
HAL Id: hal-00868075
https://hal.science/hal-00868075v1

Submitted on 1 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enforcing Arc Consistency using Bitwise Operations
Christophe Lecoutre, Julien Vion

To cite this version:
Christophe Lecoutre, Julien Vion. Enforcing Arc Consistency using Bitwise Operations. Constraint
Programming Letters (CPL), 2008, 2, pp.21-35. �hal-00868075�

https://hal.science/hal-00868075v1
https://hal.archives-ouvertes.fr

Constraint Programming Letters 2 (2008) 21–35 Submitted 3/2007; Published 1/2008

Enforcing Arc Consistency using Bitwise Operations

Christophe Lecoutre LECOUTRE@CRIL.FR

Julien Vion VION@CRIL.FR

CRIL (Centre de Recherche en Informatique de Lens),

CNRS FRE 2499,

rue de l’université, SP 16

62307 Lens cedex, France

Editor: M.R.C. van Dongen

Abstract

In this paper, we propose to exploit bitwise operations to speed up some important computations

such as looking for a support of a value in a constraint, or determining if a value is substitutable by

another one. Considering a computer equipped with a x-bit CPU, one can then expect an increase

of the performance by a coefficient up to x (which may be important, since x is equal to 32 or

64 in many current central units). To show the interest of enforcing arc consistency using bitwise

operations, we introduce a new variant of AC3, denoted by AC3bit, which can be used when con-

straints are (or can be) represented in extension. This new algorithm when embedded in MAC, is

approximately two times more efficient than AC3rm. Note that AC3rm is a variant of AC3 which

exploits the concept of residual supports and has been shown to be faster than AC2001.

Keywords: Arc Consistency, Bitwise Operations

1. Introduction

It is well known that Arc Consistency (AC) plays a central role in solving instances of the Constraint

Satisfaction Problem (CSP). Indeed, the MAC algorithm, which maintains arc consistency during

the search of a solution as described in (Sabin and Freuder, 1994), is still considered as the most

efficient generic approach to cope with large and hard problem instances. Furthermore, AC is at the

heart of stronger consistencies that have recently attracted some attention: singleton arc consistency

(Bessiere and Debruyne, 2005; Lecoutre and Cardon, 2005), weak k-singleton arc consistency (van

Dongen, 2006) and conservative dual consistency (Lecoutre et al., 2007).

For more than two decades, many algorithms have been proposed to establish arc consistency.

They are usually classified as coarse-grained or fine-grained algorithms. Even if fine-grained al-

gorithms are conceptually elegant, e.g. AC7 (Bessiere et al., 1999), coarse-grained algorithms are

easier to implement while being competitive, and are thus more attractive. The basic coarse-grained

algorithm is AC3 which has been introduced by Mackworth (1977). Its worst-case time complexity

is O(ed3) where e denotes the number of constraints and d the greatest domain size.

Since its conception, AC3 has been the subject of many studies or developments. Wallace (1993)

explained why AC3 was almost always more efficient than the optimal AC4 (Mohr and Henderson,

1986). Van Dongen (2002) proposed to equip AC3 with a double-support domain heuristic; some

refinements of this method being described by Mehta and van Dongen (2004). Interestingly, the

algorithm AC2001/3.1 proposed by Bessiere et al. (2005) corresponds to AC3 made optimal (its

c©2008 Lecoutre and Vion.

LECOUTRE AND VION

worst-case time complexity is O(ed2)) by the introduction of a structure that manages last found

supports. Finally, Lecoutre et al. (2003) have introduced two additional extensions of AC3 by

exploiting multi-directionality.

Recently, Lecoutre and Hemery (2007) studied the impact of exploiting residual supports (called

residues, in short) which were introduced in (Lecoutre et al., 2003; Likitvivatanavong et al., 2004),

and showed both theoretically and experimentally the advantage of embedding AC3rm (AC3 ex-

ploiting multi-directional residues) in MAC or in an algorithm that enforces singleton arc consis-

tency. More precisely, unlike AC2001, AC3rm does not require the maintenance of data structures

upon backtracking and, unlike AC3, AC3rm does not suffer from known pathological cases. As a

consequence, embedding AC3rm is a very simple and efficient solution. As we can consider that

AC3rm, although not optimal in the worst case, behaves in an optimal way most often (at least for

constraints whose tightness is high or low, or with supports uniformly dispersed), the opportunity

to improve on it is a new challenge.

The O notation is the most usually used when presenting time (and space) complexities of

algorithms. This corresponds to an asymptotic analysis, which is relevant to judge the practical

efficiency of an algorithm, provided that the elements (terms and coefficients) discarded from the

raw complexity expression are not too high. To illustrate this, let us consider a constraint network

composed of n variables, the domain of each being composed of d values, and e binary max-support

constraints1. A max-support constraint involving the variables X and Y is defined as follows: the

maximum value in the domain of X supports all values in the domain of Y , and vice versa. Figure

1 depicts such a constraint.

