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Abstract

Exploiting residual supports (or residues) has proved toie of the most cost-effective ap-
proaches for Maintaining Arc Consistency during search @ANhile MAC based on optimal
AC algorithm may have better theoretical time complexitg@me cases, in practice the overhead
for maintaining required data structure during search eighs the benefit, not to mention the more
complicated implementation. Implementing MAC with resgduon the other hand, is trivial.

In this paper we extend previous work on residues and irgegstithe use of multiple residues
during search. We first give a theoretical analysis of residased algorithms that explains their
good practical performance. We then propose several tiesrisn how to deal with multiple
residues. Finally, our empirical study shows that with apgroand limited number of residues,
many constraint checks can be saved. When the constraick &hexpensive or a problem is hard,
the multiple residues approach is competitive in both thralmer of constraint checks and cpu time.

Keywords: Arc Consistency, Residual Supports, MAC

1. Introduction

Maintaining Arc Consistency (MAC) (Sabin and Freuder, 1984ds been considered one of the
most efficient algorithm for solving large and hard consitraiatisfaction problems. At its core is
the Arc Consistency algorithm (AC), whose efficiency playatal role in the overall performance
of MAC.

Lecoutre and Hemery (2007) and Likitvivatanavong et al0@2Ghow that when arc consistency
is enforced during search (ACS), a MAC3-like algorithm thiatply reuses supports found earlier,
calledresidual support®r residues can outperform the optimal algorithm MAC2001/3.1 (Bessi"
et al., 2005). Since a single residue is good, this papesiigaes the use of multiple residues. We
give a theoretical explanation for the effectiveness ditess. We then investigate various heuristics
for using multiple residues. Finally, we perform extensaxg@eriments with different variations of
multiple residues. Our results show that when the numbegsifiues is small (1 to 5), the number
of constraint checks decreases sharply with a moderateaserof extra cost like validity checks.

(©2008 Lecoutreet al..
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2. Preliminaries

A (finite) Constraint Network (CN)P is a pair(2", %) where 2" is a finite set ofn variables
and % a finite set ofe constraints. Each variabl&® € 2" has an associated domain containing
the set of values allowed foX. The initial domainX is denoted bylom™(X); the current one
by dom(X). Each constrainC € % involves an ordered subset of variables%f called scope
(denoted byscg()), and an associated relation (denotedrby(C')). For eachr-ary constrainiC'
with scf(C) = {X1,..., X, }, rel(C) C [Ii—; dom™*(X;). For anyt = (ay,...,a,) of rel(C),
called a tuple¢[X;] denotesa;. With a total order on the domains, tuples can be orderedyusin
a lexicographic ordex. To simplify the presentation, we use two special valueand T where
1 <t =< T forany tuplet.

Let C be anr-ary constraint andc(C) = {X1,..., X, }, anr-tuplet of [T, dom™(X;)
is said to be: (Lpllowedby C'iff ¢t € rel(C), (2) valid iff VX; € scqC), t[X;] € dom(X;), (3)
a supportin C'iff it is allowed by C' and valid, and (4p conflictiff it is not allowed by C and
valid. A tuplet is asupport of(X;,a) in C whent is a support inC' and¢[X;] = a. A constraint
checkdetermines if a tuple is allowed. yalidity checkdetermines if a tuple is valid. A solution to
a constraint network is an assignment of values to all thelbkes such that all the constraints are
satisfied.

Apair (X,a), with X € 2" anda € dom(X), isgeneralized arc-consistent (GAE\) VC € ¢
whereX € sep(C), there exists a support 0%, a) in C. Pis GACiff VX € 2, dom(X) # ()
andVa € dom(X), (X, a) is GAC. For binary constraint networks GAC is called ACCN-value
is atriplet C, X, a) whereC € €, X € scp(C), a € dom(X).

3. Residual Supports

We illustrate the concept of residual support with GAC3.residuefor a CN-value is a support
that has been previously found and stored for future useké&ttielast structure in AC2001/3.1, a
residue for a value might not be a lower bound of the curreppatis of the value. The concept of
residue has been introduced under its multi-directionathfoy Lecoutre et al. (2003) and under its
uni-directional form by Likitvivatanavong et al. (2004).

