Christophe Lecoutre
email: lecoutre@cril.fr

Julien Vion
email: vion@cril.fr

M R C Van Dongen

Enforcing Arc Consistency using Bitwise Operations

Keywords:

In this paper, we propose to exploit bitwise operations to speed up some important computations such as looking for a support of a value in a constraint, or determining if a value is substitutable by another one. Considering a computer equipped with a x-bit CPU, one can then expect an increase of the performance by a coefficient up to x (which may be important, since x is equal to 32 or 64 in many current central units). To show the interest of enforcing arc consistency using bitwise operations, we introduce a new variant of AC3, denoted by AC3 bit , which can be used when constraints are (or can be) represented in extension. This new algorithm when embedded in MAC, is approximately two times more efficient than AC3 rm . Note that AC3 rm is a variant of AC3 which exploits the concept of residual supports and has been shown to be faster than AC2001.

Introduction

It is well known that Arc Consistency (AC) plays a central role in solving instances of the Constraint Satisfaction Problem (CSP). Indeed, the MAC algorithm, which maintains arc consistency during the search of a solution as described in [START_REF] Sabin | Contradicting conventional wisdom in constraint satisfaction[END_REF], is still considered as the most efficient generic approach to cope with large and hard problem instances. Furthermore, AC is at the heart of stronger consistencies that have recently attracted some attention: singleton arc consistency [START_REF] Bessiere | Optimal and suboptimal singleton arc consistency algorithms[END_REF][START_REF] Lecoutre | A greedy approach to establish singleton arc consistency[END_REF], weak k-singleton arc consistency [START_REF] Van Dongen | Beyond singleton arc consistency[END_REF] and conservative dual consistency (Lecoutre et al., 2007).

For more than two decades, many algorithms have been proposed to establish arc consistency. They are usually classified as coarse-grained or fine-grained algorithms. Even if fine-grained algorithms are conceptually elegant, e.g. AC7 [START_REF] Bessiere | Using constraint metaknowledge to reduce arc consistency computation[END_REF], coarse-grained algorithms are easier to implement while being competitive, and are thus more attractive. The basic coarse-grained algorithm is AC3 which has been introduced by [START_REF] Mackworth | Consistency in networks of relations[END_REF]. Its worst-case time complexity is O(ed 3) where e denotes the number of constraints and d the greatest domain size.

Since its conception, AC3 has been the subject of many studies or developments. Wallace (1993) explained why AC3 was almost always more efficient than the optimal AC4 [START_REF] Mohr | Arc and path consistency revisited[END_REF]. [START_REF] Van Dongen | AC3 d an efficient arc consistency algorithm with a low space complexity[END_REF] proposed to equip AC3 with a double-support domain heuristic; some refinements of this method being described by [START_REF] Mehta | Two new lightweight arc consistency algorithms[END_REF]. Interestingly, the algorithm AC2001/3.1 proposed by Bessiere et al. (2005) corresponds to AC3 made optimal (its c 2008 Lecoutre and Vion. worst-case time complexity is O(ed 2)) by the introduction of a structure that manages last found supports. Finally, [START_REF] Lecoutre | Exploiting multidirectionality in coarse-grained arc consistency algorithms[END_REF] have introduced two additional extensions of AC3 by exploiting multi-directionality.

Recently, [START_REF] Lecoutre | A study of residual supports in arc consistency[END_REF] studied the impact of exploiting residual supports (called residues, in short) which were introduced in [START_REF] Lecoutre | Exploiting multidirectionality in coarse-grained arc consistency algorithms[END_REF][START_REF] Likitvivatanavong | Arc consistency in MAC: a new perspective[END_REF], and showed both theoretically and experimentally the advantage of embedding AC3 rm (AC3 exploiting multi-directional residues) in MAC or in an algorithm that enforces singleton arc consistency. More precisely, unlike AC2001, AC3 rm does not require the maintenance of data structures upon backtracking and, unlike AC3, AC3 rm does not suffer from known pathological cases. As a consequence, embedding AC3 rm is a very simple and efficient solution. As we can consider that AC3 rm , although not optimal in the worst case, behaves in an optimal way most often (at least for constraints whose tightness is high or low, or with supports uniformly dispersed), the opportunity to improve on it is a new challenge.

