N
N

N

HAL

open science

Stability of static walls for a three-dimensional model of
ferromagnetic material.
Gilles Carbou

» To cite this version:

Gilles Carbou. Stability of static walls for a three-dimensional model of ferromagnetic material.. Jour-
nal de Mathématiques Pures et Appliquées, 2010, 93 (2), pp.183-203. 10.1016/j.matpur.2009.10.004 .

hal-00868052

HAL Id: hal-00868052
https://hal.science/hal-00868052
Submitted on 28 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00868052
https://hal.archives-ouvertes.fr

Stability of Static Walls for a three dimensional Model of
Ferromagnetic Material

Gilles Carbou
Université de Bordeaux
Institut de Mathématiques de Bordeaux, UMR 5251
351 cours de la Libération
33405 Talence cedex, France

email: carbou@math.u-bordeauxl.fr
Projet ANR SICOMAF

Abstract. In this paper we consider a three dimensional model of ferromagnetic material. We
deal with the static domain wall configuration calculated by Walker. We prove the stability of this
configuration for the Landau-Lifschitz equation with a simplified expression of the demagnetizing
field.

Résumé. Dans cet article, on considere un modele tridimensionnel de matériau ferromagnétique.
On étudie les profils de murs statiques calculés initialement par Walker. On démontre la sta-
bilité de ces profils pour I’équation de Landau-Lifschitz avec un modele simplifié pour le champ
démagnétisant.

MSC: 35K55, 35Q60.

Keywords: Landau-Lifschitz equation, domain walls, stability.

1 Introduction and main results

The formation and the dynamics of domain walls are among the most studied topics in micromag-
netism. In his pioneering works [29], Walker performed the exact integration of the equations of
motion for a planar wall (see [26]). In this paper, we tackle the problem of the stability of these
exact solutions for the Landau-Lifschitz equation in a simplified 3-dimensional model.

Let us recall the general framework of the ferromagnetism (see [5], [17] and [27]). We consider an
infinite homogeneous ferromagnetic medium. We denote by m the magnetization:

m: RYxR® — IR
(t,z,y,2) — mt,z,y,z2).

The magnetic moment m links the magnetic induction B and the magnetic field H by the relation
B = m+ H. In addition, we assume that the material is saturated so that the magnitude of m is
constant. After renormalization we assume that

|m| =1 at any point. (1.1)
The evolution of m is described by the Landau-Lifschitz equation:
Om = —m X Hepp —m x (m x Hepy). (1.2)
The effective field Hepy = —VE is derived from the micromagnetism energy &£ given by
E = Eexch + Edem + Eanis,
where

e the exchange energy E...pn writes

1
gea:ch = _/ |Vm|2a
2 R3



e the anisotropy energy reflects the existence of a preferential axis of magnetization:

1

eamsz—/ (1—|mal), m = (m1,ma,ms).
2 IR3

o Eiem is the demagnetizing energy:

1
gdem = 5/ |hd(m)|2
R3

The demagnetizing field hy(m) is characterized by

curl hg(m) =0,
(1.3)
div (hg(m) +m) = 0.

Therefore we obtain that
Heff = Am + mzes + hd(m),

where e3 is the third vector of the canonical basis (e, es, e3) of R

Existence results for the Landau-Lifschitz equation can be found in [2], [6], [14], [16], [20] and [28§]
for the weak solutions, and in [7], [8] and [9] for the strong solutions. Numerical simulations are
performed in [3], [4], [21], [22] and [23].

In case of a magnetic moment only depending on the x variable, the demagnetizing field obtained
by integrating (1.3) reads hq(m) = —mqe;. With this expression of the demagnetizing field, Walker
calculated in [26] the following static solution to the Landau-Lifschitz equation:

0
Mo(x,y,z) = Mo(x) = | 1/chz |. (1.4)
—thz

The profile My modelizes a domain wall connecting the domain {x — —oc} in which m ~ ez with
the domain {z — 400} in which m ~ —es.

In our paper we simplify the model assimilating hy to —mye; even for perturbations of My. So we
deal with the following system:

8tm:—m><Heff—m>< (mXHeff),
(1.5)
H.rp = Am + mses — maeq,

and we adress the stability of the static solution My for the system (1.5). Our main result is the
following;:

Theorem 1.1. Let € > 0. There exists 6 > 0 such that for all mgy € HZ(R3;R3), if mg satisfies
the saturation constraint |mo| = 1 and verifies ||mo — Mo|| g2 sy < J, then the solution m of the
Landau-Lifschitz equation (1.5) together with the initial data m(0,x,y, z) = mo(x,y, 2) satisfies

V>0, |lm(t, ). — Mol gy < &

In [10], we proved the same kind of stability result for a one dimensional model of ferromagnetic
nanowire. We extended this result in [11] by proving the controllability of the wall position for this
1-d model. In the present paper, we deal with the 3-d model (1.5). The proof of the stability result
somewhat follows that presented in [10]. The first two steps are formally similar.