3.1 GAC3 with Residual Supports

GAC3 with residual supports is shown in Algorithm 1. The aitjon adds a three-dimensional
arrayres which is initialized toL. For a CN-value ', X,a), re§C, X, a] stores the residue for
(X, a) with respect ta”.

Algorithm 1: GAC3™ (P =(2",%) : Constraint Network)

1 for eachC € € A X €scp(C) A a € dom(X) dores|C, X, a] — L
2 Q—{(C,X)|Ce€nXescp(C)}

3 while Q # 0 do

4 extract(C, X) from Q

5

6

if revise(C, X) then
| Q—=QU{(C'X")|C'e€? NC#C AN X'#X NX, X'} C sep(C')}
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In each revision of ar¢C, X) by revise(Algorithm 2), the validity of the residue for each CN-
value (C, X, a) is tested first (line 3). If it fails, a new support is seatfimm scratch (line 4). If a
supportt is found, multi-directionalityis exploited to update the residues of all values @ine 8),
sincet is also a support offY'] for all Y € sep(C'). Consequentlyy — 1 residues is the arity of
C) are obtained for other values in the tuple with no efforteThi-directionalform, in contrast,
only updates the residue of the CN-valdg §, a).

Algorithm 2: revise(C: Constraint, X: Variable): Boolean

1 nbElements «— |dom(X)|
2 for eacha € dom(X) do

3 if isValid(C,res[C,X,a]ithen continue

4 t — seekSupport(C, X, a)

5 if t =T then

6 | removea from dom(X)

7 else

8 | for eachY € vars(C) do addResidueg, Y, )

9 return nbElements # |dom(X)|

Algorithm 3 isValid(C: Constraint, t: Tuple): Boolean

1 if t = L then return false
2 for eachX € scp(C') do
3 | ift[X] ¢ dom(X) then return false

4 return true

Algorithm 4. seekSupport(C: Constraint, X: Variable, a: Value): Tuple

1t L

2 whilet # T do

3 if t € rel(C) then return t
4 L t « setNextValigC, X, a, t)

5 return T

FunctionaddResidu@: ConstraintX: Variable,t: Tuple) (not listed), assignsto res|[C, X, t[ X]].
FunctionisValid (Algorithm 3) determines whether or not the given tuple idvaLl is not valid).
FunctionseekSupporfAlgorithm 4) determines from scratch a support {of, a) in C. It uses
function setNextValidnot listed) which returns either the smallest valid tuglbuilt from C such
thatt < ¢’ andt’[X]| = a, or T if it does not exist.T does not belong to any relation.

3.2 Complexity Results

To understand why residues work, we present some resultsrfary problems. In particular, we
study the complexity of AC3" when used stand-alone and when embedded in MAC. Without any
loss of generality, we assume that each domain containslgxaalues.

Proposition 1 AC3™ has a worst-case space complexitydkd) and a worst-case time complex-
ity of O(ed?).
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Proof We assume here that each constraint is represented in ationgd form with space com-
plexity O(1), andn < e (otherwise, each connected component of the network camélgzad
similarly). The space required for a CNG@¥e + nd), the space fo€) is O(e x 2) = O(e), and the
space foresis O(e x 2 x d) = O(ed). Thus, space complexity of AC3 is O(ed).

Like the optimality proof of AC3.1 (Bessiere et al., 2008) number of validity checks performed
by AC3™ will not exceed the number of constraint checks performed6@. As AC3 requires
O(ed?) in the worst case, so is AC3. |

. ' . . . allowed tuple
The analysis can be refined to consider the tightness of thstreints m@.

Definition 2 A constraintC' is tightness-boundetf for any CN-value involving”, either its num-
ber of supports i€)(1) or its number of conflicts i©(1) whend — oc.

