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Abstract
Exploiting residual supports (or residues) has proved to beone of the most cost-effective ap-

proaches for Maintaining Arc Consistency during search (MAC). While MAC based on optimal
AC algorithm may have better theoretical time complexity insome cases, in practice the overhead
for maintaining required data structure during search outweighs the benefit, not to mention the more
complicated implementation. Implementing MAC with residues, on the other hand, is trivial.

In this paper we extend previous work on residues and investigate the use of multiple residues
during search. We first give a theoretical analysis of residue-based algorithms that explains their
good practical performance. We then propose several heuristics on how to deal with multiple
residues. Finally, our empirical study shows that with a proper and limited number of residues,
many constraint checks can be saved. When the constraint check is expensive or a problem is hard,
the multiple residues approach is competitive in both the number of constraint checks and cpu time.
Keywords: Arc Consistency, Residual Supports, MAC

1. Introduction

Maintaining Arc Consistency (MAC) (Sabin and Freuder, 1994) has been considered one of the
most efficient algorithm for solving large and hard constraint satisfaction problems. At its core is
the Arc Consistency algorithm (AC), whose efficiency plays avital role in the overall performance
of MAC.

Lecoutre and Hemery (2007) and Likitvivatanavong et al. (2007) show that when arc consistency
is enforced during search (ACS), a MAC3-like algorithm thatsimply reuses supports found earlier,
calledresidual supportsor residues, can outperform the optimal algorithm MAC2001/3.1 (Bessi`ere
et al., 2005). Since a single residue is good, this paper investigates the use of multiple residues. We
give a theoretical explanation for the effectiveness of residues. We then investigate various heuristics
for using multiple residues. Finally, we perform extensiveexperiments with different variations of
multiple residues. Our results show that when the number of residues is small (1 to 5), the number
of constraint checks decreases sharply with a moderate increase of extra cost like validity checks.

c©2008 Lecoutreet al..
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2. Preliminaries

A (finite) Constraint Network (CN)P is a pair(X ,C ) whereX is a finite set ofn variables
andC a finite set ofe constraints. Each variableX ∈ X has an associated domain containing
the set of values allowed forX. The initial domainX is denoted bydominit(X); the current one
by dom(X). Each constraintC ∈ C involves an ordered subset of variables ofX called scope
(denoted byscp(C)), and an associated relation (denoted byrel(C)). For eachr-ary constraintC
with scp(C) = {X1, . . . ,Xr}, rel(C) ⊆

∏r
i=1 dominit(Xi). For anyt = (a1, . . . , ar) of rel(C),

called a tuple,t[Xi] denotesai. With a total order on the domains, tuples can be ordered using
a lexicographic order≺. To simplify the presentation, we use two special values⊥ and⊤ where
⊥ ≺ t ≺ ⊤ for any tuplet.

Let C be anr-ary constraint andscp(C) = {X1, . . . ,Xr}, anr-tuple t of
∏r

i=1 dominit(Xi)
is said to be: (1)allowedby C iff t ∈ rel(C), (2) valid iff ∀Xi ∈ scp(C), t[Xi] ∈ dom(Xi), (3)
a supportin C iff it is allowed by C and valid, and (4)a conflict iff it is not allowed byC and
valid. A tuplet is asupport of(Xi, a) in C whent is a support inC andt[Xi] = a. A constraint
checkdetermines if a tuple is allowed. Avalidity checkdetermines if a tuple is valid. A solution to
a constraint network is an assignment of values to all the variables such that all the constraints are
satisfied.

A pair (X, a), with X ∈ X anda ∈ dom(X), is generalized arc-consistent (GAC)iff ∀C ∈ C

whereX ∈ scp(C), there exists a support of(X, a) in C. P is GAC iff ∀X ∈ X , dom(X) 6= ∅
and∀a ∈ dom(X), (X, a) is GAC. For binary constraint networks GAC is called AC. ACN-value
is a triplet (C,X, a) whereC ∈ C , X ∈ scp(C), a ∈ dom(X).