The O notation is the most usually used when presenting time (and space) complexities of algorithms. This corresponds to an asymptotic analysis, which is relevant to judge the practical efficiency of an algorithm, provided that the elements (terms and coefficients) discarded from the raw complexity expression are not too high. To illustrate this, let us consider a constraint network composed of n variables, the domain of each being composed of d values, and e binary max-support constraints1 . A max-support constraint involving the variables X and Y is defined as follows: the maximum value in the domain of X supports all values in the domain of Y , and vice versa. Figure 1 depicts such a constraint.

X Y

Figure 1: A max-support constraint. An edge represents an allowed tuple.

If we enforce AC on this network using AC3 or AC2001, we can establish that exactly 2e.(d 2d + 1) constraint checks are necessary to prove that the network is arc consistent. Here we are assuming we are looking for support in the opposite domain by considering the values from top to bottom. Now, consider (without any loss of generality) that we benefit for each domain from a binary representation of its current state, i.e. a bit is associated with each value of the domain and indicates if the value is present or not. The domain of a variable thus consists of a bit vector. Assume similarly that constraints are represented by giving the binary representation (vector) of all allowed and forbidden values of any triplet (C, X, a), where a is a value belonging to the domain of the variable X and C a constraint involving X. When looking for a support of (C, X, a), we can then simply apply a bitwise operation on these two vectors (as described later).

Considering that bit vectors are equivalent to an array of words (natural data units of the computer architecture), each elementary bitwise operation between two words represents, with respect to our illustration, x constraint checks, x being the word size (usually, 32 or 64). Hence, we have just established that, for the example introduced above, we need up to x times less operations when enforcing AC using this principle (we will call it AC3 bit) than classical AC3, AC2001 and AC3 rm algorithms. Table 1 gives some experimental results that we have obtained for this problem (each instance is described under the form n-d-e) on a 64-bit processor. Here, #ops denotes either the number of bitwise operations performed by AC3 bit or the number of constraint checks performed by AC3, AC3 rm and AC2001. As expected, we can observe that AC3 bit is about 60 times more efficient although AC3 bit and AC3 both are O(ed 3). The idea of exploiting bitwise operations to speed up computations is not new. In particular, [START_REF] Mcgregor | Relational consistency algorithms and their application in finding subgraph and graph isomorphisms[END_REF] indicated that bit vectors can be used to represent domains and sets of supports as described above. Similar optimizations were already mentioned by [START_REF] Ullmann | An algorithm for subgraph isomorphism[END_REF]. Also, bit parallel forward checking has been addressed in [START_REF] Haralick | Increasing tree search efficiency for constraint satisfaction problems[END_REF][START_REF] Nudel | Consistent-labeling problems and their algorithms: expected-complexities and theory based heuristics[END_REF]. The modest contribution of this paper is to provide a precise description of how bitwise operators can be exploited to enforce arc consistency and to show, from a vast experimentation, that this approach is really the most efficient one.

The paper is organized as follows. First, we introduce constraint networks and arc consistency. Then, we show how to represent domains and constraints in binary, and how to exploit bitwise operators on them. Next, we propose a new generic algorithm AC3 bit which can be seen as a simple optimization of AC3. Finally, after presenting the results of an experimentation we have conducted, we conclude.

Constraint Networks and Arc Consistency

A Constraint Network (CN) P is a pair (X , C) where X is a finite set of n variables and C a finite set of e constraints. Each variable X ∈ X has an associated domain, denoted dom(X), which contains the finite set of values allowed for X. Each constraint C ∈ C involves an ordered subset of variables of X , called scope and denoted scp(C), and has an associated relation, denoted rel(C), which contains the set of tuples allowed for the variables of its scope. From now on, we will only consider binary constraints, i.e. constraints involving exactly two variables.