Many common constraints are tightness-bounded. For exadipE Y or X # Y. For equations,
each value is supported at most once. For dis-equations,vaate allows at most one conflict. In
practice, we observe that AC3 behaves in an optimal way when applied to constraints oflsmal
high tightness.

Proposition 3 Applied to a constraint network involving tightness-boeticconstraints, AC3"
admits a worst-case time complexity@fed?), which is optimal.

Proof In (Lecoutre and Hemery, 2007), it is shown that the worstecaccumulated time com-
plexity of seekSupportor a CN-value(C, X, a) is O(cs + d) wherec is the number of conflicts
of (X, a) in C ands the number of supports ¢fX, a) in C. If C is tightness-bounded, then either
c=0(1) ands = O(d), orc = O(d) ands = O(1) sincec + s = d. It implies that the worst-case
accumulated time complexity afeekSupporfor a CN-value (,X,a) is O(d + d) = O(d). The
overall complexity of AC3™ is thenO(ed?). [ |

Proposition 3 shows that AC3 behaves optimally when constraints are tightness-boundb
suggests AC3" should be quite competitive, compared to optimal algorghike AC2001/3.1, on
highly structured problems. These results are confirmeadhlie state-of-the-art generic algorithm
MAC (Sabin and Freuder, 1994) is considered. The followigult is directly obtained from pre-
vious propositions and the fact that AC3 is an incrementgbrihm so no maintenance of data
structures is necessary when backtracking. MAC8enotes MAC embedding AC3.

Proposition 4 MAC3™ admits a worst-case space complexity(fed), and for any branch of
the search tree admits: (1) a worst-case time complexitp @fd*), and (2) a worst-case time
complexity ofD(ed?) for a constraint network involving tightness-bounded ¢eists.

These theoretical results partially justify the data irk{tvivatanavong et al., 2004; Lecoutre and
Hemery, 2007). Further, they hold for single as well as (anded number of) multiple residues.
We will focus on the practical aspects of multiple residuesf now.

4. Fundamentals of Multiple Residues

Given the results of the single residue approach (LecoutdeHemery, 2007; Likitvivatanavong
et al., 2004), itis interesting to see if we can achieve beeformance by usinqultiple residues
Using more than one residue allows us to record not only ttestlasupport, but also a selected
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subset of the past supports. The memory space for holdirsg tfesidues for each CN-value is
denotedresidue store

To find a support, an AC or ACS algorithm with multiple residwadways considers the residue
store first. If all residues fail the validity test, the allom looks for a new support which may then
be added to the store. When the store is full, ideally theduesthat has the least chance of being
a support in the future is deleted. We approximate the idedlcase using a number of heuristics.
They can be used to evaluate each residue and return a vdlee wility that approximates the
idealized probability. The utility also guides in identifig which residues to check first when
looking for a support.

We present a generic algorithm and several policies thatelétiie utility of a residue.

4.1 A Generic Multiple Residue Algorithm

The generic multiple residue algorithm is similar to thegéinone. The difference lies in how the
residue store is updated and how the validity of residuetéslked. FunctiomddResiduds re-
defined in Algorithm 5 andsValid (used in Algorithm 2) is replaced kgxistValid (Algorithm 6).
There are three algorithm variants differing in manageroéntilities. Thestaticvariant computes
a utility score only when a new support is added to the resgaee. Thedynamicandfully dy-
namicvariants update the utility of the first found valid residlied 4 of Algorithm 6). For the
fully dynamic variant, the score of a residue is updated welienits validity is checked (line 6 of
Algorithm 6). The different variants are differentiated the global variableipdateType

Algorithm 5: addResidue(C: Constraint, X: Variable, t: Tuple) (generic routine)
1w« f(t)

2 if sizqres[C, X, t[X]]) = maxz R then

3 (to, uo) < min(res[C, X, t[X]])

4 if ug < uthendeletéres[C, X, t[X]], (to, u0)))

5 if sizeres[C, X, t[X]]) < maxzR then inserf(res[C, X, t[X]], (¢, u))