3. Residual Supports

We illustrate the concept of residual support with GAC3. Aresiduefor a CN-value is a support
that has been previously found and stored for future use. Unlike thelast structure in AC2001/3.1, a
residue for a value might not be a lower bound of the current supports of the value. The concept of
residue has been introduced under its multi-directional form by Lecoutre et al. (2003) and under its
uni-directional form by Likitvivatanavong et al. (2004).

3.1 GAC3 with Residual Supports

GAC3 with residual supports is shown in Algorithm 1. The algorithm adds a three-dimensional
array res, which is initialized to⊥. For a CN-value (C,X,a), res[C,X, a] stores the residue for
(X, a) with respect toC.

Algorithm 1 : GAC3rm (P = (X , C ) : Constraint Network)

for eachC ∈ C ∧ X∈scp(C) ∧ a ∈ dom(X) do res[C,X, a]← ⊥1
Q← {(C, X) | C ∈ C ∧X∈scp(C)}2
while Q 6= ∅ do3

extract(C, X) from Q4
if revise(C,X) then5

Q← Q ∪ {(C′, X ′) | C′∈C ∧ C′ 6=C ∧ X ′6=X ∧ {X, X ′}⊆ scp(C′)}6

4
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In each revision of arc(C,X) by revise(Algorithm 2), the validity of the residue for each CN-
value (C,X, a) is tested first (line 3). If it fails, a new support is searched from scratch (line 4). If a
supportt is found,multi-directionality is exploited to update the residues of all values oft (line 8),
sincet is also a support oft[Y ] for all Y ∈ scp(C). Consequently,r − 1 residues (r is the arity of
C) are obtained for other values in the tuple with no effort. The uni-directional form, in contrast,
only updates the residue of the CN-value (C,X, a).

Algorithm 2 : revise(C: Constraint, X: Variable): Boolean

nbElements← |dom(X)|1
for eacha ∈ dom(X) do2

if isValid(C,res[C,X,a])then continue3
t← seekSupport(C,X, a)4
if t = ⊤ then5

removea from dom(X)6
else7

for eachY ∈ vars(C) do addResidue(C, Y, t)8

return nbElements 6= |dom(X)|9

Algorithm 3 : isValid(C: Constraint, t: Tuple): Boolean

if t = ⊥ then return false1
for eachX ∈ scp(C) do2

if t[X] /∈ dom(X) then return false3

return true4

Algorithm 4 : seekSupport(C: Constraint, X: Variable, a: Value): Tuple

t← ⊥1
while t 6= ⊤ do2

if t ∈ rel(C) then return t3
t← setNextValid(C,X, a, t)4

return ⊤5

FunctionaddResidue(C: Constraint,X : Variable,t: Tuple) (not listed), assignst to res[C,X, t[X]].
FunctionisValid (Algorithm 3) determines whether or not the given tuple is valid (⊥ is not valid).
FunctionseekSupport(Algorithm 4) determines from scratch a support for(X, a) in C. It uses
functionsetNextValid(not listed) which returns either the smallest valid tuplet′ built from C such
thatt ≺ t′ andt′[X] = a, or⊤ if it does not exist.⊤ does not belong to any relation.

3.2 Complexity Results

To understand why residues work, we present some results forbinary problems. In particular, we
study the complexity of AC3rm when used stand-alone and when embedded in MAC. Without any
loss of generality, we assume that each domain contains exactly d values.

Proposition 1 AC3rm has a worst-case space complexity ofO(ed) and a worst-case time complex-
ity of O(ed3).
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Proof We assume here that each constraint is represented in an intentional form with space com-
plexity O(1), andn < e (otherwise, each connected component of the network can be analyzed
similarly). The space required for a CN isO(e + nd), the space forQ is O(e ∗ 2) = O(e), and the
space forres is O(e ∗ 2 ∗ d) = O(ed). Thus, space complexity of AC3rm is O(ed).
Like the optimality proof of AC3.1 (Bessière et al., 2005),the number of validity checks performed
by AC3rm will not exceed the number of constraint checks performed byAC3. As AC3 requires
O(ed3) in the worst case, so is AC3rm.

