\

Using Local Search to Find and MUSes

Eric Grégoire, Bertrand Mazure, Cédric Piette

» To cite this version:

Eric Grégoire, Bertrand Mazure, Cédric Piette. Using Local Search to Find and MUSes. European
Journal of Operational Research, 2009, 199 (3), pp.640-648. hal-00868114

HAL Id: hal-00868114
https://hal.science/hal-00868114
Submitted on 1 Oct 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00868114
https://hal.archives-ouvertes.fr

Using Local Search to find MSSes and MUSes

Eric Gregoire, Bertrand Mazure ance@ric Piette

Universig Lille-Nord de France, Artois, F-62307 Lens
CRIL, F-62307 Lens
CNRS UMR 8188, F-62307 Lens
rue Jean Souvraz SP18 F-62307 Lens France

Abstract

In this paper, a new complete technique to compute Maximal Satisfiable SUdSSe$)
and Minimally Unsatisfiable Subformulas (MUSes) of sets of Boolean claigsiesro-

duced. The approach improves the currently most efficient completei¢eehim several
ways. It makes use of the powerful concept of critical clause andcohgputationally in-
expensive local search oracle to boost an exhaustive algorithnogedpoy Liffiton and
Sakallah. These features can allow exponential efficiency gains tothameth. Accord-
ingly, experimental studies show that this new approach outperforms shelreent exist-
ing exhaustive ones.

Key words: SAT, MSSes, MUSes, satisfiability, hybrid algorithm

1 Introduction

This last decade, the SAT problem, namely the issue of chgokihether a set

of Boolean clauses is satisfiable or not, has received muehtaih from the Al
research community. Indeed, SAT appears to be a cornerstanany domains,
like e.g. nonmonotonic reasoning, automated reasoninglehlmased diagnosis,
planning and knowledge bases verification and validatimwéVer, only knowing
that a SAT instance is unsatisfiable is often not satisfgorce we might prefer
knowing what goesvrongwith the instance when this latter one is expected to be
satisfiable.

In this respect, the MUSMinimally Unsatisfiable Subformuj@oncept can be cru-
cial since a MUS can be seen as an irreducible cause for ibfiggsIndeed, a

Email addressesgr egoi re@ri | . fr (Eric Gregoire),mazure@ril . fr
(Bertrand Mazurelpi ette@ri | . fr (Cédric Piette).

Preprint submitted to EJOR Special Issue 25 January 2008



MUS is an unsatisfiable set of clauses such that any of itsessils satisfiable. It
thus provides one explanation for unsatisfiability thatrzdrbe made shorter in
terms of the number of involved clauses. Restoring the saisify of an instance
cannot be done without fixing all its MUSes.

Unfortunately, a same instance can exhibit several MUSetually, the number
of these MUSes can be exponential since-elauses SAT instance can exhibit
C™/2 MUSes in the worst case. Moreover, computing MUSes is itdtde in the
general case. Indeed, checking whether a set of clauses I9& v not is DP-
complete [1] and checking whether a formula belongs to théckéter) of MUSes
of an unsatisfiable SAT instance or not, isX¥ [2]. Fortunately, the number of
MUSes remains often tractable in real-life applicationst Example, in model-
based diagnosis [3], it is often assumed that single fagitsiomost often, which
can entail small numbers of MUSes.

A dual concept is the notion d¥laximal Satisfiable Subs@SS) of a SAT in-
stance, and the complement of a MSS in a SAT instance is call@dMSS. The
complete set of MUSes or MSSes is an implicit encoding of therg4]. Specif-
ically, a CoMSS is a hitting set of the set of MUSes and represgmnimal sets of
clauses that should be dropped in order to restore consysterthis paper, we are
interested in exhaustive approaches to compute thesedbresated concepts in
the full Boolean clausal framework.