The initial domain of a variable X is denoted dom init (X) whereas the current domain of X is denoted dom(X). For any binary constraint C such that scp(C) = {X, Y }, we have:

rel(C) ⊆ dom init (X) × dom init (Y)
where × denotes the Cartesian product. A value a ∈ dom init (X) will often be denoted by (X, a). We will consider that each domain is ordered.

Definition 1 Let C be a binary constraint such that scp(C) = {X, Y }, a pair of values t = ((X, a), (Y, b)
) is said to be:

• allowed by C iff (a, b) ∈ rel(C), • valid iff a ∈ dom(X) ∧ b ∈ dom(Y),
• a support in C iff it is allowed by C and valid.

A tuple t is a support of (X, a) in C if t is a support in C such that the value assigned to X in t is a.
Determining if a tuple is allowed or not is called a constraint check. A solution to a constraint network is an assignment of values to all the variables such that all the constraints are satisfied. A constraint network is said to be satisfiable iff it admits at least one solution. The Constraint Satisfaction Problem (CSP) is the NP-complete task of determining whether a given constraint network is satisfiable. A CSP instance is then defined by a constraint network, and solving it involves either finding at least one solution or determining its unsatisfiability. Arc Consistency (AC) remains the central property of (binary) constraint networks and establishing AC on a given network involves removing all values that are not arc consistent.

Definition 2 Let P = (X , C) be a CN. A pair (X, a), with X ∈ X and a ∈ dom(X), is arc consistent (AC) iff ∀C ∈ C | X ∈ scp(C), there exists a support of (X, a) in C. P is AC iff ∀X ∈ X , dom(X) = ∅ and ∀a ∈ dom(X), (X, a) is AC.
We will use the following notion of cn-value when presenting some algorithms.

Definition 3 Let P = (X , C) be a CN. A cn-value of P is a triplet of the form (C, X, a) where C ∈ C , X ∈ scp(C) and a ∈ dom(X).

Binary Representation

In this section, we provide some details about the binary representation of domains and constraints. We consider that bit vectors are represented under the form of an array of words (natural data units of the computer architecture). Indeed, some programming languages do not provide the possibility of using bit vectors as data structures. Besides, as we will see, it is more efficient to perform some computations based on bitwise operators, using arrays of words rather than bit vectors.

Without any loss of generality, we will consider here that the computer is equipped with a 64-bit processor. It means for example that the declaration of arrays in the Java language would be long[] since one long corresponds to 64 bits.

Representing Domains

When a copying mechanism [START_REF] Schulte | Comparing trailing and copying for constraint programming[END_REF] is used to manage domains during a backtracking search, one can associate a single bit with any value of each domain. More precisely, a bit can be associated with the index (starting at 0) of any value of a domain. When this bit is set to 1 (respectively 0), it means that the corresponding value is present in the domain (respectively absent from it). Using an array of words, one can then compactly represent domains. We will call such arrays the binary representation of domains. For any variable X, the space complexity is then Θ(|dom(X)|), which is optimal.

Another mechanism used in many current CP systems is called trailing. A precise description about how to represent domains using this mechanism can be found in [START_REF] Lecoutre | Generalized arc consistency for positive table constraints[END_REF], following elements introduced by van Hentenryck et al. (1992). The space complexity of this representation is also Θ(|dom(X)|) for any variable X, and the time complexity of all elementary operations (determining if a value is present, removing a value, adding a value, etc.) is O(1). In this context, adding and maintaining the structures for the binary representation of domains do not modify worst-case space and time complexities, as shown below.