The analysis can be refined to consider the tightness of the constraints (|allowed tuples|
|possible tuples| ).

Definition 2 A constraintC is tightness-boundediff for any CN-value involvingC, either its num-
ber of supports isO(1) or its number of conflicts isO(1) whend → ∞.

Many common constraints are tightness-bounded. For example,X = Y or X 6= Y . For equations,
each value is supported at most once. For dis-equations, each value allows at most one conflict. In
practice, we observe that AC3rm behaves in an optimal way when applied to constraints of small or
high tightness.

Proposition 3 Applied to a constraint network involving tightness-bounded constraints, AC3rm

admits a worst-case time complexity ofO(ed2), which is optimal.

Proof In (Lecoutre and Hemery, 2007), it is shown that the worst-case accumulated time com-
plexity of seekSupportfor a CN-value(C,X, a) is O(cs + d) wherec is the number of conflicts
of (X, a) in C ands the number of supports of(X, a) in C. If C is tightness-bounded, then either
c = O(1) ands = O(d), or c = O(d) ands = O(1) sincec + s = d. It implies that the worst-case
accumulated time complexity ofseekSupportfor a CN-value (C,X,a) is O(d + d) = O(d). The
overall complexity of AC3rm is thenO(ed2).

Proposition 3 shows that AC3rm behaves optimally when constraints are tightness-bounded. This
suggests AC3rm should be quite competitive, compared to optimal algorithms like AC2001/3.1, on
highly structured problems. These results are confirmed when the state-of-the-art generic algorithm
MAC (Sabin and Freuder, 1994) is considered. The following result is directly obtained from pre-
vious propositions and the fact that AC3 is an incremental algorithm so no maintenance of data
structures is necessary when backtracking. MAC3rm denotes MAC embedding AC3rm.

Proposition 4 MAC3rm admits a worst-case space complexity ofO(ed), and for any branch of
the search tree admits: (1) a worst-case time complexity ofO(ed3), and (2) a worst-case time
complexity ofO(ed2) for a constraint network involving tightness-bounded constraints.

These theoretical results partially justify the data in (Likitvivatanavong et al., 2004; Lecoutre and
Hemery, 2007). Further, they hold for single as well as (a bounded number of) multiple residues.
We will focus on the practical aspects of multiple residues from now.

4. Fundamentals of Multiple Residues

Given the results of the single residue approach (Lecoutre and Hemery, 2007; Likitvivatanavong
et al., 2004), it is interesting to see if we can achieve better performance by usingmultiple residues.
Using more than one residue allows us to record not only the latest support, but also a selected
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subset of the past supports. The memory space for holding these residues for each CN-value is
denotedresidue store.

To find a support, an AC or ACS algorithm with multiple residues always considers the residue
store first. If all residues fail the validity test, the algorithm looks for a new support which may then
be added to the store. When the store is full, ideally the residue that has the least chance of being
a support in the future is deleted. We approximate the idealized case using a number of heuristics.
They can be used to evaluate each residue and return a value called utility that approximates the
idealized probability. The utility also guides in identifying which residues to check first when
looking for a support.

We present a generic algorithm and several policies that define the utility of a residue.

4.1 A Generic Multiple Residue Algorithm

The generic multiple residue algorithm is similar to the single one. The difference lies in how the
residue store is updated and how the validity of residues is checked. FunctionaddResidueis re-
defined in Algorithm 5 andisValid (used in Algorithm 2) is replaced byexistValid(Algorithm 6).
There are three algorithm variants differing in managementof utilities. Thestaticvariant computes
a utility score only when a new support is added to the residuestore. Thedynamicand fully dy-
namicvariants update the utility of the first found valid residue (line 4 of Algorithm 6). For the
fully dynamic variant, the score of a residue is updated whenever its validity is checked (line 6 of
Algorithm 6). The different variants are differentiated bythe global variableupdateType.