At the begining we must consider perturbations m of the profile M satisfying the physical constraint
|m| = 1. In order to do that, we describe m in the mobile frame (My(x), M (x), M) where

0 1
Mi(x) = t}ix and Mo=1 0 |,
—_— 0
chzx

writing
1
m(tvxvya Z) =T (tvxvya Z)Ml(x) + TQ(thvya Z)MQ + (1 - (Tl (thvya Z))Q - (TQ(ta z,Y, Z))2) : M()(J?)

The new unknown 7 = (r1,79) takes its values in the flat space IR*. Then we rewrite the Landau-
Lifschitz equation with the unknown r, and we obtain in Section 2 that the Landau-Lifschitz equation
is equivalent to a nonlinear equation on r, and the stability of My is equivalent to the stability of 0
for this new equation.

Now the problem is that the linearized of the new equation around zero admits 0 as a simple
eigenvalue. This is due to the invariance of the Landau-Lifschitz equation (1.5) by translation in the
x-variable (see Section 3). Following the method developped in [30], [15], [18] and [19] (for travelling
waves solutions to semilinear parabolic equations), we decompose the perturbations into a spacial
translation component (the ”front”) and a normal component. The front satisfies a quasilinear
parabolic equation the linearized of which behaves like the heat flow in JR?. The normal component
is shown to satisfy a very dissipative quasilinear parabolic equation (see Section 4).

Section 5 is devoted to variational estimates to prove the stability. The situation in the present paper
is much more complicated than the one dimensional case, because in 1-d, the front part satisfies
an ordinary differential equation. In addition, here the equations are quasilinear, and Kapitula’s
method with semigroup estimates for the heat flow cannot be applied (see [18] for example).

Our method is the one used to prove a global existence with small data result. In the variational
estimates, the good sign terms induced by the linear part enable us to absorb the nonlinear terms.
In our case, the L? norm of the front does not appear as an absorbing term. It’s the same thing for
the heat flow in the whole space. This dissipation defect for the front is compensated by a careful
study of the nonlinear part. The key point is that we can control this nonlinear part by the gradient
of the front (see Section 6).

Remark 1.1. When a constant magnetic field is applied in the x-direction on the ferromagnetic
material, it is observed that the domain wall is translated in the x-direction. In [26] such solutions
are calculated. They are described as travelling waves of a profile obtained from My by rotation and
dilation. The stability of these moving walls remains an open problem and our method does not
work in that case. In the same way, the stability of walls with the non simplified demagnetizing field
remains unproved (see Remark 4.1 below).

Remark 1.2. In the static case, the formation of domain walls is explained by asymptotic methods.
We refer the interested reader to [1], [12], [13] and [25].

2 Mobile frame

We consider the mobile frame (My(z), M1(x), Ms) given by:

0 0 1
Ve e R, My(x)=| 1/chz |, Mi(x)= tha , My =
—thaz 1/chz 0

Let us introduce the smooth map v : B(0,1) — IR defined for £ = (&1,£2) by

v(€) = V1—-(&)%—(&)? -1,



where B(0,1) = {(&1,&), (€1)® + (&2)? < 1} is the unit ball of IR?,
We write the perturbations of My as:

m(tv €, Y, Z) = MO(J:) + rl(ta T, Y, Z)Ml(x) + TQ(tv €, Y, Z)MQ(x) + V(T(t, Y, Z))M()(J?),
so that the constraint [m| = 1 is satisfied.

We will work with the unknown r(¢,z,y, z) = ( 77:1 Ei’i’z’ 2 )
2\, 45 Y,

We remark that we have r1(¢,z,y, 2) = m(t,z,y, z) - Mi(x) and ro(t, z,y,2) = m(t,z,y, z) - Ms.

After a rather long algebraic calculation, we obtain that if m satisfies (1.5) then r verifies:

Oyr = Ar + F(x,r,Vr, Ar), (2.6)

Ar — -1 -1 L?“l
"= 1 -1 Lry + 1o ’

with L= —-A+ f, f(z) =2th%z — 1.
The nonlinear part F : IR x B(0,1) x IR* x R* — IR? is defined by:

where

3
F(x,r,Vr,Ar) = A(r)Ar + Z B(r)(0;r, 0;r) + C(x,7)(0x7) + D(x, 1),

with the following notations:

o Ae(C>®(B(0,1); Ma(IR)) (M2(IR) is the set of the real 2 X 2 matrices):
—(r1)? v(r) —rirg —rg — (L +v(r))m
A(r) = + V(r),
v(r) —rirg —(re)? r1— (1 +v(r))rs

B € C>®(B(0,1); L2(IR?)) (L2(IR?; IR?) is the set of the bilinear functions defined on R? x IR?
with values in IR?):

—ry — 11 — rv(r)
B(r)(§,€) = V(1) (€, 6),
r1 — 19 — rov(T)
o 011 =0,r = %, Oar = g—;, O3r = %,

o C eC®(IR x B(0,1); Ma(IR)):

9 —ry — 11 — rv(r) 9 —14 (r1)?
Clz,r)(§) = =— &1+ — V'(r)(€),

chz r1 — 19 — rov(T) 1+ v(r) +rire

D € C®(IR x B(0,1); IR?): D(z,r) = ( ! ) with

2sh
Dy = — (rg +raf +2fry + fml/(?“)) v(r) + (r2)*r + ﬁrl (ra + 71+ r10(r)),

2sh x

mrl (r1 — 1o — rov(r)).