X Y

Figure 1: A max-support constraint. An edge represents an allowed tuple.

If we enforce AC on this network using AC3 or AC2001, we can establish that exactly

2e.(d2 − d + 1) constraint checks are necessary to prove that the network is arc consistent. Here

we are assuming we are looking for support in the opposite domain by considering the values from

top to bottom. Now, consider (without any loss of generality) that we benefit for each domain from

a binary representation of its current state, i.e. a bit is associated with each value of the domain

and indicates if the value is present or not. The domain of a variable thus consists of a bit vector.

Assume similarly that constraints are represented by giving the binary representation (vector) of all

allowed and forbidden values of any triplet (C,X, a), where a is a value belonging to the domain

1. It is interesting to note that, even if they are initially absent from a given CN, such constraints may dynamically

“appear” during search and propagation (when considering reduced domains).

22

ENFORCING ARC CONSISTENCY WITH BITWISE OPERATIONS

of the variable X and C a constraint involving X . When looking for a support of (C,X, a), we can

then simply apply a bitwise operation on these two vectors (as described later).

Considering that bit vectors are equivalent to an array of words (natural data units of the com-

puter architecture), each elementary bitwise operation between two words represents, with respect

to our illustration, x constraint checks, x being the word size (usually, 32 or 64). Hence, we have

just established that, for the example introduced above, we need up to x times less operations when

enforcing AC using this principle (we will call it AC3bit) than classical AC3, AC2001 and AC3rm

algorithms. Table 1 gives some experimental results that we have obtained for this problem (each

instance is described under the form n-d-e) on a 64-bit processor. Here, #ops denotes either the

number of bitwise operations performed by AC3bit or the number of constraint checks performed

by AC3, AC3rm and AC2001. As expected, we can observe that AC3bit is about 60 times more

efficient although AC3bit and AC3 both are O(ed3).

Instances AC3 AC3rm AC2001 AC3bit

250-50-5000
cpu 1.58 1.56 1.61 0.05

#ops 24.5M 24.3M 24.5M 0.5M

250-100-5000
cpu 6.17 6.15 6.26 0.10

#ops 99.0M 98.5M 99.0M 2.0M

500-50-10000
cpu 3.11 3.11 3.21 0.11

#ops 49.0M 48.5M 49.0M 1.0M

500-100-10000
cpu 12.29 12.27 12.48 0.19

#ops 198.0M 197.0M 198.0M 4.0M

Table 1: Establishing Arc Consistency on max-supports instances

The idea of exploiting bitwise operations to speed up computations is not new. In particular,

McGregor (1979) indicated that bit vectors can be used to represent domains and sets of supports

as described above. Similar optimizations were already mentioned by Ullmann (1976). Also, bit

parallel forward checking has been addressed in (Haralick and Elliott, 1980; Nudel, 1983). The

modest contribution of this paper is to provide a precise description of how bitwise operators can be

exploited to enforce arc consistency and to show, from a vast experimentation, that this approach is

really the most efficient one.

The paper is organized as follows. First, we introduce constraint networks and arc consistency.

Then, we show how to represent domains and constraints in binary, and how to exploit bitwise

operators on them. Next, we propose a new generic algorithm AC3bit which can be seen as a simple

optimization of AC3. Finally, after presenting the results of an experimentation we have conducted,

we conclude.

2. Constraint Networks and Arc Consistency

A Constraint Network (CN) P is a pair (X ,C) where X is a finite set of n variables and C a finite

set of e constraints. Each variable X ∈ X has an associated domain, denoted dom(X), which

contains the finite set of values allowed for X . Each constraint C ∈ C involves an ordered subset of

variables of X , called scope and denoted scp(C), and has an associated relation, denoted rel(C),
which contains the set of tuples allowed for the variables of its scope. From now on, we will only

consider binary constraints, i.e. constraints involving exactly two variables.

The initial domain of a variable X is denoted dominit(X) whereas the current domain of X is

denoted dom(X). For any binary constraint C such that scp(C) = {X, Y }, we have:

23

LECOUTRE AND VION

rel(C) ⊆ dominit(X)× dominit(Y)

where × denotes the Cartesian product. A value a ∈ dominit(X) will often be denoted by (X, a).
We will consider that each domain is ordered.

Definition 1 Let C be a binary constraint such that scp(C) = {X, Y }, a pair of values t =
((X, a), (Y, b)) is said to be:

• allowed by C iff (a, b) ∈ rel(C),

• valid iff a ∈ dom(X) ∧ b ∈ dom(Y),

• a support in C iff it is allowed by C and valid.