Algorithm 6. existValid(C: Constraint, D: Dictionary): Boolean (generic routine)

1 (t,u) < maxD)

2 whilet # L do

if isValid(C, t) then

L if updateType= {dynamic, fullyDynamigthen updatéD, (¢, f(t)))

return true
if updateType = fullyDynamithen updatéD, (¢, f(t)))
(t,u) — pred(D, (t, u))

3
4
5
6
7
8 return false

The following data structures implement the ideas. Res#lioees have fixed size.axzR. The
utility function is denoted byf. redC, X, a] is now a DictionaryS with the following operations.
max(S) returns a paitt, u) where the residughas the highest utility score pred(S, (¢, «)) returns
apair(t’,u’") wheret' is the residue of utility,” which is the next smaller score thanpand returnsL
when there is nonensert(S, (¢, u))/deletdS, (¢, v)) inserts/deletes the pdit, v); updatds, (¢, u’))
updates the tuplét, u) in the store by replacing with «’ and updates the tuple’s position th
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siz€S) returns the number of residues $h In practice, a Dictionary can be implemented using
a variety of data structures, for example balanced trees.retark that the new support might
not automatically become a residue when the residue stdudl.is-or a new support to become a
residue, its utility score must improve on the minimum saafrthe store (line 4 of Algorithm 5).

4.2 Policies Defining the Utility Function

We consider the following policies which are based on evaigahe probability (utility) of a sup-
port being valid in the future:

1. Level of the search treeThe rationale is that the support found at a deeper levalldhme
more robust to change in the network caused by a new assigronéacktracking. When
the search backtracks, previously removed values areeestout thecurrentsupport is still
valid until the search tree branches off to a different pdtfevELMIN policy defines the
utility of a new support or a residue in the store as the ctitesel of the search tree when it
was found or checked (for validity).

2. Domain size The rationale is that the support found when the domain igllemis more
robust. DOMMIN policy defines the utility of a support (or residue) basedhmngize of the
relevant domains when it was found (or its validity is chebkeSpecifically, ifrevis€C, X)
is invoked and the tupleis found as a new support of € X, thenf(t) = >y cscpe)-x

[dom(Y)].

3. Chronology The intuition is that the latest support should remaindvaii the near future,
where the network has not changed muched=(“First In First Out”) defines the utility of a
value by the time stamp when it was found or its validity wasaked.

4. Frequency The expectation here is that the residue that has pasddiyweaheck frequently
in the past will continue to do so in the futurer&CcYMIN initially sets the utility of a new
support to one, then adds one to the score for every sucteakélity check for a residue and
subtracts one for every unsuccessful check.

LEVELMIN, DOoMMAX, FIFO and FRQCYMIN are called heuristic policies because they are
based on the rationale for the corresponding factor. Welase the corresponding anti-heuristics
which use the opposing rationale and whose anti-heuristicess simply the negative of the heuris-
tic score: LEVELMAX, DOMMAX, LIFO and RQCYMAX.

In addition, we also consider a random replacement polispyBom as a baseline for compar-
ison purpose in experiments.

5. Implementations of Different Policies

Intuitively, it makes sense that the residue store shotlamlarge — this is also borne out by our
empirical study. Thus, we use an array for the residue staspded up access. Other data structures
may be more efficient with a larger residue store but have raeeehead. Arrays also have better
cache behavior (Mitchell (2005)).

We use the following convention. Array indices range fromo max R — 1. Given an arrayD,
D.size (initialized to 0) is the current number of residues. In tbetineaddResidueD represents
res[C, X, t[X]].
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5.1 FIFO Policy

We use circular arrays to hold residues for static and fullyaanic FFo. There is no need to record
the utility score explicitly. Given an arral, D.head gives the index of the residue with the highest
score; it is initially set to zero.

To find a support, both static and fully dynamic variants dimgearch fromD.head until the
end of the circular array (Algorithm 8). When a residuis found to be valid in the circular array,
fully dynamic FHFo setsD.head to point tor, since it has now become the most recent support.
Moreover, the invalid residues beforeare automatically placed at the end of the circular array as
a side-effect. To add a value to the store, we simply storefitre (in a modular wayp.head
(Algorithm 7).