Dy = (frl —2fre — frov(r) —2ro — 7“21/(7“)) v(r) —ro(r)? —



In fact, both forms of the Landau-Lifschitz equation are equivalent as it is stated in the following
proposition:

Proposition 2.1. Let m € CY(0,T; H2(IR?; IR®)) such that |m| = 1 and satisfying
Vit e [0,T],Y (z,y,2) € R®, |m(t,z,y,2) — Mo(z)| < V2. (2.7)
We introduce 7 = (r1,r3) € C1(0,T; H2(IR?; IR?)) defined by
m(t,z,y,z) = Mo(z) + (¢, z,y, 2) My (x) + ro(t, z,y, 2) Ma(z) + v(r(t, x,y, 2)) Mo (x)

(Assumption (2.7) implies that r(t,z,y,z) € B(0,1) for all (t,z,y,2)).
Then m is solution to the Landau-Lifschitz equation (1.5) if and only if r is solution to (2.6) and
My is stable for (1.5) if and only if 0 is stable for (2.6).

Sketch of the proof. By projection on M; and My, it is clear that if m satisfies the Landau-
Lifschitz equation (1.5) then m satisfies (2.6). The converse is proved in [10] using the fact that if
|m| =1 and if m satisfies the projection of (1.5) onto IRM; and IRM>, then it satisfies (1.5).

Let us estimate the nonlinear functions appearing in (2.6). Since v(¢) = O(|¢]?), by straightforward
calculations, we obtain the following proposition:

Proposition 2.2. There exists a constant K such that for r € B(0,1/2) and for z € IR,
[A(| < K[r|* and  |A(r)] < K]r],

|B(r)] < K|r| and |B'(r)| <K,

K K
< — < —
Cla,r) < 2=l and  [0,C(w,)| <

K K
|D(z,7)| < K|r® + %WQ and 19, D(z,r)| < K|rf* + i LAF

3 Linear properties
We denote by L the linear operator acting on H? (]R3) defined by
Lu=—-Au+ fu,

with f(z,y,z) = 2th%z — 1.
We denote by L; the reduced operator acting on H?(IR) given by

Proposition 3.1. The operator Ly is positive symmetric. Its spectrum is {0} U [1, +o00[, where 0 is
the unique eigenvalue, and [1,+0o0] is the essential spectrum. In addition, 0 is simple.

Proof. On one hand, since f(z) = 2th2z — 1, the essential spectrum is [1,+oo[ (see the Weyl
Theorem in [24]).
On the other hand, Ly = [* ol where [ = 0, + thx. So L; is positive. The kernel of L is directed

1
by —:
Y chzx ]
Ker L1 =Ker |l = IR—.
chx
Finally we have [ o [* = —0,, + 1, so if v is an eigenvector associated to the eigenvalue A, then

lol*olv= A,

that is, if v ¢ Ker [, then X is an eigenvector for —9,, + 1, which leads to a contradiction.



Remark 3.1. As we remarked in [10] and [11], a direct consequence of Proposition 3.1 is the
following. Let & defined by

chx

&1 = (KerLy)* = {v € HQ(R),/BU(x)de = O} .

3
Then on &, the H?-norm is equivalent to | Lyul| 2 r) and the H-norm is equivalent to || L} ul|p2(m)-

Proposition 3.2. The operator L = —A + f is a positive self-adjoint operator defined on H?(IR®).
Let us consider € defined by

Ez{veHQ(Bg),V(y,z)EBQ,/ v(x,y,z)idxz }
2R chx

There exists K such that
Vo €& vl gzmsy < KL L2(rs),

3
Yo € H3(B3) N 5, ||UHH3(R3) < K||L2’U||L2(R3).

1
Proof. From Proposition 3.1, there exists a constant K such that for u € H2(IR), if/ u(r)—dz =
R

chzx
0, then
[l 22y + 10wzl T2y < Kl Laul|72(m)-

Now for v € £, we have for almost every (y,z) € IR*:
[ (o) + ooy )P do < K [ |Lav(a,y, )P
z€R R

So integrating for (y, z) € IR? we obtain:

[0l 2pme) + 10020172 sy < K L0l 32 ge)-

/ |Lv|2:/ |L1v|2—|—/ |Ayv|2—2/ LivAyw,
R3 R3 R3 R3

where Ay = 0y, + 0... The last term is positive:

On the other hand,

—2/ LiwwAyv=—-2 [ I*olv -Ayv= 2/ |Viv|?,
R? R3 R?

by integrations by parts. So

/ |L’U|2 2/ |L11)|2+/ |Ay’l}|2,
R3 R3 R3

HU||2L2(1RB) + HAUH%Q(R?’) < K||Lv||2L2(R3)’

that is

The H? estimate can be proved with the same kind of arguments using Remark 3.1.