A tuple t is a support of (X, a) in C if t is a support in C such that the value assigned to

X in t is a. Determining if a tuple is allowed or not is called a constraint check. A solution to

a constraint network is an assignment of values to all the variables such that all the constraints

are satisfied. A constraint network is said to be satisfiable iff it admits at least one solution. The

Constraint Satisfaction Problem (CSP) is the NP-complete task of determining whether a given

constraint network is satisfiable. A CSP instance is then defined by a constraint network, and solving

it involves either finding at least one solution or determining its unsatisfiability. Arc Consistency

(AC) remains the central property of (binary) constraint networks and establishing AC on a given

network involves removing all values that are not arc consistent.

Definition 2 Let P = (X ,C) be a CN. A pair (X, a), with X ∈ X and a ∈ dom(X), is arc

consistent (AC) iff ∀C ∈ C | X ∈ scp(C), there exists a support of (X, a) in C. P is AC iff

∀X ∈X , dom(X) 6= ∅ and ∀a ∈ dom(X), (X, a) is AC.

We will use the following notion of cn-value when presenting some algorithms.

Definition 3 Let P = (X ,C) be a CN. A cn-value of P is a triplet of the form (C,X, a) where

C ∈ C , X ∈ scp(C) and a ∈ dom(X).

3. Binary Representation

In this section, we provide some details about the binary representation of domains and constraints.

We consider that bit vectors are represented under the form of an array of words (natural data units

of the computer architecture). Indeed, some programming languages do not provide the possibility

of using bit vectors as data structures. Besides, as we will see, it is more efficient to perform some

computations based on bitwise operators, using arrays of words rather than bit vectors.

Without any loss of generality, we will consider here that the computer is equipped with a 64-bit

processor. It means for example that the declaration of arrays in the Java language would be long[]
since one long corresponds to 64 bits.

24

ENFORCING ARC CONSISTENCY WITH BITWISE OPERATIONS

3.1 Representing Domains

When a copying mechanism (Schulte, 1999) is used to manage domains during a backtracking

search, one can associate a single bit with any value of each domain. More precisely, a bit can

be associated with the index (starting at 0) of any value of a domain. When this bit is set to 1
(respectively 0), it means that the corresponding value is present in the domain (respectively absent

from it). Using an array of words, one can then compactly represent domains. We will call such

arrays the binary representation of domains. For any variable X , the space complexity is then

Θ(|dom(X)|), which is optimal.

Another mechanism used in many current CP systems is called trailing. A precise description

about how to represent domains using this mechanism can be found in (Lecoutre and Szymanek,

2006), following elements introduced by van Hentenryck et al. (1992). The space complexity of this

representation is also Θ(|dom(X)|) for any variable X , and the time complexity of all elementary

operations (determining if a value is present, removing a value, adding a value, etc.) is O(1). In

this context, adding and maintaining the structures for the binary representation of domains do not

modify worst-case space and time complexities, as shown below.

To represent domains, we keep the structures presented in (Lecoutre and Szymanek, 2006) and

introduce an additional two-dimensional array called bitDom that associates with any variable X
the binary representation bitDom[X] of dom(X), and:

• when adding (or restoring) the ith value in dom(X), the only operation required on the struc-

ture bitDom is the following:

bitDom[X][i div 64]← bitDom[X][i div 64] OR masks1[i mod 64]

• when removing the ith value in dom(X), the only operation required on structure bitDom is

the following:

bitDom[X][i div 64]← bitDom[X][i div 64] AND masks0[i mod 64]

Here, div denotes the integer division, mod the remainder operator, OR the bitwise operator that

performs a logical OR operation on each pair of corresponding bits and AND the bitwise operator

that performs a logical AND operation on each pair of corresponding bits. The structure masks1
(resp. masks0) is a predefined array of 64 words that contains in its ith square a value that represents

a sequence of 64 bits which are all set to 0 (resp. 1) except for the ith one.

3.2 Representing Constraints

In this paper, we will only consider binary constraints. A binary constraint can be represented in

extension using a two-dimensional array of Booleans or a list of tuples, or in intention using a

predicate expression.

Here, to represent constraints, we introduce a two-dimensional array called bitSup. More pre-

cisely, for each cn-value (C,X, a), bitSup[C,X, a] represents the binary representation of the (ini-

tial) supports of (X, a) in C. To simplify the presentation and without any loss of generality, we

can assume that indexes and values match (i.e. the ith value of the domain of any variable is equal

to i). If C is such that scp(C) = {X, Y }, then (a, b) ∈ rel(C) iff the bth bit in bitSup[C,X, a] is 1.

If the constraints are initially given to the solver in extensional form, then, building the bitSup
array does not present any particular difficulty. On the other hand, if the constraints are given

25

LECOUTRE AND VION

in intention, then all constraints checks have to be initially performed (by evaluating a predicate)

in order to build bitSup. Assuming that each constraint check is performed in constant time, it

represents an initial overhead of Θ(ed2). However, for similar predicates and similar signatures

of constraints (i.e. similar Cartesian products built from the domains associated with the variables

involved in the constraints), sub-arrays of bitSup can be shared, potentially saving a large amount

of space and initial constraint checks.