Algorithm 5 : addResidue(C: Constraint, X: Variable, t: Tuple) (generic routine)

u← f(t)1
if size(res[C, X, t[X]]) = maxR then2

(t0, u0)← min(res[C,X, t[X]])3
if u0 < u then delete(res[C, X, t[X]], (t0, u0)))4

if size(res[C, X, t[X]]) < maxR then insert(res[C, X, t[X]], (t, u))5

Algorithm 6 : existValid(C: Constraint, D: Dictionary): Boolean (generic routine)

(t, u)←max(D)1
while t 6= ⊥ do2

if isValid(C, t) then3
if updateType∈ {dynamic, fullyDynamic} then update(D, (t, f(t)))4
return true5

if updateType = fullyDynamicthen update(D, (t, f(t)))6
(t, u)← pred(D, (t, u))7

return false8

The following data structures implement the ideas. Residuestores have fixed sizemaxR. The
utility function is denoted byf . res[C,X, a] is now a DictionaryS with the following operations.
max(S) returns a pair(t, u) where the residuet has the highest utility scoreu; pred(S, (t, u)) returns
a pair(t′, u′) wheret′ is the residue of utilityu′ which is the next smaller score thanu, and returns⊥
when there is none;insert(S, (t, u))/delete(S, (t, u)) inserts/deletes the pair(t, u); update(S, (t, u′))
updates the tuple(t, u) in the store by replacingu with u′ and updates the tuple’s position inS.
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size(S) returns the number of residues inS. In practice, a Dictionary can be implemented using
a variety of data structures, for example balanced trees. Weremark that the new support might
not automatically become a residue when the residue store isfull. For a new support to become a
residue, its utility score must improve on the minimum scoreof the store (line 4 of Algorithm 5).

4.2 Policies Defining the Utility Function

We consider the following policies which are based on evaluating the probability (utility) of a sup-
port being valid in the future:

1. Level of the search tree. The rationale is that the support found at a deeper level should be
more robust to change in the network caused by a new assignment or backtracking. When
the search backtracks, previously removed values are restored, but thecurrentsupport is still
valid until the search tree branches off to a different path.LEVELM IN policy defines the
utility of a new support or a residue in the store as the current level of the search tree when it
was found or checked (for validity).

2. Domain size. The rationale is that the support found when the domain is smaller is more
robust. DOMM IN policy defines the utility of a support (or residue) based on the size of the
relevant domains when it was found (or its validity is checked). Specifically, ifrevise(C,X)
is invoked and the tuplet is found as a new support ofa ∈ X, thenf(t) =

∑
Y ∈scp(C)−X

|dom(Y )|.

3. Chronology. The intuition is that the latest support should remain valid in the near future,
where the network has not changed much. FIFO (“First In First Out”) defines the utility of a
value by the time stamp when it was found or its validity was checked.

4. Frequency. The expectation here is that the residue that has passed validity check frequently
in the past will continue to do so in the future. FRQCYM IN initially sets the utility of a new
support to one, then adds one to the score for every successful validity check for a residue and
subtracts one for every unsuccessful check.

LEVELM IN, DOMMAX , FIFO and FRQCYM IN are called heuristic policies because they are
based on the rationale for the corresponding factor. We alsohave the corresponding anti-heuristics
which use the opposing rationale and whose anti-heuristic score is simply the negative of the heuris-
tic score: LEVELMAX , DOMMAX , L IFO and FRQCYMAX .

In addition, we also consider a random replacement policy RANDOM as a baseline for compar-
ison purpose in experiments.

5. Implementations of Different Policies

Intuitively, it makes sense that the residue store shouldn’t be large — this is also borne out by our
empirical study. Thus, we use an array for the residue store to speed up access. Other data structures
may be more efficient with a larger residue store but have moreoverhead. Arrays also have better
cache behavior (Mitchell (2005)).

We use the following convention. Array indices range from0 to maxR − 1. Given an arrayD,
D.size (initialized to 0) is the current number of residues. In the routineaddResidue, D represents
res[C,X, t[X]].
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5.1 FIFO Policy

We use circular arrays to hold residues for static and fully dynamic FIFO. There is no need to record
the utility score explicitly. Given an arrayD, D.head gives the index of the residue with the highest
score; it is initially set to zero.