4 New coordinates

In the one dimensional case, i.e. for solutions depending only on the z-variable, we can construct a
one parameter family of static solutions to the Landau-Lifschitz equation (1.5) using translational
invariance. Indeed, for s € IR, x — My(z — s) satisfies (1.5). On the mobile frame, we consider the
one parameter family (R(s))semr of static solutions to (2.6) obtained from My(z — s):

R — < Mﬁi;i-) ].”fw(f) ) _ ( ) ) ,
where p(a)(a) = thz  th(z—s)

~ ch(z —s) chz

Following Kapitula [18], for r in a neighbourhood of 0, it would be desirable to use the coordinate
system given by (o, ¢, W) with perturbations of zero being given by:

0
r(t,,y,2) = R(o(l,y,2))(z) + < 1 ) p(ty,z) + W(t,2,y, 2), (4.8)

chz

where both coordinates of W take their values in £. We prove that this system of coordinates is
relevant in Proposition 4.1. To start with let us precise the notations.

We denote by 3 the following space
¥ = H?(IR?*) x H*(IR*) x £ x £. (4.9)
We endow ¥ with the norm:
(0,0, W)li#z = llollmz(me) + lellmz(me) + 1LWillpz(ms) + [ILWal| 2 (ms) - (4.10)
From Proposition 3.2, we have the following equivalence of norms on 3:
I[(a, 0, W)z ~ llollgzmzy + Ml 2 (mey + Wil g2 (msy + |Wall m2(ms)-
In the same way, on X N H?, we define
3 3
(o, 0, W)llas = ol gsmzy + @l asmzy + 1L2Whll L2 (msy + [[1L2 Wl 23, (4.11)
and this norm is equivalent to the H> norm on ¥ N H3:

(o, 0, W)z ~ llollasmzy + el asmey + Wil gsmsy + Wl s (ms)-

Proposition 4.1. There exists 6y > 0, such that if r € H*(IR®; IR®) satisfies 7] zr2 3y < o, there
exists (o, p, W) € ¥ such that

0
r(z,y,2) = R(o(y,2))(z) + ( 1 ) oy, z) + W(z,y, 2).
chx

In addition, there exists K such that for r € HZ(R?’; IRQ) in a neighbourhood of zero,

1
2o 0, Wllrz < Il e mey < Kll(0, 0, W)z, (4.12)

and for r € H3(IR?; IR?) in a neighbourhood of zero,

1
@0, W)l < lrllas ey < Kl (0,0, W)llpes. (4.13)



Proof. Let us introduce ' and [? defined for r = (r1,72) € H?>(IR*; IR*) by:

1 1

1 _1 o _ _/ 1
P =3 [ nGaagmde Pows) =3 [ gz

The operators I* and [? are continuous linear mappings from H?(IR?; IR*) (resp. H?(IR*; IR*)) into
H?(IR?) (vesp. H3(IR?)).
Also we remark that £2 = {W € H*(R*; R®),I*(W) = (W) =0} .

For a fixed r in a neighbourhood of 0, (g, ¢, W) can be found in the following manner:

e applying (2 on (4.8) we obtain: ,
(r)(y, 2) = oy, ),

e applying ! on (4.8) yields:

twy=5 [ plot o)) gods

chz
Let us consider ¢ € C*(IR; IR) given by

Us) = / eﬂp(smﬁdw.

Since ¥(0) = 0 and ¥'(0) = 1, there exists dp > 0 such that ¢ is a C*°-diffeomorphism from
] — 80, do[ to a neighbourhood of zero. We obtained

)y, z) = ¥(a(y, 2)),

so o is given by

oy, z) = v (11 (r)(y, 2))-

e By subtraction, we set
0
W(JU,ZJ;Z) zr(x,y,z) —R(o(y,z))(x) - L (p(y,z),
x

and by construction [1(W) = [2(W) = 0, that is W € 2.