The worst-case space complexity of the binary representation of constraints is Θ(ed2) whereas

the best-case space complexity is Θ(d2), which corresponds to sharing the same binary representa-

tion between all constraints. The worst-case rather corresponds to unstructured (random) instances

whereas the best-case to structured (academic or real-world) instances which usually involve similar

constraints.

3.3 Exploiting Binary Representations

We can now exploit the binary representations of domains and constraints to efficiently achieve

some computations by using bitwise operators. We illustrate our purpose in three different contexts.

Note that for any array t, t[1] will denote its first element and t.length its size.

First, the following sequence of instructions can be used to determine whether the domain of a

variable X is a subset of the domain of another variable Y (such that |dominit(X)| = |dominit(Y)|):

foreach i ∈ {1, . . . , bitDom[X].length} do

if (bitDom[X][i] OR bitDom[Y][i]) 6= bitDom[Y][i] then
return false

return true

This kind of computation can be interesting, for example, when implementing a symmetry

breaking method by dominance detection, e.g. (Focacci and Milano, 2001; Fahle et al., 2001).

In that case, we can compare the current domain of a variable with one that was recorded earlier,

potentially from the same variable. It can then be useful to efficiently determine if one state is

dominated by another one.

Second, the following sequence of instructions can be used to determine if a value (X, a) is

neighborhood-substitutable by a value (X, b) with respect to a constraint C (involving X):

foreach i ∈ {1, . . . , bitDom[X].length} do

if (bitSup[C,X, a][i] OR bitSup[C,X, b][i]) 6= bitSup[C,X, b][i] then
return false

return true

Neighborhood substitutability has been introduced by Freuder (1991) and is defined as follows:

given a variable X , two values a and b in dom(X) and a constraint C, (X, a) is neighborhood-

substitutable by (X, b) w.r.t. C iff the set of supports of a for X in C is a subset (or equal to) of

the set of supports of b for X in C. The code presented above can be useful in practice to reduce

the search space by eliminating neighborhood-substitutable values (e.g. see Bellicha et al. (1994);

Cooper (1997)).

Finally, the following sequence of instructions can be used to determine if a value (X, a) admits

at least one support in a constraint C (involving X and a second variable Y):

26

ENFORCING ARC CONSISTENCY WITH BITWISE OPERATIONS

foreach i ∈ {1, . . . , bitDom[Y].length} do

if (bitSup[C,X, a][i] AND bitDom[Y][i]) 6= ZERO then
return true

return false

Note that ZERO denotes a word defined as a sequence of bits all set to 0. This way of seeking

a support was initially mentioned by McGregor (1979).

Interestingly enough, for all operations described above, it is sometimes possible to return a

Boolean answer even if all elements of the domains have not been iterated. For example, for all

three computations described above, it is possible to obtain a result at the first use of a bitwise

operator (i.e. for i = 1). Certainly, this seems natural but one should be aware that using bit vectors

to perform a bitwise operation, and then compare the result with another bit vector can be quite

more expensive.

4. A Simple Optimization of AC3

In this section, we show how to simply adapt the algorithm AC3 in order to exploit bitwise operators.

The new algorithm, denoted AC3bit, is expected to save a large amount of operations (constraint

checks) and consequently, CPU time.

To establish arc consistency on a given CN, we call the function enforceAC (Algorithm 1).

It is described in the context of a coarse-grained algorithm. Initially, all pairs (C,X), called arcs,

are put in a set Q. Once Q has been initialized, each arc is revised in turn, and when a revision is

effective (at least one value has been removed), the set Q has to be updated. A revision is performed

by a call to the function revise specific to the chosen coarse-grained arc consistency algorithm, and

entails removing values that have become inconsistent with respect to C. This function returns true
when the revision is effective. The algorithm is stopped when the set Q becomes empty.

4.1 AC3

For AC3 (Mackworth, 1977), each revision is performed by a call to the function revise(C,X),
depicted in Algorithm 2. This function iteratively calls, for any value a ∈ dom(X), the func-

tion seekSupportAC3 which determines from scratch whether or not there exists a support of

(X, a) in C. If no such support exists, the value (X, a) can be removed. The principle used in

seekSupportAC3 (see Algorithm 3) is to iterate the list of current values of dom(Y) in order to

find a support. Note that (a, b) ∈ rel(C) must be understood as a constraint check.

AC3 has a non-optimal worst-case time complexity of O(ed3) (Mackworth and Freuder, 1985).

However, as shown by Lecoutre and Hemery (2007), it is possible to refine this result by focusing

on the cumulated cost of seeking successive supports of a value (X, a) in a constraint C.