To find a support, both static and fully dynamic variants simply search fromD.head until the
end of the circular array (Algorithm 8). When a residuer is found to be valid in the circular array,
fully dynamic FIFO setsD.head to point tor, since it has now become the most recent support.
Moreover, the invalid residues beforer are automatically placed at the end of the circular array as
a side-effect. To add a value to the store, we simply store it before (in a modular way)D.head
(Algorithm 7).

Algorithm 7 : addResidue(C, X, t) (FIFO)

if D.size < maxR then D.size←D.size + 11
if updateType = dynamicthen2

for p← D.size − 1 down to 1 do D[p]← D[p − 1]3
D[0]← t4

else5
D.head← (D.head− 1 + maxR) modmaxR6
D[D.head]← t7

The residue store for dynamic FIFO also uses arrays. To find a support, we search array from
beginning to the end. Since the utilities of the invalid residues before the first valid residue are not
updated, when the first valid residue is found, we simply moveit to the front and shift the invalid
residues one position to the right (Algorithm 9). To add a newresidue, we shift the firstmaxR − 1
residues one position to the right and put the new one at the front (Algorithm 7). Array copying can
be avoided but other alternative implementations may have higher overheads for the residue store
sizes here.

Algorithm 8 : existValid(C, D) (static and fully dynamic FIFO)

for i← 0 to D.size − 1 do1
p← (D.head + i) modD.size2
if isValid(C, D[p]) then3

if updateType = fullyDynamicthen D.head← p4
return true5

return false6

Algorithm 9 : existValid(C, D) (dynamic FIFO)

for p← 0 to D.size − 1 do1
if isValid(C, D[p]) then2

temp← D[p]3
for i← p down to 1 do D[i]← D[i− 1]4
D[0]← temp5
return true6

return false7

9
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5.2 LEVEL/DOM Policy

Like dynamic FIFO, we use standard arrays to hold residues. However, for LEVEL and DOM poli-
cies, given arrayD and indexi, D[i] refers to the tuple(t, u) stored at theith position, wheret
(D[i].residue) is the residue andu (D[i].score) is the utility. The residues are arranged in a de-
scending order according to the utility, with ties broken bygiving priority to the most recent support.
addResidueandexistValidare listed in Algorithm 10–11. LEVELM IN /MAX and DOMM IN /MAX

are achieved by settingf as shown in Section 4.2.

Here, only static and dynamic variants are described. The fully dynamic variant involves updat-
ing the utility of invalid residues checked so far as well as the utility of the first valid residue found.
All these residues need to be re-ordered afterward. The costof sorting these residues every time
existValidis called is too expensive for our purpose. In contrast, the dynamic variant needs only to
shift a single element in the array to its appropriate place to maintain the ordering of residues (lines
3–13 of Algorithm 11).

Algorithm 10 : addResidue(C, X, t) (static and dynamic LEVEL/DOM)

if D.size < maxR then1
D.size← D.size + 12

else ifD[D.size − 1].score ≥ f(t) then return3
p← D.size − 24
while p ≥ 0 ∧D[p].score ≤ f(t) do5

D[p + 1]← D[p]6
p← p− 17

D[p + 1]← (t, f(t))8

Algorithm 11 : existValid(C, D) (static and dynamic LEVEL/DOM)

for p← 0 to D.size − 1 do1
if isValid(C,D[p].residue) then2

if updateType= dynamicand f(t) 6= D[p].score then3
if f(t) > D[p].score and p > 0 then4

while p > 0 and D[p− 1].score ≤ f(t) do5
D[p]← D[p− 1]6
p← p− 17

D[p]← (t, f(t))8

if f(t) < D[p].score and p < D.size − 1 then9
while p < D.size− 1 and D[p + 1].score > f(t) do10

D[p]← D[p + 1]11
p← p + 112

D[p]← (t, f(t))13

return true14

return false15
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Algorithm 12 : addResidue(C, X, t) (dynamic and fully dynamic FRQCYMIN)

if D.size < maxR then1
D.size← D.size + 12

else ifupdateType = fullyDynamic ∧D[D.size − 1].score > 1 then return3
D[D.size − 1]← (t, 1)4