Recently, several approaches have been proposed to apptexancompute MUSes
and MSSes, both in the Boolean framework and for other typegradtraints. Some
of them concern specific classes of clauses or remain tladsmall instances,
only. Among them, let us mention the approach in [5], wherie ghown how a
MUS can be extracted in polynomial time through linear paogming techniques
for clauses exhibiting a so-called integral property. Hesveonly restrictive classes
of clauses obey such a property (mainly Horn, renamable Hodtended Horn,
balanced and matched ones). Let us also mention [6][7][8]cRvcontain stud-
ies of the complexity and the algorithmic aspects of exingdilUSes for specific
classes of clauses. In [9], an approach is proposed thabxpmates MUSes by
means of an adaptative search guided by clauses hardng6] b technique is
described, that extracts MUSes by learning nogoods indoivehe derivation of
the empty clause by resolution. In [11], a complete and esinaitechnique to
extract smallest MUSes is introduced. In [12], a DPLL-orgghapproach has been
presented that is based on a marked clauses concept to alwo @pproximate
MUSes. In [13], Gegoire, Mazure and Piette have proposed a heuristic-based i
complete approach to compute MUSes, which outperforms etingpones from a
computational point of view.

Interestingly, in [14] the same authors have introducedraept of inconsistent
covers to circumvent the possible intractable number of E&J&nd presented
a technique to compute them. Roughly, an inconsistent cdvan ansatisfiable



SAT instance represents a set of MUSes that covers enougpbendent causes
of inconsistency that would allow the instance to regainstsiency if they were
repaired. Although an inconsistent cover does not provelevith the set of all
MUSes that may be present in a formula, it does however peavgdwith a series
of minimal explanations of inconsistency that are suffitienexplain and poten-
tially "fix” enough causes of inconsistency in order for thiroke instance to regain
consistency.

These latter techniques are incomplete ones in the serighélalo not necessarily
deliver all MUSes. However, in some application domainsait be necessary to
find the set ofll MUSes, because diagnosing infeasibility is hard, if notasgible,
without a complete view of its causes [4]. Obviously enowglth techniques can
only remain tractable provided that the number of MUSes mesisself tractable.
Likewise, the number of MSSes and CoMSSes can be exponenttied worst case.
It should be noted that many domains in Artificial Intelligerlike belief revision
(see e.g. [15]) involve conceptual approaches to handlatigfiability that can
require the complete sets of MUSes, MSSes, and CoMSSes tarjmited in the
worst case, even when additional epistemological ingredikke e.g. stratification
are introduced in the logical framework.

In this paper, the focus is on complete techniques. We intech new complete
technique to compute all MUSes, MSSes and CoMSSes of a SAdnitest pro-
vided obvious tractability limitations. It improves thercently most efficient com-
plete technique, namely Liffiton and Sakallah’one [4] (iogh.&S), which in turn
was shown more competitive than previous approaches byyBailé Stuckey [16],
and by de la Banda, Stuckey and Wazny [17], which were intredilc somewhat
different contexts.

Our approach exhibits two main features. First, it is a Idikation of the L&S

complete approach with a local search pretreatment. A Iseaich technique is
indeed used as an oracle to find potential CoMSSes of the SAdnices, which

are themselves hitting sets of MUSes. We show that such adigdion can yield

exponential efficiency gains. Second, the efficiency of thygr@ach relies on the
crucial concept of critical clause, which appears to be agrwingredient of our

technique to locate MUSes.

The rest of the paper is organized as follows. First, theee#&lprovided with
the necessary background about SAT, MUSes and the dualmisrafeViSSes and
CoMSSes. Then, Liffiton and Sakallah’s exhaustive approahiefly presented.
In Section 4, we show how this technique can be valuably dyted with a local
search pretreatment, making use of the critical clauseegindt is shown how
this pretreatment can be theoretically valuable from a agatpnal point of view.
In Section 5, we compare this new approach with Liffiton ankaBiah’s one on
various benchmarks.



2 Background

In this section, the reader is provided with basic notiormaBAT, MUSes, MSSes
and CoMSSes.