To represent domains, we keep the structures presented in [START_REF] Lecoutre | Generalized arc consistency for positive table constraints[END_REF] and introduce an additional two-dimensional array called bitDom that associates with any variable X the binary representation bitDom[X] of dom(X), and:

• when adding (or restoring) the i th value in dom(X), the only operation required on the structure bitDom is the following:

bitDom[X][i div 64] ← bitDom[X][i div 64] OR masks1[i mod 64]
• when removing the i th value in dom(X), the only operation required on structure bitDom is the following:

bitDom[X][i div 64] ← bitDom[X][i div 64] AND masks0[i mod 64]
Here, div denotes the integer division, mod the remainder operator, OR the bitwise operator that performs a logical OR operation on each pair of corresponding bits and AND the bitwise operator that performs a logical AND operation on each pair of corresponding bits. The structure masks1 (resp. masks0) is a predefined array of 64 words that contains in its i th square a value that represents a sequence of 64 bits which are all set to 0 (resp. 1) except for the i th one.

Representing Constraints

In this paper, we will only consider binary constraints. A binary constraint can be represented in extension using a two-dimensional array of Booleans or a list of tuples, or in intention using a predicate expression.

Here, to represent constraints, we introduce a two-dimensional array called bitSup. More precisely, for each cn-value (C, X, a), bitSup[C, X, a] represents the binary representation of the (initial) supports of (X, a) in C. To simplify the presentation and without any loss of generality, we can assume that indexes and values match (i.e. the i th value of the domain of any variable is equal to

i). If C is such that scp(C) = {X, Y }, then (a, b) ∈ rel(C) iff the b th bit in bitSup[C, X, a] is 1.
If the constraints are initially given to the solver in extensional form, then, building the bitSup array does not present any particular difficulty. On the other hand, if the constraints are given in intention, then all constraints checks have to be initially performed (by evaluating a predicate) in order to build bitSup. Assuming that each constraint check is performed in constant time, it represents an initial overhead of Θ(ed 2). However, for similar predicates and similar signatures of constraints (i.e. similar Cartesian products built from the domains associated with the variables involved in the constraints), sub-arrays of bitSup can be shared, potentially saving a large amount of space and initial constraint checks.

The worst-case space complexity of the binary representation of constraints is Θ(ed 2) whereas the best-case space complexity is Θ(d 2), which corresponds to sharing the same binary representation between all constraints. The worst-case rather corresponds to unstructured (random) instances whereas the best-case to structured (academic or real-world) instances which usually involve similar constraints.

Exploiting Binary Representations

We can now exploit the binary representations of domains and constraints to efficiently achieve some computations by using bitwise operators. We illustrate our purpose in three different contexts. Note that for any array t, t[1] will denote its first element and t.length its size.

First, the following sequence of instructions can be used to determine whether the domain of a variable X is a subset of the domain of another variable Y (such that |dom init (X)| = |dom init (Y)|):

foreach i ∈ {1, . . . , bitDom[X].length} do if (bitDom[X][i] OR bitDom[Y][i]) = bitDom[Y][i] then return false return true
This kind of computation can be interesting, for example, when implementing a symmetry breaking method by dominance detection, e.g. [START_REF] Focacci | Global cut framework for removing symmetries[END_REF][START_REF] Fahle | Symmetry breaking[END_REF].

In that case, we can compare the current domain of a variable with one that was recorded earlier, potentially from the same variable. It can then be useful to efficiently determine if one state is dominated by another one.

Second, the following sequence of instructions can be used to determine if a value (X, a) is neighborhood-substitutable by a value (X, b) with respect to a constraint C (involving X):

foreach i ∈ {1, . . . , bitDom[X].length} do if (bitSup[C, X, a][i] OR bitSup[C, X, b][i]) = bitSup[C, X, b][i] then return false return true
Neighborhood substitutability has been introduced by [START_REF] Freuder | Eliminating interchangeable values in constraint satisfaction problems[END_REF] and is defined as follows: given a variable X, two values a and b in dom(X) and a constraint C, (X, a) is neighborhoodsubstitutable by (X, b) w.r.t. C iff the set of supports of a for X in C is a subset (or equal to) of the set of supports of b for X in C. The code presented above can be useful in practice to reduce the search space by eliminating neighborhood-substitutable values (e.g. see [START_REF] Bellicha | CSP techniques using partial orders on domain values[END_REF]; [START_REF] Cooper | Fundamental properties of neighbourhood substitution in constraint satisfaction problems[END_REF]).