Algorithm 13 : existValid(C, D) (dynamic and fully dynamic FRQCYMIN)

for p← 0 to D.size − 1 do1
if isValid(C,D[p].residue) then2

D[p].score← D[p].score + 13
re-order(D)4
return true5

else ifupdateType = fullyDynamic then D[p].score← D[p].score − 16

return false7

5.3 FRQCY Policy

We use arrays to hold residues in a descending order by their utility. It doesn’t make sense to
consider the static version since residues in the store would have a constant score of1.

The functionaddResidueis shown in Algorithm 12. As the utility score for dynamic FRQ-
CYM IN can only increase, it may be possible that all residues have ascore greater than1. Requiring
the new support score to improve on the lowest score for fullydynamic FRQCYM IN would mean
that the new support would never be recorded as its initial score is one. Rather, we replace the
residue with the lowest score regardless of its value.

The functionexistValid is given in Algorithm 13. The principle is the following: when the
residue at positionp is found to be valid, its score is incremented, while, for fully dynamic FRQ-
CYM IN, its score is decremented. When a residue is found to be valid, we have to re-order the
array. It is performed by calling the routinere-order(D) (not described). Dynamic and fully dy-
namic FRQCYMAX are similar and have not been listed.

6. Experimental Results

We studied the performance of multiple residues with various store sizes and policies. The bench-
marks are problems from the 2006 CSP solver competition1.

6.1 Binary Problems

For binary benchmarks, we used a solver written in C++ that implements MAC embedding AC3r

(i.e., AC3 with uni-directional residues). It includesdom/deg variable ordering and the lexico-
graphical value ordering. The results were obtained on a DELL PowerEdge 1850 (two 3.6GHz Intel
Xeon CPUs) in Linux.

We first considered some classes of binary random instances situated at the phase transition
for satisfiability. These are(40, 8, 753, 100), (40, 11, 414, 200), (40, 16, 250, 350), (40, 25, 180, 500),
(40, 40, 135, 650), (40, 80, 103, 800), (40, 180, 84, 900) (called R1–R7). A class is represented by(n, d, e, t)

1. See http://www.cril.univ-artois.fr/∼lecoutre/research/benchmarks/benchmarks.html
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with t/1000 denoting the probability of a tuple not allowed by a constraint. We used 21 instances
for each class. The cpu time is the time (in seconds) it takes to solve 21 of them.

We also considered the following academic and real world problems: ehi-85-297-12, ehi-85-
297-13, frb40-19-3, frb35-17-5, pigeons-10, pigeons-11,qa-5, qa-6, qk-20-0-5, qk-25-0-5, fapp01-
0200-8, fapp01-0200-9, graph-10, graph-14, scen-11, scen-05 (called P1–P16).

For each problem, we collected the performance data using algorithms with different policies
and residue store size from 1 to 10. Because it is obvious thatan algorithm using larger number
of residues requires fewer number of constraint checks,we made the cost of each constraint check
as small as possible in order to test the performance in the worst case. Due to limited space, we
can only present selected data, butall the analysis and observations apply to all the data unless
mentioned otherwise.

6.1.1 HEURISTICS VERSUS ANTI-HEURISTICS

The experimental results on the effectiveness of heuristics and anti-heuristics are shown in Figure 1.
The x-axis is an ordered sequence of pairs (problem, residueNumber) whereproblem is R1–R7
or P1–P16 andresidueNumberis 1–10. We expect that the heuristics will always be better than
the anti-heuristics. The results show that DOMMAX and LEVELM IN indeed performed better than
DOMM IN and LEVELMAX on any data-point. The hypothesis is clearly supported by empirical
evidence: the residue found when the domain size or the search level is smaller is more robust.

The result for FRQCY is surprising, however. This can be attributed to the fact that FRQCYMAX

behaves in similar way to FIFO, which has been shown very effective and robust in our results.
FRQCYM IN on the contrary favors new support less. This result indicates that the residues used
most frequently might be less relevant in the future.

