of MiniSat
[19], which is currently one of the best modern SAT solvers. As a case study, we
used Walksat [20] for the local search pretreatment. The number of flips and tries of
Walksat is related to the number of candidate CoMSS already found. For each try,
a small number of flips is performed. If no new candidate is found during a try then
a counter is incremented. When this counter exceeds a threshold (experimentally

9

Algorithm 2 : The HYCAM algorithm
Input : a CNF formulaΣ
Output : All MSSes ofΣ
begin

cand ←− LS approximation(Σ) ; /* algorithm 1 */
Σy ←− addSelectorClauses(Σ) ;
k ←− 0 ;
MSS ←− ∅ ;
while SAT(Σy) do

removeAllSetImplied({Σ\C|C ∈ MSS},cand) ;
Σy ←− addBlockingClausesOfSize(k,cand) ;
MSS ←− MSS ∪ {Σ\C|C ∈ cand and|C| = k} ;
MSS ←− MSS ∪ SAT with bound(k,Σy) ;
k ←− k + 1 ;

return MSS ;
end

set to30), we consider that no new candidate could be found by the local search.
This way to end the local search pretreatment offers a good trade-off between the
number of candidates found and the time spent. Besides, for all experiments, the
time consumed by the local search step was less than5% of the global time. All
our experimental studies have been conducted on Intel Xeon 3GHz under Linux
CentOS 4.1. (kernel 2.6.9) with a RAM memory size of 2Go. In the following, a
time-out limit has been set to 3 CPU hours.

First, in Table 1, we report experimental results about the computation of MSSes
on pigeon-hole and xor-chains benchmarks [21], which are globally unsatisfiable
in the sense that removing any one of their clauses makes the instance become
satisfiable. Obviously enough, such instances exhibit a number of CoMSSes equals
to their number of clauses, and the size of any of their CoMSS isone. A significant
time gap can be observed in favor of HYCAM. The efficiency gain ratio is even
more significant when the size of the instance increased. Forthese instances, the
local search run often succeeds in finding all CoMSSes, and thecomplete step
often reduces to an unsatisfiability test. On the contrary, L&S explores many more
nodes in the search space to deliver the CoMSSes.

In Table 2, experimental results on more difficult benchmarks from the annual SAT
competition [21] are described. Their number of MSSes is often exponential, and
computing them often remains intractable. Accordingly, wehave limited the search
to CoMSSes of restricted sizes, namely we have set a size limitto 5 clauses. As
our experimental results illustrate, HYCAM outperforms L&S. For example, let
us considerrand net40-30-10. This instance contains 5831 MSSes (with the
size of their corresponding CoMSSes less than 5). L&S and HYCAMdeliver this
result in 1748 and 386 seconds, respectively. For theca256 instance, HYCAM
has extracted 9882 MSSes in less than 5 minutes whereas L&S did not manage to

10

Instance (#var,#cla) #MSSes L&S (sec.) HYCAM (sec.)

hole6 (42,133) 133 0.040 0.051

hole7 (56,204) 204 0.75 0.33

hole8 (72,297) 297 33 1.60

hole9 (90,415) 415 866 30

hole10 (110,561) 561 7159 255

x1 16 (46,122) 122 0.042 0.041

x1 24 (70,186) 186 7.7 0.82

x1 32 (94,250) 250 195 28

x1 40 (118,314) 314 2722 486

Table 1
L&S vs. HYCAM on globally unsatisfiable instances

produce this result within 3 hours. Let us note that HYCAM alsodelivers CoMSSes
made of 5 clauses after its computation is ended since we knowthat all sets of 5
falsified clauses recorded by the local search run and that are not supersets of the
obtained smaller CoMSSs are actually also CoMSSes.

In Table 3, experimental results on hard instances to compute the complete set
of MSSes and MUSes are reported. As explained above, both L&Sand HYCAM
approaches require all MSSes to be obtained before MUSes arecomputed. By al-
lowing complete sets of MSSes to be delivered in a shorter time, HYCAM allows
the complete set of MUSes to be computed for more instances and in a faster man-
ner than L&S does. Obviously enough, when the number of MSSesor MUSes are
exponential, computing and enumerating all of them remain intractable.