Let £ be a standard Boolean logical language built on a finite set ofddm vari-
ables, noted, b, ¢, etc. TheA, vV, - and=- symbols represent the standard con-
junctive, disjunctive, negation and material implicaticonnectives, respectively.
Formulas and clauses will be noted using upper-case lstieisas”. Sets of for-
mulas will be represented using Greek letters liker . An interpretation is a
truth assignment function that assigns values ffgroe, false} to every Boolean
variable. A formula is satisfiable when there is at least onerpretation (called
model) that satisfies it, i.e. that makes it become. An interpretation will be
noted by upper-case letters likeand will be represented by the set of literals that
it satisfies. Actually, any formula id can be represented (while preserving satis-
fiability) using a set (interpreted as a conjunction) of ske&j where a clause is a
finite disjunction of literals, where a literal is a Boolearrigale that is possibly
negated. SAT is the NP-complete problem that consists inkthg whether a set
of Boolean clauses is satisfiable or not, i.e. whether theistsean interpretation
that satisfies all clauses in the set or not.

When a SAT instance is unsatisfiable, it exhibits at leastMimemally Unsatisfi-
able Subformulgin short oneMUS

Definition 1 A MUST of a SAT instanc& is a set of clauses s.t.
@Qrcx
(2) T is unsatisfiable

(3) VA C I', A is satisfiable

Example 2 Let> = {a, =¢, =b V —a, b, =b V c}. ¥ exhibits two MUSes, namely
{a,b,=bV —a} and{—c, b, =b V c}.

A dual concept is the notion dflaximal Satisfiable Subs@/SS) of a SAT in-
stance.

Definition 3 A MSSI" of a SAT instanc® is a set of clauses s.t.
Qrcx
(2) T'is satisfiable
(3) VAC (X \I)s.t.A#0,T'U A is unsatisfiable.
The set-theoretical complement of a MSS w.r.t. a SAT ingtascalled &LoMSS

Definition 4 The CoMSS of a MSSof a SAT instanc& is given by> \ T’



Example 5 Let us consider the formul& from the previous exampl& exhibits
five MSSes{b}, {—c, a}, {—¢c,—bV c}, {=bV ¢,=bV —a}, {—c,—bV —a}

As shown by several authors [4], these concepts are carcelitainly, a CoMSS
contains at least one clause from each MUS. Actually, a CoMS® irreducible
hitting set of the set of MUSes. In a dual way, every MUS of a SAgtance is
an irreducible hitting set of the CoMSSes. Accordingly, aplkasized by [4], al-
thoughM NI MAL- HI TTI NG SET is a NP-hard problem, irreducibility is a less
strict requirement than minimal cardinality. Actually, dJ8 can be generated in
polynomial time from the set of CoMSSes.

3 Liffiton and Sakallah’s Exhaustive Approach

Liffiton and Sakallah’s approach [4] to compute all MUSesdort L&S) is based
on the strong duality between MUSes and MSSes. To the bestrdfmrowledge,
it is currently the most efficient one. First it computes alB8kes before it extracts
the corresponding set of MUSes. Here, the focus is on L&Sdiegi since we shall
improve it and adopt the second step as such.

L&S is integrated with a modern SAT solver and takes advantzgt. Roughly,
everyith clause’; = x; Vv ... V z,,, of the SAT instance is augmented with a negated
clause selector variablgto yieldC; = 1 V...V z,,, V —y;. While solving these new
clauses, assigning to falsehas the effect of disabling or removidg from the in-
stance. Accordingly, a MSS can be obtained by finding a satgfissignment with

a minimal number of; variables assignefdlse The algorithm makes use of a slid-
ing objective approach allowing for an incremental seafcbound on the number
of y; that may be assigned falseis set. For each value of the bound, starting at
0 and incrementing by 1, an exhaustive search is performedllfsatisfiable as-
signments to the augmented formdla which will find all CoMSSes having their
size equal to the bound. Whenever one solution is found,édsnded, and a corre-
sponding clause forcing out that solution (and any superdat) is inserted. This
blocking clause is a disjunction of the variables for the clauses in that COMSS.

Before beginning the search with the next bound, the algarithecks that the
new instance augmented with all the blocking clauses isstilsfiable without any
bound on they; variables. If there is no such satisfying assignment, thieseset of
CoMSSes has been found and the algorithm terminates.

The second part of the algorithm computes the complete $dU&es from the set
of CoMSSes in a direct way. The approach that we shall intreailt include this
second step as such.



4 Local Search and Critical Clauses

In this section, it is shown how the aforementioned exhaestarch algorithm can
be improved in a dramatic manner by hybridizing it with atialilocal search step,
which provides valuable oracles for the subsequent exivaustarch process. We
shall call the new approach HYCAM (HYbridization for CompugiAll Muses).