4.2 AC3bit

For the algorithm we propose, AC3bit, each revision is also performed by a call to the function

revise(C,X), depicted in Algorithm 2. However, instead of calling seekSupportAC3, we use the

function seekSupportAC3bit (see Algorithm 4). Given the binary representation bitDom[Y] of

27

LECOUTRE AND VION

Algorithm 1: enforceAC (P = (X ,C): Constraint Network) : Boolean

Q← {(C,X) | C ∈ C ∧X ∈ scp(C)}1

while Q 6= ∅ do2

pick and delete (C,X) from Q3

if revise(C,X) then4

if dom(X) = ∅ then return false5

Q← Q ∪ {(C ′, X ′) | C ′ ∈ C , C ′ 6= C ∧ scp(C ′) = {X, X ′}}6

return true7

Algorithm 2: revise(C: Constraint, X: Variable): Boolean

nbElements← |dom(X)|1

foreach a ∈ dom(X) do2

if ¬seekSupport(C,X, a) then remove a from dom(X)3

return nbElements 6= |dom(X)|4

Algorithm 3: seekSupportAC3(C, X, a): Boolean

Let Y be the variable such that scp(C) = {X, Y }1

foreach b ∈ dom(Y) do2

if (a, b) ∈ rel(C) then return true3

return false4

Algorithm 4: seekSupportAC3bit(C, X, a): Boolean

Let Y be the variable such that scp(C) = {X, Y }1

foreach i ∈ {1, . . . , bitDom[Y].length} do2

if (bitSup[C,X, a][i] AND bitDom[Y][i]) 6= ZERO then return true3

return false4

Algorithm 5: seekSupportAC3bit+rm(C, X, a): Boolean

Let Y be the variable such that scp(C) = {X, Y }1

i← residue[C,X, a]2

if (bitSup[C,X, a][i] AND bitDom[Y][i]) 6= ZERO then return true3

foreach i ∈ {1, . . . , bitDom[Y].length} do4

if (bitSup[C,X, a][i] AND bitDom[Y][i]) 6= ZERO then5

residue[C,X, a]← i6

return true7

return false8

28

ENFORCING ARC CONSISTENCY WITH BITWISE OPERATIONS

dom(Y) and the binary representation bitSup[C,X, a] of the (initial) supports of (X, a) wrt C, we

just have to execute the code presented in Section 3.3.

Proposition 4 The worst-case time complexity of AC3bit is O(ed3).

The proof is immediate. Interestingly, one can make the following observation that indicates

that in practice, AC3bit can be far more efficient than the other AC3-based variants. It suffices to

consider the illustration given in introduction.

Observation 1 The number of bitwise operations performed by AC3bit can be up to x times less

than the number of constraint checks performed by AC3, AC2001 and AC3rm, where x is the word

size of the computer.

5. Experiments

To show the interest of the algorithm introduced in this paper (and more generally, the practical

interest of dealing with bitwise operations), we have performed a vast experimentation (ran on a

computer equipped with a 2.4GHz i686 Intel CPU, 512MiB of RAM and Sun JRE 5.0 for Linux)

with respect to random, academic and real-world problems2. Performances3 have been measured in

terms of the CPU time in seconds (cpu) and the amount of memory in mebibytes (mem).

We have implemented the different arc consistency algorithms AC3, AC2001, AC3rm and

AC3bit in our platform Abscon. We have compared them by using the algorithm that maintains

arc consistency during the search of a solution (MAC). All AC algorithms benefit from the support

condition mechanism corresponding to Proposition 1 of (Boussemart et al., 2004b) and Equation

1 of (Mehta and van Dongen, 2005a). It allows us to avoid some useless revisions and constraint

checks. For search, the variable ordering heuristic was dom/wdeg (Boussemart et al., 2004a), and

the value ordering heuristic min-conflicts (a static variant as presented by Mehta and van Dongen

(2005b)). We did not use any restart policy.

To start, we have considered 7 classes of binary random instances, generated using Model D and

situated at the phase transition of search (it means that about half of the instances are satisfiable).

For each class 〈n, d, e, t〉, the number of variables n has been set to 40, the domain size d set

between 8 and 180, the number of constraints e between 753 and 84 (and, so the density between

0.1 and 0.96) and the tightness t, which here denotes the probability that a relation forbids a pair

of values, between 0.1 and 0.9. The first class 〈40, 8, 753, 0.1〉 corresponds to dense instances

involving constraints of low tightness whereas the seventh one 〈40, 180, 84, 0.9〉 corresponds to

sparse instances involving constraints of high tightness. In Table 2, one can observe that even for

small domains (e.g. d = 8), MAC3bit is the fastest algorithm. Interestingly, MAC3bit is 2 to 4
times faster than MAC2001 and 1.5 to 3 times faster than MAC3rm. For this first experiment, we

also provide the number of constraints checks (#ccks) and validity checks (#vcks). However, for

MAC3bit, note that #ccks corresponds to the number of bitwise operations.