Finally, the following sequence of instructions can be used to determine if a value (X, a) admits at least one support in a constraint C (involving X and a second variable Y):

foreach i ∈ {1, . . . , bitDom[Y].length} do if (bitSup[C, X, a][i] AND bitDom[Y][i]) = ZERO then return true return false
Note that ZERO denotes a word defined as a sequence of bits all set to 0. This way of seeking a support was initially mentioned by [START_REF] Mcgregor | Relational consistency algorithms and their application in finding subgraph and graph isomorphisms[END_REF].

Interestingly enough, for all operations described above, it is sometimes possible to return a Boolean answer even if all elements of the domains have not been iterated. For example, for all three computations described above, it is possible to obtain a result at the first use of a bitwise operator (i.e. for i = 1). Certainly, this seems natural but one should be aware that using bit vectors to perform a bitwise operation, and then compare the result with another bit vector can be quite more expensive.

A Simple Optimization of AC3

In this section, we show how to simply adapt the algorithm AC3 in order to exploit bitwise operators. The new algorithm, denoted AC3 bit , is expected to save a large amount of operations (constraint checks) and consequently, CPU time.

To establish arc consistency on a given CN, we call the function enf orceAC (Algorithm 1). It is described in the context of a coarse-grained algorithm. Initially, all pairs (C, X), called arcs, are put in a set Q. Once Q has been initialized, each arc is revised in turn, and when a revision is effective (at least one value has been removed), the set Q has to be updated. A revision is performed by a call to the function revise specific to the chosen coarse-grained arc consistency algorithm, and entails removing values that have become inconsistent with respect to C. This function returns true when the revision is effective. The algorithm is stopped when the set Q becomes empty.

AC3

For AC3 [START_REF] Mackworth | Consistency in networks of relations[END_REF], each revision is performed by a call to the function revise(C, X), depicted in Algorithm 2. This function iteratively calls, for any value a ∈ dom(X), the function seekSupportAC3 which determines from scratch whether or not there exists a support of (X, a) in C. If no such support exists, the value (X, a) can be removed. The principle used in seekSupportAC3 (see Algorithm 3) is to iterate the list of current values of dom(Y) in order to find a support. Note that (a, b) ∈ rel(C) must be understood as a constraint check.

AC3 has a non-optimal worst-case time complexity of O(ed 3) [START_REF] Mackworth | The complexity of some polynomial network consistency algorithms for constraint satisfaction problems[END_REF]. However, as shown by [START_REF] Lecoutre | A study of residual supports in arc consistency[END_REF], it is possible to refine this result by focusing on the cumulated cost of seeking successive supports of a value (X, a) in a constraint C.

AC3 bit

For the algorithm we propose, AC3 bit , each revision is also performed by a call to the function revise(C, X), depicted in Algorithm 2. However, instead of calling seekSupportAC3, we use the function seekSupportAC3 bit (see Algorithm 4). Given the binary representation bitDom[Y] of Algorithm 1: enforceAC (P = (X , C): Constraint Network) : Boolean The proof is immediate. Interestingly, one can make the following observation that indicates that in practice, AC3 bit can be far more efficient than the other AC3-based variants. It suffices to consider the illustration given in introduction.