Concerning (4.12), with straighforward estimates, using that p(0)(z) = 1 and 9;p(0)(x) = ﬁ we
obtain for example that for o € H?(IR®) sufficiently small

(@, y,2) = R(o(y, 2)) (@) | p2 (o) < Klloll w2 w2y,

SO
Pl 2 msy < K (lollgz(mey + 1€l mzmy + W laz(ms)) < Kll(o,0, W)z

By the continuity of the linear operators ! and [? for the H? norm, since ¥»~! is smooth in a
neighbourhood of 0 and satisfies 1) ~1(s) = s + O(s?), we obtain that

loll g2 (mey + el a2 (rey < Kllrllazme),

and by difference we obtain the claimed estimate on W. We prove (4.13) in the same way. This
concludes the proof of Proposition 4.1.

Therefore in a neighbourhood of zero, we describe r in the coordinates (o, ¢, W) given by (4.8). Let
us rewrite (2.6) in these coordinates. We assume that Jp is small enough to ensure that ||r|fe < 1,
so that (2.6) makes sense.



We first remark that in the one dimensional case, for a fixed s, the map = — R(s)(x) is a static
solution to (2.6). So denoting by A; the reduced operator:

o -1 -1 L1w1
Alw_( 1 —1)([;1’LUQ—|—’LUQ>7

AiR(0)+ A(R(0))0zzR(0) + B(R(0))(0zR(0),0:R(c)) + C(R(0))(0zR(0)) + D(R(c)) = 0. (4.14)

we have

Furthermore,
at (R(J(ta Y, Z))(x) = 85R(J(ta Y, Z))ato(ta Y, Z)v
and
A(R(a(t,y,2))(x)) = 0w R(a(t,y, 2)) + s R(0(t, y, 2))(Ay o) + s R(0(t, y, 2)) [Vy o],
with Ay := dyy + 9., and |Vyol|? := |9,0|? + |0.0]?. So, we have:

-1 -1

AR(c) = A1R(0) + < 1 1

> (_aeR(U)AYU - 8SSR(U)|Vy0'|2).

Plugging (4.8) in (2.6) and using (4.14) yield:

0sR(0)0ro + ( (1) >3t<P+5tW: (asP(U)AYU— 3ssp(0)|VY‘7|2) ( ' >

= -1
chz ) . (4.15)
—(=A A .
o y<p+<p)(1>+ W+G
The nonlinear term G is defined by
G=G1+G2+...4+ G5, (4.16)

where

G1 = A(R(0))Ay R(0) + A(R(0), w)(w)(Ar) + A(r)Aw,

G2 = 2B(R(9))(9: R(0), 8;w) + B(R(0))(8zw, dw) + B(R(0), w)(w))(9ur, dur),
3

o Gs=> B(r)(@m dr),

=2
G4 = C(z, R(0))(0,w) + C(z, R(0), w)(w)(dy7),
G5 = D(:E, R(J)’ w)(w)v

with the following notations:
0
ew=p()| 1 |+Wandr=R(o)+w,
chx
o A C™(B(0,1/2) x B(0,1/2); L(IR*; M>(IR))):
1
Au,v) = / A'(u + sv)ds,
0
e BeC™(B(0,1/2) x B(0,1/2); L(IR*; Ly(IR?; IR?))):

1
B(u,v)z/ B'(u + sv)ds,
0



e C eC®(B(0,1/2) x B(0,1/2); L(IR*; M3(IR))):
~ 1
C(x,u,v) z/ 0rC(x,u+ sv)ds,
0
e D e C>®(B(0,1/2) x B(0,1/2); L(IR?; IR?)):
~ 1
Dla,u,0) = [ BeD(wu+ su)ds
0
(the tilda terms come from the fundamental theorem of the analysis applied between R(o) and

R(o) + w).

In order to separate the unknowns, we will use the projectors {! and I2.
1

We multiply (4.15) by 2chz and we integrate in the = variable. We obtain:
0

§(0)00 = §(o)Ayo + Ay — o+ K(0)|Vyo|* +11(G),

where

oy 1 1 sh(z — s)thz 1 1
9s) = 2 /Rasp(s)(x)chxdx 2 /,R [ ch?(x —s) + ch?(x — s)chx] chxdm7

and
K(s) = %/Rassp(s)(x)idx

B / thaz 2sh2(x—s)thx 5 sh(z — s) 1
 Jr| ch(z—s) ch3(z — s) ch3(z — s)chz | chz v

We remark that § and K are in C*°(IR; R) and that §(0) = 1 and K(0) = 0.
1
Then we write —— = 1 + 7(s) where v(s) = O(]s|) in a neighbourhood of zero. So we obtain that

9(s)
0o = AyU'FAyép—gD-i-Tl(U, ©, W), (417)
with .
K(o) 2 L
Ti(o,0, W) =~v(0)(Ayp — ) + —=|Vyo|* + =—1(G). 4.18
(0. W) = 2(0) Ay = 9) + S Vyof + =1'(@) (115)
0
Now we multiply (4.15) by 1 and we integrate in the x variable. We get:
2chx
ath: _AU+A¢_¢+T2(U7§0) W)7 (419)
where R
To(o,0, W) = (1 —g(0))Ayo + K(0)|Vyo|* + I*(G). (4.20)
0
Multiplying (4.17) by 0sR(o), (4.19) by < 1 ) and subtracting from (4.15) yield:
chx
W = AW + Ts(z, 0,0, W). (4.21)