Algorithm 7. addResidue(, X, t) (FI FO)

if D.size < maxRthen D.size < D.size + 1
if updateType = dynamithen
for p < D.size — 1 downto1ldo D[p] < D[p — 1]
‘ D[O] — t

else
D.head — (D.head — 1 + maxzR) modmazR
DI[D.head] < t

~N o o b WN PP

The residue store for dynamiard® also uses arrays. To find a support, we search array from
beginning to the end. Since the utilities of the invalid desis before the first valid residue are not
updated, when the first valid residue is found, we simply mbte the front and shift the invalid
residues one position to the right (Algorithm 9). To add a nesidue, we shift the firshaz R — 1
residues one position to the right and put the new one at ¢im¢ fAlgorithm 7). Array copying can
be avoided but other alternative implementations may haylech overheads for the residue store
sizes here.

Algorithm 8: existvalid(C, D) (static and fully dynanic FIFO)

1 for i« 0to D.size — 1 do

2 p < (D.head + i) mod D.size

3 if isValid(C, D[p]) then

4 if updateType = fullyDynamithen D.head < p
5 L return true

6 return false

Algorithm 9:  existValid(C, D) (dynami c FI FO)

1 for p«+ 0to D.size —1do
2 if isValid(C, D[p]) then

3 temp — Dp]

4 for i < pdowntoldo D[i] — D[i — 1]
5 D[0] < temp

6 return true

7 return false
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5.2 LEVEL/DOM Policy

Like dynamic RFo, we use standard arrays to hold residues. However, fMEL and Dom poli-
cies, given arrayD and indexi, D[i] refers to the tuplét, «) stored at theé®” position, wheret
(Dli].residue) is the residue and (D[i].score) is the utility. The residues are arranged in a de-
scending order according to the utility, with ties brokergining priority to the most recent support.
addResiduandexistValidare listed in Algorithm 10-11. EVELMIN/MAX and DOMMIN/MAX

are achieved by settinfjas shown in Section 4.2.

Here, only static and dynamic variants are described. Thedynamic variant involves updat-
ing the utility of invalid residues checked so far as welltzes ttility of the first valid residue found.
All these residues need to be re-ordered afterward. Theofasirting these residues every time
existValidis called is too expensive for our purpose. In contrast, freachic variant needs only to
shift a single element in the array to its appropriate plaagmaintain the ordering of residues (lines
3-13 of Algorithm 11).

Algorithm 10: addResidu&, X, t) (static and dynani c LEVEL/ Dom)

if D.size < mazR then
| D.size «— D.size + 1
else if D[D.size — 1].score > f(t) then return
p <« D.size — 2
while p > 0 A D[p].score < f(t) do

L Dlp+ 1] — D[p|

p—p—1
Dlp+1] < (¢, f(t))

0 NOoO O~ WNPRE

Algorithm 11: existvalid(C, D) (static and dynanmi c LEVEL/ Dowm)
1 for p < 0to D.size — 1 do

2 if isValid(C, D[p].residue) then

3 if updateType= dynamiand f(t) # D|[p].score then

4 if f(t) > DIp].score andp > 0 then

5 while p > 0 and D[p — 1].score < f(t) do

6 Dip] — D[p—1]

7 p—p—1

8 | Dlp] — (¢, £(1))

9 if f(t) < DIp].scoreandp < D.size — 1 then
10 while p < D.size — 1 and D[p + 1].score > f(t) do
11 D[p] < D[p + 1]

12 p—p+1
13 | Dlp] — (¢, £(1))
14 L return true

15 return false

10
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Algorithm 12: addResidu&(, X, ) (dynamic and fully dynani ¢ FRQCYM N)

1 if D.size < mazxzR then

2 | D.size «— D.size + 1

3 else ifupdateType = fullyDynamic A D[D.size — 1].score > 1 then return
4 D[D.size — 1] « (t,1)