First, let us motivate our approach in an intuitive manneza@y, a (fast) initial lo-
cal search run for satisfiability on the initial instance htigncounter some actual
MSSes. Whenever this phenomenon happens, it can prove ialioakecord the
corresponding CoMSSes in order to avoid computing them duha subsequent
exhaustive search. Moreover, rather than checking whetbare faced with an ac-
tual MSS or not, it can prove useful to record the correspandandidate CoMSS
that will be checked later during the exhaustive searchi@isly enough, we must
study which interpretations encountered during the loeateh process yield can-
didate MSSes and criteria must be defined in order to recarditet! number of
potentially candidate CoMSSes only. In this respect, a quirafecritical clause will
prove extremely valuable in the sense that it allows us te stacessary conditions
for being a CoMSS that can be checked quickly. When all the r@ngacandidate
CoMSSes are recorded, the incremental approach by LiffitdnSakallah allows
us to exploit this information in a very valuable and effi¢iemmy. Let us describe
this in a more detailed manner.

A local search algorithm is thus run on the initial SAT instanThe goal is to record
as many candidate CoMSSes as possible, based on the inhdtivistics that local
search often converges towards local minima, which coalasiate possibly good
approximations of MSSes. A straightforward approach wauwldsist in recording
for each visited interpretation the set of unsatisfied @au®bviously enough, we
do not need to record supersets of already recorded caadiddSSes since they
cannot be actual CoMSSes as they are not minimal with respesgtttheoretic
inclusion. More generally, we have adapted the techniqopgsed by Zhang in
[18] to sets of clauses in order to record the currently senathndidates CoMSSes
among the already encountered series of sets of unsatisiieses. Now, crucial
ingredients in our approach are the concepts of once-satiafid critical clauses.
Moreover, we have also exploited the following concept dical clause, which
has already proved valuable for locating MUSes and inctergi€overs using an
incomplete technique based on local search [13][14].

Definition 6 A clauseC' is once-satisfied by an interpretatiahiff exactly one
literal of C is satisfied byl. A clauseC' that is falsified by the interpretatioh is
critical w.r.t. I iff the opposite of each literal of’ belongs to at least one once-
satisfied clause by.

Intuitively, a critical clause is thus a falsified clausetthequires at least another



Algorithm 1: Local Search approximation

Input : a CNF formulaX

Output: Set of candidate CoMSS

begin

candidates «—— 0 ;

#fail — 0;

I «—— generate_random _interpretation() ;
while (# fail < PRESET#FAILURESAUTHORIZED dO
newcandidates «— FALSE |

for j = 1to #rupsdo

Let A be the set of falsified clauses bby
if VC € A, C'is critical and A is not implied incandidates then
L removeAllSetimpliedd,candidates) ;

candidates «— A U candidates ;
newcandidates «+— TRUE ;

L flip(1) ;

| if not(newcandidates) then # fail «— # fail + 1;

return candidates ;
end

clause to be falsified in order to become satisfied, perfagraifflip. The follow-
ing proposition shows how this concept allows us to elimenatong candidates
CoMSSes.

Proposition 7 Let X be a SAT instance and Iétbe an interpretation. Lef be a
non-empty subset &f s.t. all clauses of" are all falsified by/. When at least one
clause ofl" is not critical w.r.t. 7, thenI" is not a CoMSS af.

PROOF. By definition, when a claus€’; of I' is not critical w.r.t., there exists

at least one literat € C; whose truth-value can be inversed (i.e. flipped) without
falsifying any other clause of. Accordingly,I" is not minimal and cannot be a
CoMSS of%.. OJ

In practice, testing whether all falsified clauses areaalitor not can be performed
quickly and prevents many sets of clauses to be recordechdglede CoMSSes.

Using these features, the local search run on the initial t8fance, as described
in Algorithm 1, yields a series of candidate CoMSSes. Thisrimiation proves
valuable and allows us to boost L&S complete search.