10



The nonlinear term T3 reads
1
[Ty 0Pohp(o) + (Byi = ) (7~ 2u0(@) ) = T (i)
1 1
|Vy0|28ssp(0) + Ayo (— — 85;)(0)) — —Ts(op, W)

chx chx

T3(£E,O’,Q0, W) =G +

(4.22)
We have proved the following proposition:

Proposition 4.2. Let r € C1(0,T; H*(IR?; IR*)) such that for all t > 0, ||r(t, ez (mey < do. Let
(o,0,W) € CY0,T;%) given by proposition (4.1). Then r satisfies (2.6) if and only if (o, 0, W)
satisfies the system (4.17)-(4.19)-(4.21), and 0 is stable for (2.6) if and only if (0,0,0) is stable for
(4.17)-(4-19)-(4.21).

Remark 4.1. The key point of this step is that with {1 and 12, we can separate the variables o,
v and W in order to obtain the system (4.17)-(4.19)-(4.21) in which the linear parts are almost
independent. When we deal with the complete model for the demagnetizing field or with the travelling
waves solutions when a magnetic field is applied, this splitting is not possible and we are unable to
perform successful variational estimates.

5 Variational Estimates

We recall that we deal with the following system:

0o = AyU-I-Ay(p—QD-i-Tl(U, ©, W), (523)
at(p: _AU+A¢_¢+T2(U7§0) W)7 (524)

o —LWy — (L+1)W,
OW = ( LWy — (L + 1)y ) + T3(xz, 0,0, W). (5.25)

The unknown (o, ¢, W1, Ws) takes its values in 3 defined in (4.9). The nonlinear terms T3, T» and
T3 are defined in (4.18), (4.20) and (4.22) respectively.

Our stability result is similar to a global existence with small data theorem. By variational estimates
we will prove that if the initial data are small then the solution of (5.23)-(5.24)-(5.25) remains small.
When we multiply the equations by the unknowns or their space derivatives, the linear part yields
good sign absorbing terms. In order to be able to absorb the nonlinear terms, we have to control
them by the absorbing terms. We claim the following proposition:

Proposition 5.1. There exists K such that for all (0,0, W) € 2, if ||(0, 0, W)|lx2 < 71, then

1Tl 1 w2y + T2l 5 (mey + 1 T3] 5 (e
(5.26)
< K|(o,0,W)l22 (1AY Ol a1 (2 + 19l s mzy + W lasms)) -

In addition, we can split T1 — Ty on the form : Ty — Ty = Ta + Tb, where Ta and Tb satisfy the
following estimates: there exists K such that for all (o,0, W) € X, if ||(o, 0, W)|l12 < 71, then

~ 2
1Tallor(mey < K (HVYUHH2(1R2) + el s w2y + ||W||H3(R3)) ;

3 (5.27)
HTb”L%(,Rg) <K (||VYU||H2(1R2) + loll g3 (m2) + HWHH3(1R3)) llollLa(mey-
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For the convenience of the reader we postpone the proof of this proposition in the last section.

Before starting the variational estimates, we establish a Sobolev type inequality in 2d:

Lemma 5.1. There exists a constant K such that for all u € H2(1R2),
1 1
lallzagmey < Kllull2a o IVl o ooy

Proof: in the 2-dimensional case, from Sobolev imbeddings, W' (IR?) — L2(IR?) and there exists
K such that

vl L2(m2y < KIVyvll L1 (mey-

We apply the previous inequality to u? to conclude the proof of Lemma 5.1.

5.1 H! and H? estimates
Taking the inner product of (5.23) with —Ay o, we obtain

1d
% (||Vy0||2L2(1R2)) + 1Ay o7 ge) = —/IRZ(AYSD —¢)Ayo — /132 Ti(o, 0, W)Ayo.

Taking the inner product of (5.24) with —Ay p + ¢ we get:

1d
2dt (HvWHiz(W) + ”90”%2(11%2)) + 1Ay — ollF2 g2y = /Rz (Ayyp —¢)Ayo

_/ Ty(0,0,W)(Ay o — ).
RZ

Adding the previous equations, we obtain:

d
at (HVYUH%Q(W) + ||<P||2L2(R2) + HvY(pH%Q(BQ)) + {HAYUHi%W) + H‘Pﬂi%lm) + 2||VY§0H%2(B2)

N =

+||AY<)0H%2(B2):| = —/E%Q T1(0-7<pa W)AYU_/ TQ(Ua ¢7W)(AY(P_<)0)

IR2
(5.28)
Taking the inner product of (5.23) with A0 and the product of (5.24) with Ay (Ay ¢ — ) yield:

d
pr (HAYUH%%Rz) +1VyelZz me) + ||AYSD||2L2(JR2)) + [HVYAYJH%%JR?) +IVyollls(me)