6.1.2 QUANTITATIVE EFFECT OF RESIDUE NUMBER ON PERFORMANCE

Having established that anti-heuristics are always worse,we will only consider the heuristics in the
subsequent reports2. We study in this section how the number of residues affects the broad perfor-
mance of algorithms. Our data shows some clear patterns. First, the number of constraint checks
decreases sharply and quickly converges to a stable number as the residue number increases. Sec-
ond, the extra cost reflected mainly by validity checks increases at most linearly. As an illustration,
we give performance of FIFO on all problems with varying residue number in Figure 2. The x-axis
is the same as in the previous subsection. The two observations above imply that for big residue
number, the new algorithms will not pay off. However, for small numbers (say 1 to 5), the extra cost
can be compensated by the savings over constraint checks. The cpu time in Figure 2 reflects this
interaction. The cpu time saving is not obvious due to the cheap cost of constraint checks. The third
observation is that as the problems become more difficult, i.e., more constraint checks are needed,
the savings (both in terms of constraint checks and cpu time)is more significant, as shown in the
figure. The last observation is that the number of operationsneeded to maintain the proper ordering
of the residue store is much lower than the number of the validity checks.

2. The exception is FRQCY, for which the anti-heuristic (FRQCYMAX ) is better.
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6.1.3 COMPARISON OF VARIOUS POLICIES AND UPDATING STRATEGIES

We compare performance of the static approach for FIFO, DOMMAX , LEVELM IN and FRQCYM IN

on each problem class. Selected results on R7 and P15 are shown in Figure 3. Results on other
problem classes show similar trends. For comparison purpose, we also tested a random replacement
policy (RANDOM), described as follows. The residue store of RANDOM is an array of lengthmaxR.
Thekth new residue found is inserted at thekth position in the array, where1 ≤ k ≤ maxR. When
the residue store is full (k > maxR), we pick an index within the range of the array randomly and
overwrite the old residue with a new one. Searching for a support does not need to be undetermin-
istic since the residue replacement already provides randomness for the policy. For simplicity, the
search always starts from the lowest to the highest index in the array.

From the graphs, RANDOM is among the best policy for R7 while it is among the wost for P15.
We notice that the relative performance of RANDOM also varies across different problem classes.
Thus, the effect of RANDOM is dependent on many factors, which is not surprising. By contrast,
the performance of other policies forms a clear and uniform ordering. Since its performance is
unpredictable, we will no longer consider RANDOM in later analysis.

FIFO has the best results, followed by DOMMAX , LEVELM IN, and FRQCYMAX . DOM-
MAX beats LEVELM IN possibly because it is finer-grained: LEVELM IN assigns the same utility
to residues found at the same level regardless of individualdifferences in their respective domain
size. While FRQCYMAX is closer to FIFO in the number of constraint checks, the cpu time is out
of proportion with other policies. This is due partly to the cost of residue store ordering when the
residue number gets larger, and partly to the large number ofvalidity checks. From these graphs,
we see that the ability of FRQCYMAX to retain supports is very close to that of FIFO, but the much
larger number of validity checks implies that these supports are positioned at the very end of the
array.

Next, we compare the performance of different updating strategies for FIFO in Figure 4. In
cpu time, static FIFO is faster than dynamic FIFO when residue numbers are small, but becomes
gradually slower as the number of residues increases. Nonetheless, the best results are obtained
with static FIFO using low number of residues. The graphs for cpu time show that the best residue
number lies in the region where the saving in constraint checks has just begun to be outweighed by
the increase in the number of validity checks.

We do not give details for other policies but in general the difference between static and dynamic
policy is small. For harder problems like P6 and P15, dynamicapproach requires fewer number of
constraint checks for DOMMAX and LEVELM IN while the converse is true for the anti-heuristics.
However, as for cpu time, the dynamic approach is slower due to cheap constraint checks and higher
cost in maintaining residue store dynamically.