Q ← {(C, X) | C ∈ C ∧ X ∈ scp(C)} 1 while Q = ∅ do 2 pick and delete (C, X) from Q 3 if revise(C, X) then 4 if dom(X) = ∅ then return false 5 Q ← Q ∪ {(C ′ , X ′) | C ′ ∈ C , C ′ = C ∧ scp(C ′) = {X, X ′ }}
Observation 1 The number of bitwise operations performed by AC3 bit can be up to x times less than the number of constraint checks performed by AC3, AC2001 and AC3 rm , where x is the word size of the computer.

Experiments

To show the interest of the algorithm introduced in this paper (and more generally, the practical interest of dealing with bitwise operations), we have performed a vast experimentation (ran on a computer equipped with a 2.4GHz i686 Intel CPU, 512MiB of RAM and Sun JRE 5.0 for Linux) with respect to random, academic and real-world problems2 . Performances3 have been measured in terms of the CPU time in seconds (cpu) and the amount of memory in mebibytes (mem).

We have implemented the different arc consistency algorithms AC3, AC2001, AC3 rm and AC3 bit in our platform Abscon. We have compared them by using the algorithm that maintains arc consistency during the search of a solution (MAC). All AC algorithms benefit from the support condition mechanism corresponding to Proposition 1 of (Boussemart et al., 2004b) and Equation 1of (Mehta and van Dongen, 2005a). It allows us to avoid some useless revisions and constraint checks. For search, the variable ordering heuristic was dom/wdeg (Boussemart et al., 2004a), and the value ordering heuristic min-conf licts (a static variant as presented by Mehta and van Dongen (2005b)). We did not use any restart policy.

To start, we have considered 7 classes of binary random instances, generated using Model D and situated at the phase transition of search (it means that about half of the instances are satisfiable). For each class n, d, e, t , the number of variables n has been set to 40, the domain size d set between 8 and 180, the number of constraints e between 753 and 84 (and, so the density between 0.1 and 0.96) and the tightness t, which here denotes the probability that a relation forbids a pair of values, between 0.1 and 0.9. The first class 40, 8, 753, 0.1 corresponds to dense instances involving constraints of low tightness whereas the seventh one 40, 180, 84, 0.9 corresponds to sparse instances involving constraints of high tightness. In Table 2, one can observe that even for small domains (e.g. d = 8), MAC3 bit is the fastest algorithm. Interestingly, MAC3 bit is 2 to 4 times faster than MAC2001 and 1.5 to 3 times faster than MAC3 rm . For this first experiment, we also provide the number of constraints checks (#ccks) and validity checks (#vcks). However, for MAC3 bit , note that #ccks corresponds to the number of bitwise operations.

The good behavior of MAC3 bit is confirmed on different series of structured instances. Indeed, in Table 3, we can see that, once again, MAC3 bit outperforms the other algorithms. This is particularly true for the job-shop instances of series enddr1 and enddr2. This can be explained by the fact that the average domain size for these instances is about 120 values, which means that on a 64-bit processor, only two main operations are required when seeking a support. Finally, we present the results obtained on some hard academic and real-world instances. The interest of using AC3 bit clearly appears on an instance such as knights-50-25. What is also interesting to observe is that the gap between AC3 bit and the other algorithms increases with the difficulty of the instances of the series scen11-f X. Indeed, whereas all algorithms behave similarly w.r.t. the easy instance scen11-f 10, AC3 bit is twice faster than the other AC algorithms w.r.t. the more difficult instance scen11-f 4. The trend clearly appears when looking at results obtained for the intermediate instances scen11-f 8 and scen11-f 6.

What about residues? At this point, one can wonder if there is still an interest of exploiting residues for binary instances. Indeed, for domains up to 300 values, checking if a cn-value admits a support requires less than 5 operations (on a 64-bit architecture). That was the case for most of the series/instances presented above, and consequently, AC3 bit was always faster than AC3 rm . However, when domains become larger, it can become penalizing to exploit bitwise operations alone. This is why we propose to combine them with residues. The principle is the following: whenever a support is detected, its position in the binary representation of the constraint is recorded. Introducing a three-dimensional array residue of integers (all set to 0 initially), we can then use Algorithm 5. When looking for a support, the residual position is first checked (line 3), and when one is found, its position is recorded (line 6).