N | =

+2[| Ay ol| 72 ey + ||VYAY<PH%2(R2)} = —/JR2 Vy (Ti(o, 0, W)) - VyAyo

= | Vy(Tz(o,0, W) - Vy (Ayp — ¢).
R
(5.29)

Estimates 5.26 in Proposition 5.1 together with (5.28) and (5.29) yield that while ||(a, @, W) |32 < 71,
then
d 2 A 2 2 2 A 2
i (||VYUHL2(R2) + |l YU”L?(]R?) + ||90||L2(JR?) + 2||VY50||L2(1R2) + | Y<PHL2(1R2))
|

N | =

+ |AYU||2L2(R2) + HVYAYU||2L2(R2) + ”SDHQL?(IRZ) + 3||VYQD||2L2(R2) + 3”Ay(p”%2(ﬂ%2) (530)
Vv Ayl < Kl W)l (18v @l + 1 3rs ey + W e ) -

12



LW,

Taking the inner product of (5.25) with < L(L + 1), > yields:

&|&

3 1
= (LW sy + I+ T Wl aggen)) + IL3WA IR sy + L3 (L + Ta)Wal By

N | =

1 3 1
< LA Tl oy (IL3Wallpacms) + 123 (L + T)Wa | o)) (5:31)

< Kl[(a, ¢, W) |22 (HAYQOH%F(RQ) + el s ey + ”W“?ﬁﬂ(ﬂf’)) :
while ||(o, 0, W)||32 < 71 (by Proposition 5.1).
5.2 [L*-estimates
Subtracting (5.23) to (5.24) yields

8t(0 - <)0) =2Ayo+Th (Ua 2 W) - TQ(Ua ¥, W)

Multiplying by o — ¢, we obtain:

1d 9 9
53717 = Pl + 29yl =2 [ Tyovvior [

2 (T1 — TQ)U — L2 (T1 — Tg)(p.

By Young inequality and with the splitting of 73 — T5 (see Proposition 5.1), we have
3 dt (|| <P||i2(ﬂ%2)) +2Vyolfemey < IVyollieme + IVy@lieme) + 1 Tallo e o]l L re)
+||Tb||L§(R2)||0||L4(R2) + (1Tl 22 (m2y + T2l L2(m2) 12l 2 (2 -
So, applying Estimate (5.27) (see Proposition 5.1), while ||(c, ¢, W)||22 < 71, we get
5 55 (o = @lagrs)) + Iy ol < Iyl
K o o) Vv ol m2me) + Il + 1W s gms))”
+K [[IVyoluzme) + lellmsmey + Wl as@ms)] 100174 me)

+K|[(o, 0, W)||3e2 [”AYJ”L2(R2) + el 22y + ||W||H2(R3)] llell L2 (m2)-
By Lemma 5.1,
loll7s(m2y < Klloll 2 [VyollL2 me)-

So, we obtain that while ||(c, o, W)||x2 < 71,

2 (I~ o)) + 1950 2agmey < Vv 0l
(5.32)

K00, W)y 197012 g0y + 1ol 3y + 1 1255 sy |-

5.3 End of the proof
We define A/ and D by

N = (lo = el3amn) + 19012y + 1870120y + I6l3am2) + 209yl
Ay 122y + IEW gy + I (L + T Wal 3y ) (8
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and

D(t) = [||VYU||2L2(JR2) + HAYU||2L2(R2) + HVYAYU||2L2(R2) + H‘P|\i2(ﬂ%2) + 2||VY<P||2L2(1R2)

3 1
+3[Av el Zamey + VY Ay oll7e(gey + I LEWill72 ey + 1 L7 (L + Id)WQH%2(R3)] (t).
Adding up (5.30), (5.31) and (5.32), we obtain that
5~ T D) < Kll(0,0, W)z | IVy ol mey + 10l (m2) + ||W||i13(m,3)}

(the term ”VY(PHQL%JR?) in the right hand side of (5.32) vanishes with a part of the left hand side of
(5.30)).
As remarked in Proposition 3.2, on &, we have the equivalences of norms: HL3W1HL2(,R3) ~
W1l s (ms) and |L2 (L + Id)Wa|l2(msy ~ [[Wall s (ms)- So there exists a constant C; such that

D 2 C1 [IVyolideme) + 1913w + W@

In addition, ||o||L2(r2) < |0 — @llL2(m2) + |0l L2(m2), S0 again with Proposition 3.2, there exists Co
such that

1
& 1@ @ Wl < N(®) < Call(@, 0, W)lee-

Hence while ||(o, ¢, W)||%2 < 71, we have

L 19y ol + iy + W | (Cr— KGN @) 0. (5.39)

5 dt YO |l g2(R2) Pl Hs(R?) H3(R3) 1 2 = U .
Let us introduce 1y = min {%, chl’ } If N(0) < no, then with (5.33), NV(¢) remains smaller than

2 2
;—é, that is A/(¢) decreases and remains smaller than 7, so that ||(o, ¢, W)|32 remains smaller
2

than «;. So we are always in the validity domain of our estimates.