6.2 Non-binary Problems

For non-binary problems, we used the Abscon solver. It implements MGAC embedding GAC3rm

with dom/wdeg variable ordering and lexicographical value ordering. Experiments were done in
Linux on a cluster of93 nodes, each with two Intel Xeon 3GHz and 2GB RAM. The results we
present are for some classical hard non-binary instances from theDimacs aim, Chessboard Col-
oration, Dubois, Schurr’s Lemma, Dimacs Pret, Golomb’s Ruler, All Interval Series, andTraveling
Salesman Problem.
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Instances MGAC2001 MGAC3 MGAC3rm MGAC3rm2 MGAC3rm3

aim-200-3-4-2
cpu 14.23 9.71 10.04 9.59 9.99
ccks 2146K 2196K 1033K 881K 880K

aim-200-3-4-3
cpu 402.82 249.07 267.14 242.97 277.47
ccks 107M 110M 53M 45M 45M

cc-20-20-2
cpu 16.42 11.25 12.28 13.61 14.36
ccks 129K 157K 82059 53839 50539

cc-25-25-2
cpu 45.24 24.23 26.0 28.55 34.48
ccks 253K 305K 152K 92975 87453

dubois-23-ext
cpu 646.4 634.04 559.37 550.92 592.25
ccks 222M 576M 202M 148M 148M

dubois-24-ext
cpu 1272.38 1243.97 1147.67 1103.96 1125.77
ccks 429M 1122M 393M 290M 290M

lemma-15-9-mod
cpu 33.03 32.759 27.58 22.63 25.17
ccks 47M 66M 33M 25M 24M

lemma-20-9-mod
cpu 62.93 65.94 44.15 43.36 44.71
ccks 105M 142M 68M 52M 49M

pret-60-60-ext
cpu 80.22 76.92 83.88 76.83 73.41
ccks 30M 78M 30M 21M 21M

pret-60-75-ext
cpu 97.2 80.36 83.77 82.14 80.21
ccks 31M 82M 31M 22M 22M

ruler-44-9-a3
cpu 12.83 22.86 13.47 12.75 15.2
ccks 33M 80M 36M 30M 29M

ruler-44-10-a3
cpu 34.34 60.12 32.18 30.97 34.64
ccks 95M 242M 97M 80M 77M

series-14
cpu 140.48 168.76 125.93 112.51 132.07
ccks 298M 508M 248M 200M 188M

series-15
cpu 713.22 974.25 646.56 608.37 694.07
ccks 1624M 2774M 1351M 1091M 1024M

tsp-25-681-ext
cpu 65.459 93.41 68.51 56.64 64.08
ccks 107M 219M 85M 72M 69M

tsp-25-715-ext
cpu 113.69 167.75 95.18 89.42 97.01
ccks 195M 458M 156M 135M 131M

Here, we have focused our attention to fully dynamic FIFO policy.3 We only considered a
limited number of residues (GAC3rmk is GAC3rm with k residues associated with each CN-value)
as it appears to be the right approach. The results in the table further verify our observations on the
impact of residue number over performance. Specifically, the number of constraint checks drops
sharply and converges quickly. We observe that MGAC3rm2 is a good compromise between saving
constraint checks and improving cpu time.

7. Conclusion

We have generalized the existing work on single residue to multiple residues. We have a thorough
investigation of the multiple residue approach including complexity analysis, the policies to manage
the residue store, and an extensive empirical study of the effectiveness of the policies and the impact
of store size on the performance. For heuristic policies, a key observation is that the number of
constraint checks decreases quickly and converges to a stable number as the number of residues
increases — indeed, in our experiments the harder the problem is, the larger the saving in the
number of constraint checks. However, the extra cost reflected by validity checks also increases
steadily as the number of residues increases. This suggeststhat the optimum number of residues

3. Unlike in the previous section, fully dynamic FIFO is better than both dynamic and static FIFO on these non-binary
problems. We do not consider other policies for space reasons, as it is clear that FIFO is the best policy.
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should be small (say 1 to 5) since the total cost would be dominated by the cost of validity checks
as more and more residues are in use.
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