To illustrate the importance of combining bitwise operations with residues when domains are large, we show in Table 5 the results obtained on instances of the Domino problem. This problem has been introduced in [START_REF] Zhang | Making AC3 an optimal algorithm[END_REF] to emphasize the sub-optimality of AC3. Each instance, denoted domino-n-d, corresponds to an undirected constraint graph with a cycle. More precisely, n denotes the number of variables, the domains of which are {1, . . . , d}, and there exists n -1 equality constraints X i = X i+1 (∀i ∈ {1, . . . , n -1}) and a trigger constraint

(X 1 = X n + 1 ∧ X 1 < d) ∨ (X 1 = X n ∧ X 1 = d).
For the most difficult instance, where domains contain 3000 values, AC3 bit+rm is about 5 times more efficient than AC3 bit and AC3 rm , and 9 times more efficient than AC2001.

Conclusion

In this paper, we have introduced a precise description of the exploitation of bitwise operations to improve the basic arc consistency algorithm AC3. The result is a new algorithm, denoted AC3 bit , which appears to be approximately twice more efficient than AC3 rm , an algorithm shown itself to be faster than the optimal AC2001. We have also shown how to combine bitwise operations with residues, which happens to be quite useful when domains become large (more than 300 values). We do believe that, for solving binary instances, when constraints are given in extension or can be efficiently converted into extension, the generic algorithm MAC, embedding AC3 bit /AC3 bit+rm is the most efficient approach. One reason is that, like MAC3 rm , no maintenance of data structures is required upon backtracking by MAC3 bit /MAC3 bit+rm , Finally, note that MAC3 bit /MAC3 bit+rm is the algorithm used by the solver Abscon109 that has participated to the second international competition of CSP solvers4 . More precisely, it was used for binary instances involving constraints in extension and constraints in intention that could be converted efficiently into extension. For example, all (constraints of all) instances of the Radio Link Frequency Assignment Problem (RLFAP) were converted in less than 0.5 second. The good results that have been obtained by our Java-written Abscon solver during this competition indirectly confirm the results of this paper.

residue

 revise(C: Constraint, X: Variable): Boolean nbElements ← |dom(X)| 1 foreach a ∈ dom(X) do 2 if ¬seekSupport(C, X, a) then remove a from dom(X) 3 return nbElements = |dom(X)| 4 Algorithm 3: seekSupportAC3(C, X, a): Boolean Let Y be the variable such that scp(C) = {X, seekSupportAC3 bit (C, X, a): Boolean Let Y be the variable such that scp(C) = {X, Y } 1 foreach i ∈ {1, . . . , bitDom[Y].length} do 2 if (bitSup[C, X, a][i] AND bitDom[Y][i]) = ZERO then return true seekSupportAC3 bit+rm (C, X, a): Boolean Let Y be the variable such that scp(C) = {X, Y } 1 i ← residue[C, X, a] 2 if (bitSup[C, X, a][i] AND bitDom[Y][i]) = ZERO then return true 3 foreach i ∈ {1, . . . , bitDom[Y].length} do 4 if (bitSup[C, X, a][i] AND bitDom[Y][i]) = ZERO then 5) and the binary representation bitSup[C, X, a] of the (initial) supports of (X, a) wrt C, we just have to execute the code presented in Section 3.3.Proposition 4 The worst-case time complexity of AC3 bit is O(ed 3).