Algorithm 13: existValid(C, D) (dynamic and fully dynani ¢ FRQCYM N)

1 for p < 0to D.size — 1 do
2 if isValid(C, D[p].residue) then

3 Dip].score «— Dip].score + 1

4 re-order(D)

5 return true

6 else ifupdateType = fully Dynamic then DIpl.score < DIp].score — 1
7 return false

5.3 FRQCY Policy

We use arrays to hold residues in a descending order by ttilfy. ult doesn’'t make sense to
consider the static version since residues in the storedimaite a constant score bf

The functionaddResiduas shown in Algorithm 12. As the utility score for dynamiR&-
CYMIN can only increase, it may be possible that all residues hagera greater thah Requiring
the new support score to improve on the lowest score for filflyamic RQCYMIN would mean
that the new support would never be recorded as its initiatesgs one. Rather, we replace the
residue with the lowest score regardless of its value.

The functionexistValidis given in Algorithm 13. The principle is the following: whethe
residue at positiop is found to be valid, its score is incremented, while, folyfulynamic FRRQ-
CYMIN, its score is decremented. When a residue is found to be, waédchave to re-order the
array. It is performed by calling the routime-order(D) (not described). Dynamic and fully dy-
namic RRQCYMAX are similar and have not been listed.

6. Experimental Results

We studied the performance of multiple residues with varisiore sizes and policies. The bench-
marks are problems from the 2006 CSP solver competition

6.1 Binary Problems

For binary benchmarks, we used a solver written in C++ thatéments MAC embedding AC3
(i.e., AC3 with uni-directional residues). It includésm/deg variable ordering and the lexico-
graphical value ordering. The results were obtained on alDBdwerEdge 1850 (two 3.6GHz Intel
Xeon CPUS) in Linux.

We first considered some classes of binary random instaritegesl at the phase transition
for satisfiability. These aré10,8,753,100), (40, 11,414, 200), (40, 16,250, 350), (40, 25, 180, 500),
(40, 40, 135, 650), (40, 80, 103, 800), (40, 180, 84, 900) (called R1-R7). A class is represented hyd, e, t)

1.See http://ww. cril.univ-artois.fr/~lecoutre/research/ benchmarks/ benchmar ks. ht m

11
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with /1000 denoting the probability of a tuple not allowed by astomint. We used 21 instances
for each class. The cpu time is the time (in seconds) it takesltze 21 of them.

We also considered the following academic and real worldleros: ehi-85-297-12, ehi-85-
297-13, frb40-19-3, frb35-17-5, pigeons-10, pigeonsefts, ga-6, gk-20-0-5, gk-25-0-5, fapp01-
0200-8, fapp01-0200-9, graph-10, graph-14, scen-11-86€nalled P1-P16).

For each problem, we collected the performance data usgagitdms with different policies
and residue store size from 1 to 10. Because it is obviousathalgorithm using larger number
of residues requires fewer number of constraint chesksmade the cost of each constraint check
as small as possible in order to test the performance in thestaaase Due to limited space, we
can only present selected data, biltthe analysis and observations apply to all the data usles
mentioned otherwise

6.1.1 HEURISTICS VERSUS ANT4HEURISTICS

The experimental results on the effectiveness of heusistic anti-heuristics are shown in Figure 1.
The x-axis is an ordered sequence of papwlflem residueNumbgrwhere problemis R1-R7
or P1-P16 andesidueNumbeis 1-10. We expect that the heuristics will always be bettant
the anti-heuristics. The results show thab®MAx and LEVELMIN indeed performed better than
DoMMIN and LEVELMAX on any data-point. The hypothesis is clearly supported bpiréral
evidence: the residue found when the domain size or thelséarel is smaller is more robust.

The result for RQcCY is surprising, however. This can be attributed to the faat BRQCYM AX
behaves in similar way to1IFo, which has been shown very effective and robust in our result
FRQCYMIN on the contrary favors new support less. This result indgaiat the residues used
most frequently might be less relevant in the future.