L&S is incremental in the sense that it computes CoMSSes oéasing sizes,

progressively. After iterations have been performed, all CoMSSes of cardinality
lower or equal tham have been obtained. Accordingly, if we have recorded can-
didate CoMSSes containing+ 1 clauses, and if they are not supersets of already



obtained CoMSSes, we are sure that they are actual CoMSSéss hespect, we
do not need to search them, and their corresponding bloakages can be in-
serted directly. Moreover, we do not need to perform the AT at the end of the
n-th iteration, since we are then aware of the existence gétatoMSSes.

It is also easy to show that the insertion of these blockimgists can allow both
NP-complete and CoNP-complete tests to be avoided. Letustraite this on an
example.

Example 8 Let: be the following SAT instance.

co :(d)

¢ (bVe)

ca :(aVDb)

cs :(aV —c)

cs :(mbV —e)

cs (—aV —b)
Y=1c :(aVe)

c7 :(—aV —e)

cs :(bVe)

co :(ma VbV -c)

c10: (ma VbV —d)

c11:(aV=bVe)

c12:(aV —bV —d)

Y] is an unsatisfiable SAT instance madeldfclauses and making use divari-
ables. It exhibit$ MUSes, which are illustrated in Figure 1, and adnfisMSSes.
Assume that both L&S and HYCAM are run on this instance. Itsists are aug-
mented by the-y; negated clause selector variables. Assume also that the lo-
cal search performed by HYCAM provides 4 candidate CoMS$§e$, {cs, c2},

{co, c1, co} and{cs, cs, c10}-

If the branching variables are chosen based on the lexidarothena andb are
assigned t@rue andcs is falsified. Thus, L&S tries to prove that this clause forms
a CoMSS, which requires a NP-complete test (because it hasd@fmodel of

Y\ {—aV -b}U{a,b}). On the contrary, when HYCAM is run, the blocking clause
y5 is added before the first iteration of the complete algorihperformed, since;

is the clause selector variablegfand since the local search has already delivered



c3: (aV —e) \

c1:(bVe)
c11:(@V=bVe) / \| cio:(maVbV-d)
2 (ma Vv -b
Cg:(—\a\/b\/—!C) Cs ( “ ) 012;(a\/—|b\/—|d)
¢t (aVDb) o+ (d)
cq: (mbV —e)
c: (aVe)
cr: (ma Vv —e)

\ cgs:(bVe) )

Fig. 1. MUSes of Example 8

this COMSS. In consequence, wheandb are assigneti-ue, the DPLL-algorithm
backtracks immediately as tHes, —y;} unsatisfiable set has been obtained, with-
out requiring any further NP-complete test.

Similarly, the introduction of additional clause selectariables by HYCAM can
reduce the number of CoNP-complete tests. For example, lassigme that is
the first branching variable, thatis assigned a/se and that the next variables are
selected according to the lexical order. Wheandb are assigned-ue, L&S tries

to prove that{c;} is a COMSS. Sincee is tautological consequence Bf {—a V
b} U {a, b}, no model exists foE\{—a V =b} U {a, b, me}. Clearly, such a test is
in CoNP. Thanks to the previously delivered candidate COMS$¥EAM avoids
this part of the search space to be explored. Indeed, sindenowe that{c;} is a
CoMSS, wheru andb are assigneti-ue, no further CoNP tests are performed with
respect to this partial assignment.

In fact, from a computational point of vue, the preliminargnrexpensive local
search eliminates nodes in the search tree, avoiding bonNd”ZoNP tests.

The HYCAM algorithm is depicted in Algorithm 2.

5 Experimental Evaluation

HYCAM has been implemented and compared to L&S from a pragticant of
view. For both algorithms, the complete search step is basede use of MiniSat
[19], which is currently one of the best modern SAT solvers.acase study, we
used Walksat [20] for the local search pretreatment. Thebeumf flips and tries of
Walksat is related to the number of candidate CoMSS alreaatydfoFor each try,
a small number of flips is performed. If no new candidate isitbduring a try then
a counter is incremented. When this counter exceeds a thde@perimentally