Table 1 :

 1 Establishing Arc Consistency on max-supports instances

	Instances		AC3	AC3 rm	AC2001	AC3 bit
	250-50-5000	cpu #ops	1.58 24.5M	1.56 24.3M	1.61 24.5M	0.05 0.5M
	250-100-5000	cpu #ops	6.17 99.0M	6.15 98.5M	6.26 99.0M	0.10 2.0M
	500-50-10000	cpu #ops	3.11 49.0M	3.11 48.5M	3.21 49.0M	0.11 1.0M
	500-100-10000	cpu #ops	12.29 198.0M	12.27 197.0M	12.48 198.0M	0.19 4.0M

Table 2 :

 2 Mean results on random instances; 100 instances per class, cpu time given in seconds and mem(ory) in MiB.

				M AC embedding	
			AC2001	AC3	AC3 rm	AC3 bit
	40, 8, 753, 0.1	cpu mem	13.8 11	9.8 9.5	10.4 10	7.7 9.5
		#ccks	13M	15M	8.7M	33M
		#vcks	2.7M	0	14M	0
	40, 11, 414, 0.2	cpu mem	19.6 8.8	15.0 8.0	14.5 8.4	10.0 8.0
		#ccks	30M	41M	21M	63M
		#vcks	14M	0	35M	0
	40, 16, 250, 0.35	cpu mem	21.6 8.5	18.5 7.9	16.1 8.2	9.7 7.9
		#ccks	48M	80M	34M	78M
		#vcks	35M	0	58M	0
	40, 25, 180, 0.5	cpu mem	28.9 8.4	27.8 7.9	21.2 8.2	11.5 7.9
		#ccks	89M	169M	63M	112M
		#vcks	70M	0	100M	0
	40, 40, 135, 0.65	cpu mem	21.1 8.5	22.0 8.0	15.4 8.2	7.8 8.1
		#ccks	92M	183M	68M	88M
		#vcks	59M	0	81M	0
	40, 80, 103, 0.8	cpu mem	16.6 10	19.5 9.5	12.2 9.8	5.0 9.6
		#ccks	106M	226M	80M	81M
		#vcks	48M	0	62M	0
	40, 180, 84, 0.9	cpu mem	24.3 15	36.6 14	18.4 14	6.7 14
		#ccks	256M	629M	199M	157M
		#vcks	76M	0	93M	0

Table 3 :

 3 Mean results on series of structured instances; cpu time given in seconds and mem(ory) in MiB.

				M AC embedding	
			AC2001	AC3	AC3 rm	AC3 bit
	Academic instances					
	knights-50-9	cpu mem	85 27	1148 23	109 23	36 23
	knights-50-25	cpu mem	> 1200	> 1200	> 1200	211 28
	pigeons-11	cpu mem	54.6 21	53.4 21	57.4 21	43.5 21
	pigeons-12	cpu mem	656 21	547 21	591 21	484 21
	queenAttacking-6	cpu mem	123 21	125 21	128 25	79 21
	queenAttacking-7	cpu mem	407 25	436 22	381 25	263 22
	Real-world instances					
	e0ddr2-10-by-5-1	cpu mem	257 23	316 23	177 23	68 23
	enddr2-10-by-5-1	cpu mem	178 23	263 23	143 23	61 23
	scen11-f10	cpu mem	5.0 33	5.4 29	5.7 45	5.5 29
	scen11-f8	cpu mem	11.4 33	11.1 29	11.5 45	9.0 29
	scen11-f6	cpu mem	81.7 33	75.6 29	74.7 45	47.3 29
	scen11-f4	cpu mem	1250 33	1233 29	1106 45	670 29

Table 4 :

 4 Results on hard structured instances ; cpu time given in seconds and mem(ory) in MiB.

Table 5 :

 5 Establishing Arc Consistency on Domino instances

It is interesting to note that, even if they are initially absent from a given CN, such constraints may dynamically "appear" during search and propagation (when considering reduced domains).

http://www.cril.univ-artois.fr/ ∼ lecoutre/research/benchmarks/benchmarks.html

In our experimentation, all constraint checks are performed in constant time and are as cheap as possible since constraints are represented in extension using arrays.

http://www.cril.univ-artois.fr/CPAI06