The good behavior of MAC3bit is confirmed on different series of structured instances. Indeed,

in Table 3, we can see that, once again, MAC3bit outperforms the other algorithms. This is particu-

larly true for the job-shop instances of series enddr1 and enddr2. This can be explained by the fact

2. http://www.cril.univ-artois.fr/∼lecoutre/research/benchmarks/benchmarks.html

3. In our experimentation, all constraint checks are performed in constant time and are as cheap as possible since

constraints are represented in extension using arrays.

29

LECOUTRE AND VION

MAC embedding

AC2001 AC3 AC3rm AC3bit

〈40, 8, 753, 0.1〉
cpu 13.8 9.8 10.4 7.7

mem 11 9.5 10 9.5

#ccks 13M 15M 8.7M 33M

#vcks 2.7M 0 14M 0

〈40, 11, 414, 0.2〉
cpu 19.6 15.0 14.5 10.0

mem 8.8 8.0 8.4 8.0

#ccks 30M 41M 21M 63M

#vcks 14M 0 35M 0

〈40, 16, 250, 0.35〉
cpu 21.6 18.5 16.1 9.7

mem 8.5 7.9 8.2 7.9

#ccks 48M 80M 34M 78M

#vcks 35M 0 58M 0

〈40, 25, 180, 0.5〉
cpu 28.9 27.8 21.2 11.5

mem 8.4 7.9 8.2 7.9

#ccks 89M 169M 63M 112M

#vcks 70M 0 100M 0

〈40, 40, 135, 0.65〉
cpu 21.1 22.0 15.4 7.8

mem 8.5 8.0 8.2 8.1

#ccks 92M 183M 68M 88M

#vcks 59M 0 81M 0

〈40, 80, 103, 0.8〉
cpu 16.6 19.5 12.2 5.0

mem 10 9.5 9.8 9.6

#ccks 106M 226M 80M 81M

#vcks 48M 0 62M 0

〈40, 180, 84, 0.9〉
cpu 24.3 36.6 18.4 6.7

mem 15 14 14 14

#ccks 256M 629M 199M 157M

#vcks 76M 0 93M 0

Table 2: Mean results on random instances; 100 instances per class, cpu time given in seconds and

mem(ory) in MiB.

that the average domain size for these instances is about 120 values, which means that on a 64-bit

processor, only two main operations are required when seeking a support.

Finally, we present the results obtained on some hard academic and real-world instances. The

interest of using AC3bit clearly appears on an instance such as knights-50-25. What is also interest-

ing to observe is that the gap between AC3bit and the other algorithms increases with the difficulty

of the instances of the series scen11-fX . Indeed, whereas all algorithms behave similarly w.r.t.

the easy instance scen11-f10, AC3bit is twice faster than the other AC algorithms w.r.t. the more

difficult instance scen11-f4. The trend clearly appears when looking at results obtained for the

intermediate instances scen11-f8 and scen11-f6.

What about residues? At this point, one can wonder if there is still an interest of exploiting

residues for binary instances. Indeed, for domains up to 300 values, checking if a cn-value admits

a support requires less than 5 operations (on a 64-bit architecture). That was the case for most

of the series/instances presented above, and consequently, AC3bit was always faster than AC3rm.

However, when domains become larger, it can become penalizing to exploit bitwise operations

alone. This is why we propose to combine them with residues. The principle is the following:

whenever a support is detected, its position in the binary representation of the constraint is recorded.

Introducing a three-dimensional array residue of integers (all set to 0 initially), we can then use

30

ENFORCING ARC CONSISTENCY WITH BITWISE OPERATIONS

MAC embedding

AC2001 AC3 AC3rm AC3bit

blackHole-4-4 (10 instances)
cpu 1.46 1.37 1.35 0.91

mem 8.6 7.9 8.7 7.9

driver (7 instances)
cpu 3.89 2.99 3.14 2.75

mem 35 24 56 24

ehi-85 (100 instances)
cpu 1.75 0.92 1.12 0.71

mem 30 19 38 19

ehi-90 (100 instances)
cpu 1.73 0.91 1.11 0.72

mem 31 20 39 20

jobshop enddr1 (10 instances)
cpu 1616 1694 1218 453

mem 14 13 14 13

jobshop enddr2 (6 instances)
cpu 1734 2818 1491 568

mem 15 14 15 14

geom (100 instances)
cpu 12.4 10.8 8.9 5.8

mem 11 10 11 10

hanoi (5 instances)
cpu 1.00 1.16 1.11 0.50

mem 13 11 12 12

qwh-20 (10 instances)
cpu 266 183 242 153

mem 33 21 44 21

Table 3: Mean results on series of structured instances; cpu time given in seconds and mem(ory) in

MiB.