Algorithm 2: The HYCAM algorithm
Input : a CNF formulaX
Output: All MSSes ofX®
begin
cand «—— LS_approximationk) ; [ * al gorithm 1 * [
¥, «— addSelectorClausesy ;
k+—0;
MSS «—0;
while SATE,) do
removeAllSetimplied(>\C|C € M SS},cand) ;
¥, «— addBlockingClausesOfSizetand) ;
MSS «— MSS U{X\C|C € cand and|C
MSS «—— MSS U SAT with_bound¢,X,) ;
k—Fk+1;
return MSS ;
end

:k};

set t030), we consider that no new candidate could be found by thd &s=ach.
This way to end the local search pretreatment offers a ga@atktoff between the
number of candidates found and the time spent. Besides, |[fexpériments, the
time consumed by the local search step was less ib@of the global time. All
our experimental studies have been conducted on Intel X&hz3under Linux
CentOS 4.1. (kernel 2.6.9) with a RAM memory size of 2Go. In thiwing, a
time-out limit has been set to 3 CPU hours.

First, in Table 1, we report experimental results about thapmutation of MSSes
on pigeon-hole and xor-chains benchmarks [21], which aseally unsatisfiable
in the sense that removing any one of their clauses makes$it@nce become
satisfiable. Obviously enough, such instances exhibit doeumf CoMSSes equals
to their number of clauses, and the size of any of their CoM®8és A significant
time gap can be observed in favor of HYCAM. The efficiency gaitioris even
more significant when the size of the instance increasedtiése instances, the
local search run often succeeds in finding all CoMSSes, anadh®lete step
often reduces to an unsatisfiability test. On the contra®g lexplores many more
nodes in the search space to deliver the CoMSSes.

In Table 2, experimental results on more difficult benchredr&m the annual SAT
competition [21] are described. Their number of MSSes isroéixponential, and
computing them often remains intractable. Accordinglyhaee limited the search
to CoMSSes of restricted sizes, namely we have set a sizetbnditclauses. As
our experimental results illustrate, HYCAM outperforms L&or example, let
us consider and_net 40- 30- 10. This instance contains 5831 MSSes (with the
size of their corresponding CoMSSes less than 5). L&S and HYG&ler this
result in 1748 and 386 seconds, respectively. Forcth256 instance, HYCAM
has extracted 9882 MSSes in less than 5 minutes whereas ld$timanage to

10



Instance (#var,#cla) #MSSes L&S (sec.) HYCAM (sec.)
hole6 (42,133) 133 0.040 0.051
hole7 (56,204) 204 0.75 0.33
hole8 (72,297) 297 33 1.60
hole9 (90,415) 415 866 30
hole10 (110,561) 561 7159 255
x1.16 (46,122) 122 0.042 0.041
x1.24 (70,186) 186 7.7 0.82
x1.32 (94,250) 250 195 28
x1.40 (118,314) 314 2722 486
Table 1

L&S vs. HYCAM on globally unsatisfiable instances

produce this result within 3 hours. Let us note that HYCAM alsbivers CoMSSes
made of 5 clauses after its computation is ended since we kinatall sets of 5

falsified clauses recorded by the local search run and teat@rsupersets of the
obtained smaller CoMSSs are actually also CoMSSes.

In Table 3, experimental results on hard instances to comhé complete set
of MSSes and MUSes are reported. As explained above, bothdr&SHYCAM
approaches require all MSSes to be obtained before MUSesarputed. By al-
lowing complete sets of MSSes to be delivered in a shortes,tiHY CAM allows
the complete set of MUSes to be computed for more instanakmanfaster man-
ner than L&S does. Obviously enough, when the number of M8EBHISes are
exponential, computing and enumerating all of them remanactable.

For instance, L&S was unable to compute all MSSes ofpthp- 012- 011 in-
stance within 3 hours CPU time, and could thus not discovesiniggle MUS. HY-
CAM extracted it in 2597 seconds. On all instances exhibitingyue or a non-
exponential number of MUSes, HYCAM was clearly more efficidain L&S. For
example, on thell x2_aa instance, L&S and HYCAM discovered the 32 MUSes
within 3.12 and 0.94 seconds, respectively. Let us notetiesadditional time spent
to compute all MUSes from the set of MSSes is often very smrd#ss of course
the number of MUSes is exponential.