6.1.2 QUANTITATIVE EFFECT OF RESIDUE NUMBER ON PERFORMANCE

Having established that anti-heuristics are always wavsawill only consider the heuristics in the
subsequent repoftsWe study in this section how the number of residues affémttoad perfor-
mance of algorithms. Our data shows some clear patternst, fie number of constraint checks
decreases sharply and quickly converges to a stable nuraltke aesidue number increases. Sec-
ond, the extra cost reflected mainly by validity checks iases at most linearly. As an illustration,
we give performance of IFO on all problems with varying residue number in Figure 2. Tkexis

is the same as in the previous subsection. The two obsamgadibove imply that for big residue
number, the new algorithms will not pay off. However, for mambers (say 1 to 5), the extra cost
can be compensated by the savings over constraint checlkscpthtime in Figure 2 reflects this
interaction. The cpu time saving is not obvious due to theplemst of constraint checks. The third
observation is that as the problems become more difficalt, more constraint checks are needed,
the savings (both in terms of constraint checks and cpu tismgore significant, as shown in the
figure. The last observation is that the number of operati@esied to maintain the proper ordering
of the residue store is much lower than the number of the italathecks.

2. The exception is RQcY, for which the anti-heuristic (RQCYMAX) is better.
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Figure 1: Comparisons of heuristics and anti-heuristics.
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6.1.3 (OMPARISON OF VARIOUS POLICIES AND UPDATING STRATEGIES

We compare performance of the static approach feoFDoMMAX, LEVELMIN and FRQCYMIN

on each problem class. Selected results on R7 and P15 ara $hdvigure 3. Results on other
problem classes show similar trends. For comparison parpesalso tested a random replacement
policy (RANDOM), described as follows. The residue store eN®OM is an array of lengthnaz R.
Thekth new residue found is inserted at thth position in the array, where< k < maxR. When
the residue store is fulk(> max R), we pick an index within the range of the array randomly and
overwrite the old residue with a new one. Searching for asugipes not need to be undetermin-
istic since the residue replacement already provides randss for the policy. For simplicity, the
search always starts from the lowest to the highest inddxeratray.

From the graphs, RNDOM is among the best policy for R7 while it is among the wost fobP1
We notice that the relative performance okfboM also varies across different problem classes.
Thus, the effect of RNDOM is dependent on many factors, which is not surprising. Bytresh
the performance of other policies forms a clear and unifordelng. Since its performance is
unpredictable, we will no longer considerRDOM in later analysis.

FIFo has the best results, followed byomMAXx, LEVELMIN, and RQCcYMAX. Dowm-
MAX beats [EVELMIN possibly because it is finer-grainedeELMIN assigns the same utility
to residues found at the same level regardless of individiffd@rences in their respective domain
size. While RQCYMAX is closer to FFo in the number of constraint checks, the cpu time is out
of proportion with other policies. This is due partly to thest of residue store ordering when the
residue number gets larger, and partly to the large numbealwiity checks. From these graphs,
we see that the ability of ®RQCYMAX to retain supports is very close to that af6, but the much
larger number of validity checks implies that these supart positioned at the very end of the
array.

Next, we compare the performance of different updatingtesgias for FFo in Figure 4. In
cpu time, static F-o is faster than dynamicIFO when residue numbers are small, but becomes
gradually slower as the number of residues increases. Neless, the best results are obtained
with static HFo using low number of residues. The graphs for cpu time showthieabest residue
number lies in the region where the saving in constraint kfibas just begun to be outweighed by
the increase in the number of validity checks.

We do not give details for other policies but in general tfedince between static and dynamic
policy is small. For harder problems like P6 and P15, dynampjeroach requires fewer number of
constraint checks for DMMAX and LEVELMIN while the converse is true for the anti-heuristics.
However, as for cpu time, the dynamic approach is slower aoadap constraint checks and higher
cost in maintaining residue store dynamically.