MAC embedding

AC2001 AC3 AC3rm AC3bit

Academic instances

knights-50-9
cpu 85 1148 109 36

mem 27 23 23 23

knights-50-25
cpu > 1200 > 1200 > 1200 211

mem 28

pigeons-11
cpu 54.6 53.4 57.4 43.5

mem 21 21 21 21

pigeons-12
cpu 656 547 591 484

mem 21 21 21 21

queenAttacking-6
cpu 123 125 128 79

mem 21 21 25 21

queenAttacking-7
cpu 407 436 381 263

mem 25 22 25 22

Real-world instances

e0ddr2-10-by-5-1
cpu 257 316 177 68

mem 23 23 23 23

enddr2-10-by-5-1
cpu 178 263 143 61

mem 23 23 23 23

scen11-f10
cpu 5.0 5.4 5.7 5.5

mem 33 29 45 29

scen11-f8
cpu 11.4 11.1 11.5 9.0

mem 33 29 45 29

scen11-f6
cpu 81.7 75.6 74.7 47.3

mem 33 29 45 29

scen11-f4
cpu 1250 1233 1106 670

mem 33 29 45 29

Table 4: Results on hard structured instances ; cpu time given in seconds and mem(ory) in MiB.

31

LECOUTRE AND VION

Algorithm 5. When looking for a support, the residual position is first checked (line 3), and when

one is found, its position is recorded (line 6).

To illustrate the importance of combining bitwise operations with residues when domains are

large, we show in Table 5 the results obtained on instances of the Domino problem. This problem

has been introduced in Zhang and Yap (2001) to emphasize the sub-optimality of AC3. Each in-

stance, denoted domino-n-d, corresponds to an undirected constraint graph with a cycle. More

precisely, n denotes the number of variables, the domains of which are {1, . . . , d}, and there

exists n − 1 equality constraints Xi = Xi+1 (∀i ∈ {1, . . . , n − 1}) and a trigger constraint

(X1 = Xn + 1 ∧ X1 < d) ∨ (X1 = Xn ∧ X1 = d). For the most difficult instance, where

domains contain 3000 values, AC3bit+rm is about 5 times more efficient than AC3bit and AC3rm,

and 9 times more efficient than AC2001.

Instances AC2001 AC3 AC3rm AC3bit AC3bit+rm

domino-500-500
cpu 12.7 403 9.4 4.3 3.7

mem 27M 23M 27M 23 23

domino-800-800
cpu 48.4 2, 437 34.5 13.4 8.7

mem 49M 33M 41M 33M 33M

domino-1000-1000
cpu 89.5 5, 911 62.4 25.1 14.3

mem 66M 42M 54M 42M 46M

domino-2000-2000
cpu 678 > 5h 443 289 91

mem 210M 156M 117M 132M

domino-3000-3000
cpu 2, 349 > 5h 1, 564 1, 274 278

mem 454M 322M 240M 275M

Table 5: Establishing Arc Consistency on Domino instances

6. Conclusion

In this paper, we have introduced a precise description of the exploitation of bitwise operations to

improve the basic arc consistency algorithm AC3. The result is a new algorithm, denoted AC3bit,

which appears to be approximately twice more efficient than AC3rm, an algorithm shown itself to

be faster than the optimal AC2001. We have also shown how to combine bitwise operations with

residues, which happens to be quite useful when domains become large (more than 300 values).

We do believe that, for solving binary instances, when constraints are given in extension or can be

efficiently converted into extension, the generic algorithm MAC, embedding AC3bit/AC3bit+rm is

the most efficient approach. One reason is that, like MAC3rm, no maintenance of data structures is

required upon backtracking by MAC3bit/MAC3bit+rm,

Finally, note that MAC3bit/MAC3bit+rm is the algorithm used by the solver Abscon109 that

has participated to the second international competition of CSP solvers4. More precisely, it was

used for binary instances involving constraints in extension and constraints in intention that could

be converted efficiently into extension. For example, all (constraints of all) instances of the Radio

Link Frequency Assignment Problem (RLFAP) were converted in less than 0.5 second. The good

results that have been obtained by our Java-written Abscon solver during this competition indirectly

confirm the results of this paper.

4. http://www.cril.univ-artois.fr/CPAI06

32

ENFORCING ARC CONSISTENCY WITH BITWISE OPERATIONS

References

A. Bellicha, C. Capelle, M. Habib, T. Kokény, and M.C. Vilarem. CSP techniques using partial

orders on domain values. In Proceedings of ECAI’94 workshop on constraint satisfaction issues

raised by practical applications, 1994.

C. Bessiere and R. Debruyne. Optimal and suboptimal singleton arc consistency algorithms. In

Proceedings of IJCAI’05, pages 54–59, 2005.