11



Instance (#var,#cla) #MSSes | L&S (sec.) | HYCAM (sec.)
randnet40-25-10 | (2000,5921) 5123 893 197
randnet40-25-5 (2000,5921) 4841 650 174
randnet40-30-10 | (2400,7121) 5831 1748 386
randnet40-30-1 (2400,7121) 7291 1590 1325
randnet40-30-5 (2400,7121) 5673 2145 402
ca032 (558,1606) 1173 4 1
ca064 (1132,3264) 2412 59 3
cal28g (2282,6586) 4899 691 18
ca256 (4584,13236) 9882 time out 277
2pipe (892,6695) 3571 130 36
2pipe 1.000 (834,7026) 3679 52 30
2pipe2_000 (925,8213) 5073 148 61
3pipel.oo0 (2223,26561) | 17359 5153 2487
am5.5 (1076,3677) 1959 68 57
c432 (389,1115) 1023 4 1
c880 (957,2590) 2408 28 3
bf0432-007 (1040,3668) 10958 233 98
velev-sss-1.0-cl (1453,12531) 4398 1205 513

Table 2
L&S vs. HYCAM on various difficult SAT instances

6 Conclusions and Future Research

Computing all MSSes, CoMSSes and MUSes are highly intractablees in the
worst case. However, it can make sense to attempt to contpenefor some real-
life applications. In this paper, we have improved the autyemost efficient ex-

haustive technique, namely Liffiton and Sakallah’s methndseveral ways. Our
experimental results show dramatic efficiency gains for BESSCoMSSes and
MUSes extracting. One interesting feature of the approash its anytime char-
acter for computing MSSes. MSSes of increasing sizes argui@a gradually.

Accordingly, we can put a bound on the maximum size of the Co&438 be ex-

tracted, limiting the computing resources needed to ethean. To some extent,
both L&S and HYCAM prove more adapted to extract complete eEfgSSes

and CoMSSes than complete sets of MUSes. Indeed, the precesotves com-

puting MSSes (and thus CoMSSes) first. In this respect, weeagith Liffiton

12



Instance (#var#cla) #MSSes‘ (Lsgég.) H\((S%,él\)/l #MUSes MSSeiggé\{l)USes
mod2-3cage-unsat-9-8 (87, 232) 232 3745 969 1 0.006
mod2-rand3bip-unsat-105+3105, 280)| 280 2113 454 1 0.008
2pipe (892, 6695) 10221 | 298 226 |>211000  time out
php-012-011 (132,738)| 738 |timeout| 2597 1 0.024
hcb3 (45, 288) 288 10645 6059 1 0.006
1dix_c_mc_ex bp f (776, 3725) 1763 10.4 6.8 > 350 000 time out
hwb-n20-02 (134, 630)| 622 951 462 1 0.01
hwb-n22-02 (144, 688)| 680 2183 811 1 0.025
ssa2670-141 (986, 2315) 1413 2.83 1.08 16 0.15
clgcolor-08-05-06 (116, 1114) 1114 107 62 1 0.007
dix2_aa (490, 2804) 1124 3.12 0.94 32 0.023
addsub.boehm (492,1065) 1324 35 29 > 657 000 time out
Table 3

L&S vs. HYCAM on computing all MUSes

and Sakallah that an interesting path for future researnoberas the study of how
MUSes could be computed progressively from the growing fsextbacted MSSes.

Many artificial intelligence research areas have studiewa problems involving
the manipulation of MUSes, MSSes and CoMSSes, like modelebdgagnosis,
belief revision, inconsistency handling in knowledge amtidf bases, etc. These
studies are often conducted from a conceptual point of vaeirom a worst-case
complexity point of view, only. We believe that the practicamputational pro-
gresses as such as the ones obtained in this paper can phoablean handling
these problems practically. In this respect, future redeaould concentrate on
deriving specific algorithms for these Al issues, explgtiesults like the ones
described in this paper.

Acknowledgments

We thank Mark Liffiton for making his system available to ukisfwork has been
supported in part by thBégion Nord/Pas-de-Calaig\ preliminary version of this
paper was published in the proceedings of IJCAI'07.

References

[1] C. H. Papadimitriou, D. Wolfe, The complexity of facets resolved, dalrof
Computer and System Sciences 37 (1) (1988) 2—-13.