For instance, L&S was unable to compute all MSSes of thephp-012-011 in-
stance within 3 hours CPU time, and could thus not discover itssingle MUS. HY-
CAM extracted it in 2597 seconds. On all instances exhibitingunique or a non-
exponential number of MUSes, HYCAM was clearly more efficientthan L&S. For
example, on thedlx2 aa instance, L&S and HYCAM discovered the 32 MUSes
within 3.12 and 0.94 seconds, respectively. Let us note thatthe additional time spent
to compute all MUSes from the set of MSSes is often very small unless of course
the number of MUSes is exponential.

11

Instance (#var,#cla) #MSSes L&S (sec.) HYCAM (sec.)

randnet40-25-10 (2000,5921) 5123 893 197

randnet40-25-5 (2000,5921) 4841 650 174

randnet40-30-10 (2400,7121) 5831 1748 386

randnet40-30-1 (2400,7121) 7291 1590 1325

randnet40-30-5 (2400,7121) 5673 2145 402

ca032 (558,1606) 1173 4 1

ca064 (1132,3264) 2412 59 3

ca128 (2282,6586) 4899 691 18

ca256 (4584,13236) 9882 time out 277

2pipe (892,6695) 3571 130 36

2pipe1 ooo (834,7026) 3679 52 30

2pipe2 ooo (925,8213) 5073 148 61

3pipe1 ooo (2223,26561) 17359 5153 2487

am 5 5 (1076,3677) 1959 68 57

c432 (389,1115) 1023 4 1

c880 (957,2590) 2408 28 3

bf0432-007 (1040,3668) 10958 233 98

velev-sss-1.0-cl (1453,12531) 4398 1205 513

Table 2
L&S vs. HYCAM on various difficult SAT instances

6 Conclusions and Future Research

Computing all MSSes, CoMSSes and MUSes are highly intractableissues in the
worst case. However, it can make sense to attempt to compute them for some real-
life applications. In this paper, we have improved the currently most efficient ex-
haustive technique, namely Liffiton and Sakallah’s method,in several ways. Our
experimental results show dramatic efficiency gains for MSSes, CoMSSes and
MUSes extracting. One interesting feature of the approach lies in its anytime char-
acter for computing MSSes. MSSes of increasing sizes are computed gradually.
Accordingly, we can put a bound on the maximum size of the CoMSSes to be ex-
tracted, limiting the computing resources needed to extract them. To some extent,
both L&S and HYCAM prove more adapted to extract complete setsof MSSes
and CoMSSes than complete sets of MUSes. Indeed, the procedure involves com-
puting MSSes (and thus CoMSSes) first. In this respect, we agree with Liffiton

12

Instance (#var,#cla) #MSSes L&S HYCAM #MUSes MSSes→MUSes
(sec.) (sec.) (sec.)

mod2-3cage-unsat-9-8 (87, 232) 232 3745 969 1 0.006

mod2-rand3bip-unsat-105-3(105, 280) 280 2113 454 1 0.008

2pipe (892, 6695) 10221 298 226 > 211 000 time out

php-012-011 (132, 738) 738 time out 2597 1 0.024

hcb3 (45, 288) 288 10645 6059 1 0.006

1dlx c mc ex bp f (776, 3725) 1763 10.4 6.8 > 350 000 time out

hwb-n20-02 (134, 630) 622 951 462 1 0.01

hwb-n22-02 (144, 688) 680 2183 811 1 0.025

ssa2670-141 (986, 2315) 1413 2.83 1.08 16 0.15

clqcolor-08-05-06 (116, 1114) 1114 107 62 1 0.007

dlx2 aa (490, 2804) 1124 3.12 0.94 32 0.023

addsub.boehm (492, 1065) 1324 35 29 > 657 000 time out

Table 3
L&S vs. HYCAM on computing all MUSes

and Sakallah that an interesting path for future research concerns the study of how
MUSes could be computed progressively from the growing set of extracted MSSes.

Many artificial intelligence research areas have studied various problems involving
the manipulation of MUSes, MSSes and CoMSSes, like model-based diagnosis,
belief revision, inconsistency handling in knowledge and belief bases, etc. These
studies are often conducted from a conceptual point of view,or from a worst-case
complexity point of view, only. We believe that the practical computational pro-
gresses as such as the ones obtained in this paper can prove valuable in handling
these problems practically. In this respect, future research could concentrate on
deriving specific algorithms for these AI issues, exploiting results like the ones
described in this paper.

Acknowledgments

We thank Mark Liffiton for making his system available to us. This work has been
supported in part by theRégion Nord/Pas-de-Calais. A preliminary version of this
paper was published in the proceedings of IJCAI’07.