6.2 Non-binary Problems

For non-binary problems, we used the Abscon solver. It implets MGAC embedding GAC3%
with dom /wdeg variable ordering and lexicographical value ordering. &kpents were done in
Linux on a cluster oB3 nodes, each with two Intel Xeon 3GHz and 2GB RAM. The resuks w
present are for some classical hard non-binary instances tine Dimacs aim Chessboard Col-
oration, Dubois Schurr's LemmaDimacs Pret Golomb’s RulerAll Interval SeriesandTraveling
Salesman Problem
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Tnstances MGAC2001 | MGAC3 | MGAC3™ | MGAC3™Z | MGAC3™3
NP opu 14.23 9.71 10.04 9.59 9.99
aim-200-3-4-2. | 4 2146 K 2196 K 1033K 881K 880K
NPV u 102.82 249.07 267.14 242.97 27747
aim-200-3-4-3 | o 107M 110M 53M 45M 45M
o cpu 16.42 11.25 12.28 13.61 14.36
€c-20-20-2 ccks 120K 157K 82059 53839 50539
- cpu 4524 24.23 26.0 28.55 34.48
€C-25-25-2 ccks 253K 305K 152K 92975 87453
dubos23ont cpu 646.4 634.04 559.37 550.92 592.25
ccks 222 M 576 M 202M 148 M 148M

dubors 24-oxt cpu 1272.38 1243.97 1147.67 1103.96 1125.77
ccks 429M 1122M 393M 290 M 290 M

omma15.9mod| P 33.03 32.759 2753 22.63 25.17
ccks 4TM 66M 33M 25M 24M

emma20-0-mod | % 62.93 65.94 1415 13.36 4T
ccks 105M 142M 68 M 52M 49M

Py cpu 0.22 76.92 83.88 76.83 73.41
pret-60-60-ext | s 30M 78M 30M 21 M 21 M
o cpu 97.2 80.36 83.77 8214 80.21
pret-60-75-ext | o 31M 82M 31M 22M 22M
o u 12.83 22.86 13.47 12.75 5.2
ruler-44-9-a3 ccks 33M 80M 36M 30M 29M
o cpu 31.34 60.12 32.18 30.97 34.64
ruler-44-10-a3 |, 95M 242M 97M 80M TTM
“orios.14 cpu 140.48 168.76 125.93 112,51 132.07
ccks 298 M 508 M 248 M 200M 188 M

eries.15 cpu 713.02 974.25 646.56 608.37 694.07
ccks 1624M 2774AM 1351 M 1091 M 1024M

P u 65.459 93.41 68.51 56.64 64.08
tsp-25-681-ext | 4. 107M 219M 85M 72M 69M
P cpu 113.69 167.75 95.18 89.42 97.01
(Sp-25-715-ext | 4o 195M 458M 156 M 135M 131M

Here, we have focused our attention to fully dynamied-policy.2 We only considered a
limited number of residues{AC'3"™* is GAC3™™ with k residues associated with each CN-value)
as it appears to be the right approach. The results in the fatiher verify our observations on the
impact of residue number over performance. Specifically,thmber of constraint checks drops
sharply and converges quickly. We observe that MGA®3s a good compromise between saving
constraint checks and improving cpu time.

7. Conclusion

We have generalized the existing work on single residue thipreiresidues. We have a thorough
investigation of the multiple residue approach includiogiplexity analysis, the policies to manage
the residue store, and an extensive empirical study of feetafeness of the policies and the impact
of store size on the performance. For heuristic policiesgyadbservation is that the number of
constraint checks decreases quickly and converges to ke staimber as the number of residues
increases — indeed, in our experiments the harder the proldethe larger the saving in the
number of constraint checks. However, the extra cost reflieby validity checks also increases
steadily as the number of residues increases. This sugipestthe optimum number of residues

3. Unlike in the previous section, fully dynamigH® is better than both dynamic and statit=6 on these non-binary
problems. We do not consider other policies for space reasmnt is clear thatFo is the best policy.
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should be small (say 1 to 5) since the total cost would be dataihby the cost of validity checks
as more and more residues are in use.
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