13



[2] T. Eiter, G. Gottlob, On the complexity of propositional knowledge basasion,
updates and counterfactual, Artificial Intelligence 57 (1992) 227-270.

[3] W. Hamscher, L. Console, J. de Kleer (Eds.), Readings in Modse8@iagnosis,
Morgan Kaufmann, 1992.

[4] M. Liffiton, K. Sakallah, On finding all minimally unsatisfiable subformulas;
Proceedings of SAT'05, 2005, pp. 173-186.

[5] R. Bruni, On exact selection of minimally unsatisfiable subformulae., Ano&
Mathematics and Artificial Intelligence 43 (1) (2005) 35-50.

[6] H. Buning, On subclasses of minimal unsatisfiable formulas, Discrete Applied
Mathematics 107 (1-3) (2000) 83-98.

[7] G. Davydov, |. Davydova, H. Bning, An efficient algorithm for the minimal
unsatisfiability problem for a subclass of cnf, Annals of Mathematics arnifichal
Intelligence 23 (3—4) (1998) 229-245.

[8] H. Fleischner, O. Kullman, S. Szeider, Polynomial-time recognition of minimal
unsatisfiable formulas with fixed clause-variable difference, Theolefiomputer
Science 289 (1) (2002) 503-516.

[9] R. Bruni, Approximating minimal unsatisfiable subformulae by means optada
core search, Discrete Applied Mathematics 130 (2) (2003) 85-100.

[10] L. Zhang, S. Malik, Extracting small unsatisfiable cores from unfaltie boolean
formula, in: Sixth international conference on theory and applicationstisfigility
testing (SAT’03), Portofino (Italy), 2003, pp. 239-249.

[11] I. Lynce, J. Marques-Silva, On computing minimum unsatisfiable ¢anesSeventh
international conference on theory and applications of satisfiability teshiAg (4),
Vancouver, 2004, pp. 305-310.

[12] Y. Oh, M. Mneimneh, Z. Andraus, K. Sakallah, I. Markov, AMUS& minimally-
unsatisfiable subformula extractor, in: Proceedings of the 41th Desigmn¥dion
Confrence (DAC 2004), 2004, pp. 518-523.

[13] E. Grégoire, B. Mazure, C. Piette, Extracting MUS, in: Proceedings of the 17th
European Conference on Atrtificial Intelligence (ECAI'06), Riva d@&rda, Italy,
2006, pp. 387-391.

[14] E. Gregoire, B. Mazure, C. Piette, Tracking mus and strict inconsistent cover
Proceedings of International Conference on Formal Methods in Compided
Design (FMCAD’06), San Jose, CA, USA, 2006, pp. 39-46.

[15] B. Bessant,E. Gregoire, P. Marquis, L. Ss, Iterated Syntax-Based Revision in
a Nonmonotonic Setting, Vol. 22 of Applied Logic, Kluwer Academic Publishers
Applied Logic Series, 2001, Ch. of Frontiers in Belief Revision, pp. 389

[16] J. Bailey, P. Stuckey, Discovery of minimal unsatisfiable subsetsmdtcaints using
hitting set dualization, in: PADL, 2005, pp. 174—-186.

14



[17] M. de la Banda, P. Stuckey, J. Wazny, Finding all minimal unsatisfisibbsets, in:
Proceedings of the Fifth ACM-SIGPLAN International Conference ondiples and
Practice of Declarative Programming (PPDL 2003), 2003, pp. 32—43.

[18] L. Zhang, On subsumption removal and on-the-fly cnf simplificationPnoceedings
of the International Conference on Theory and Applications of Satikfjabesting
(SAT’05), 2005, pp. 482—-489.

[19] N. Eén, N. $rensson, Minisat home page
http://www.cs.chalmers.se/cs/research/formalmethods/minisat (2004).

[20] H. Kautz, B. Selman, D. McAllester, Walksat in the SAT’2004 competjtiSAT
Competition 2004 - solver description.

[21] SATLIB, Benchmarks on SAT
http://www.intellektik.informatik.tu-darmstadt.de/satlib/benchm.html (2006).

15