C. Bessiere, E.C. Freuder, and J. Régin. Using constraint metaknowledge to reduce arc consistency

computation. Artificial Intelligence, 107:125–148, 1999.

C. Bessiere, J.C. Régin, R.H.C. Yap, and Y. Zhang. An optimal coarse-grained arc consistency

algorithm. Artificial Intelligence, 165(2):165–185, 2005.

F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search by weighting

constraints. In Proceedings of ECAI’04, pages 146–150, 2004a.

F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Support inference for generic filtering. In

Proceedings of CP’04, pages 721–725, 2004b.

M.C. Cooper. Fundamental properties of neighbourhood substitution in constraint satisfaction prob-

lems. Artificial Intelligence, 90:1–24, 1997.

T. Fahle, S. Schamberger, and M. Sellman. Symmetry breaking. In Proceedings of CP’01, pages

93–107, 2001.

F. Focacci and M. Milano. Global cut framework for removing symmetries. In Proceedings of

CP’01, pages 77–92, 2001.

E.C. Freuder. Eliminating interchangeable values in constraint satisfaction problems. In Proceed-

ings of AAAI’91, pages 227–233, 1991.

R.M. Haralick and G.L. Elliott. Increasing tree search efficiency for constraint satisfaction problems.

Artificial Intelligence, 14:263–313, 1980.

P. Van Hentenryck, Y. Deville, and C.M. Teng. A generic arc-consistency algorithm and its special-

izations. Artificial Intelligence, 57:291–321, 1992.

C. Lecoutre and S. Cardon. A greedy approach to establish singleton arc consistency. In Proceedings

of IJCAI’05, pages 199–204, 2005.

C. Lecoutre and F. Hemery. A study of residual supports in arc consistency. In Proceedings of

IJCAI’07, pages 125–130, 2007.

C. Lecoutre and R. Szymanek. Generalized arc consistency for positive table constraints. In Pro-

ceedings of CP’06, pages 284–298, 2006.

C. Lecoutre, F. Boussemart, and F. Hemery. Exploiting multidirectionality in coarse-grained arc

consistency algorithms. In Proceedings of CP’03, pages 480–494, 2003.

33

LECOUTRE AND VION

C. Lecoutre, S. Cardon, and J. Vion. Conservative dual consistency. In Proceedings of AAAI’07,

pages 237–242, 2007.

C. Likitvivatanavong, Y. Zhang, J. Bowen, and E.C. Freuder. Arc consistency in MAC: a new

perspective. In Proceedings of CPAI’04 workshop held with CP’04, pages 93–107, 2004.

A.K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8(1):99–118, 1977.

A.K. Mackworth and E.C. Freuder. The complexity of some polynomial network consistency algo-

rithms for constraint satisfaction problems. Artificial Intelligence, 25:65–74, 1985.

J.J. McGregor. Relational consistency algorithms and their application in finding subgraph and

graph isomorphisms. Information Sciences, 19:229–250, 1979.

D. Mehta and M.R.C. van Dongen. Reducing checks and revisions in coarse-grained MAC algo-

rithms. In Proceedings of IJCAI’05, pages 236–241, 2005a.

D. Mehta and M.R.C. van Dongen. Two new lightweight arc consistency algorithms. In Proceedings

of CPAI’04 workshop held with CP’04, pages 109–123, 2004.

D. Mehta and M.R.C. van Dongen. Static value ordering heuristics for constraint satisfaction prob-

lems. In Proceedings of CPAI’05 workshop held with CP’05, pages 49–62, 2005b.

R. Mohr and T.C. Henderson. Arc and path consistency revisited. Artificial Intelligence, 28:225–

233, 1986.

B.A. Nudel. Consistent-labeling problems and their algorithms: expected-complexities and theory

based heuristics. Artificial Intelligence, 21(1-2):135–178, 1983.

D. Sabin and E. Freuder. Contradicting conventional wisdom in constraint satisfaction. In Proceed-

ings of CP’94, pages 10–20, 1994.

C. Schulte. Comparing trailing and copying for constraint programming. In Proceedings of

ICLP’99, pages 275–289, 1999.

J.R. Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM, 23(1):31–42, 1976.

M.R.C. van Dongen. Beyond singleton arc consistency. In Proceedings of ECAI’06, pages 163–167,

2006.

M.R.C. van Dongen. AC3d an efficient arc consistency algorithm with a low space complexity. In

Proceedings of CP’02, pages 755–760, 2002.

R.J. Wallace. Why AC3 is almost always better than AC4 for establishing arc consistency in CSPs.

In Proceedings of IJCAI’93, pages 239–245, 1993.

Y. Zhang and R.H.C. Yap. Making AC3 an optimal algorithm. In Proceedings of IJCAI’01, pages

316–321, 2001.

34