References

[1] C. H. Papadimitriou, D. Wolfe, The complexity of facets resolved, Journal of
Computer and System Sciences 37 (1) (1988) 2–13.

13

[2] T. Eiter, G. Gottlob, On the complexity of propositional knowledge base revision,
updates and counterfactual, Artificial Intelligence 57 (1992) 227–270.

[3] W. Hamscher, L. Console, J. de Kleer (Eds.), Readings in Model-Based Diagnosis,
Morgan Kaufmann, 1992.

[4] M. Liffiton, K. Sakallah, On finding all minimally unsatisfiable subformulas,in:
Proceedings of SAT’05, 2005, pp. 173–186.

[5] R. Bruni, On exact selection of minimally unsatisfiable subformulae., Annals of
Mathematics and Artificial Intelligence 43 (1) (2005) 35–50.

[6] H. Büning, On subclasses of minimal unsatisfiable formulas, Discrete Applied
Mathematics 107 (1–3) (2000) 83–98.

[7] G. Davydov, I. Davydova, H. B̈uning, An efficient algorithm for the minimal
unsatisfiability problem for a subclass of cnf, Annals of Mathematics and Artificial
Intelligence 23 (3–4) (1998) 229–245.

[8] H. Fleischner, O. Kullman, S. Szeider, Polynomial-time recognition of minimal
unsatisfiable formulas with fixed clause-variable difference, Theoretical Computer
Science 289 (1) (2002) 503–516.

[9] R. Bruni, Approximating minimal unsatisfiable subformulae by means of adaptive
core search, Discrete Applied Mathematics 130 (2) (2003) 85–100.

[10] L. Zhang, S. Malik, Extracting small unsatisfiable cores from unsatisfiable boolean
formula, in: Sixth international conference on theory and applications of satisfiability
testing (SAT’03), Portofino (Italy), 2003, pp. 239–249.

[11] I. Lynce, J. Marques-Silva, On computing minimum unsatisfiable cores, in: Seventh
international conference on theory and applications of satisfiability testing (SAT’04),
Vancouver, 2004, pp. 305–310.

[12] Y. Oh, M. Mneimneh, Z. Andraus, K. Sakallah, I. Markov, AMUSE: a minimally-
unsatisfiable subformula extractor, in: Proceedings of the 41th Design Automation
Confrence (DAC 2004), 2004, pp. 518–523.

[13] É. Gŕegoire, B. Mazure, C. Piette, Extracting MUS, in: Proceedings of the 17th
European Conference on Artificial Intelligence (ECAI’06), Riva delGarda, Italy,
2006, pp. 387–391.

[14] É. Gŕegoire, B. Mazure, C. Piette, Tracking mus and strict inconsistent cover, in:
Proceedings of International Conference on Formal Methods in Computer-Aided
Design (FMCAD’06), San Jose, CA, USA, 2006, pp. 39–46.

[15] B. Bessant,É. Gŕegoire, P. Marquis, L. Saı̈s, Iterated Syntax-Based Revision in
a Nonmonotonic Setting, Vol. 22 of Applied Logic, Kluwer Academic Publishers,
Applied Logic Series, 2001, Ch. of Frontiers in Belief Revision, pp. 369–391.

[16] J. Bailey, P. Stuckey, Discovery of minimal unsatisfiable subsets of constraints using
hitting set dualization, in: PADL, 2005, pp. 174–186.

14

[17] M. de la Banda, P. Stuckey, J. Wazny, Finding all minimal unsatisfiablesubsets, in:
Proceedings of the Fifth ACM-SIGPLAN International Conference on Principles and
Practice of Declarative Programming (PPDL 2003), 2003, pp. 32–43.

[18] L. Zhang, On subsumption removal and on-the-fly cnf simplification, in: Proceedings
of the International Conference on Theory and Applications of Satisfiability Testing
(SAT’05), 2005, pp. 482–489.

[19] N. Eén, N. S̈orensson, Minisat home page
http://www.cs.chalmers.se/cs/research/formalmethods/minisat (2004).

[20] H. Kautz, B. Selman, D. McAllester, Walksat in the SAT’2004 competition, SAT
Competition 2004 - solver description.

[21] SATLIB, Benchmarks on SAT
http://www.intellektik.informatik.tu-darmstadt.de/satlib/benchm.html (2006).

15