Therefore we have proved the stability of (0,0,0) for (4.17)-(4.19)-(4.21). This concludes the proof
of Theorem 1.1 using Propositions 2.1 and 4.2.

6 Proof of Proposition 5.1

We recall that from Proposition 4.1, for r € H? (]R3) in a neighbourhood of 0, we can write
0
r(z,y,2) = R(o(y, 2))(z) + ¢(y, 2) . +W(z,y,2),
Cllx
with (o, @, W) € ¥, and there exists K independant of r such that for k = 2 or 3,

1
@ e W)l < lirllae ey < Kll(o, 0, W)l

(see (4.9), (4.10) and (4.11) for the notations).

We introduce 71 > 0 such that if ||(o, 0, W)||lx2 < 71, then ||r]|re < do, so that we are in the
framework of Proposition 4.2.

To start with, we recall Gagliardo-Nirenberg type inequalities.

Lemma 6.1. There exists a constant K such that for all u € H? (IRQ),

”quH%%(R?) < K|lullpo(mr2y |AyullLomey for p=1,2,4.
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Proof. For i € {2,3} and for p = 1,2, 4, we have:

/ @ = [ ou@u®
IR? IR?

= —(2p — 1)/ u&;iu(&u)zp_Q
R2

IN

2p—2
Kl e ey sl o ey 050l 2

which concludes the proof of Lemma 6.1.

6.1 Proof of Estimate (5.26)
In the following proposition, we estimate the nonlinear term G defined in (4.16) (we recall that this

term appears in (4.15)).

Proposition 6.1. There exists K such that for all (0,0, W) € 2, if ||(0, 0, W)|l2 < 71, then

Gl L2(ms) + IVGllL2(msy < Kl(0,0,W)llsee (|1AY 1 (m2) + 1l iz (mz) + IW | 52 (ms)) -

First we establish preliminary estimates.

Lemma 6.2. There exists K such that for all (o,0, W) € &, if |(0, 0, W)|n2 <1, then

[R(0)||Loe(mey + IVR(O) || pacmey + VO R(0) || Lagmzy < Kl(0, 0, W)l xe2,
and
[Ay R(0)|[2(re) + |AY R(0) | a(mey + [[VAY R(0)|| 2 ()
<K (|Ayollmmey + el msmey + Wl gsms)) -
Proof. We recall that there exists K such that for s in the neighbourhood of 0, we have

o [R(3)(@)| + 10, R(3)(@)| + 0ra R(s) ()] < KL

cha’

o 10.R(s)()| +10:0.(5)] < -
o 10, R(5) @) + 10,00 R(5)(@)] <

K
o [OsssR(s)(2)] < chaz

On one hand, the first claimed estimate is a straightforward consequence of the previous remarks
and the Sobolev embeddings of H2(IR?) into L>(IR?) and W14(IR?).

On the other hand,
Ay (R(0)) = 0,R(0)Ay o + 9ssR(0)|Vyal?,

SO
1
Ay (R@)] < K(|Ayo] +[Tyaf) -

With Lemma 1,
1Ay R(0)||r2(m3) < K||Ay ol r2m2)-

In addition,
1Ay R(o)[Lagms) < Kl Ay ol psme) + K[IVyollLs pe)
< KHAYJHL‘l(lR?) by Lemma 6.].,

< K|Vyol| g1 (r2) by Sobolev embedding.
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To conclude, we have

0:Ay R(0) = 0,0sR(0)Ay o + 0,055 R(0)|Vy %,

so the estimate on 9, Ay R(0) is straightforward.
Concerning the derivatives in y and z, we have

VyAyR(o) = 0sR(0)(Vyo)Ayo + dsR(0)VyAyo + 8SSSR(0)(Vy0)|Vy0|2

+20ssR(0)V30 - Vyo,
S0

IVyAy R(o)|l2(msy £ K|Vyol|lpame) |Ayollparey + KIVy Ay ol p2 gz + K||VYU||%6(R2)

+K||ViollLam)IVy ol acre)

IN

K (||V%/U||L2(1R2) + ||V:13/U||L2(R2))

< HVYJ||H1(R2)'
This concludes the proof of Lemma 6.2.

We recall that we denote by w the quantity

0
w(t’x7y7 Z) = (p(t’x7y7 Z) < L ) + W(t’x7y7 Z)'

chzx

Lemma 6.3. There exists a constant K such that
0|l oo (msy + Wl 23y + [Vl Lamsy < Kl|(0, 0, W)l32,

and

]l g2(msy + | Awl| sy + (VAW L2(msy < K (1A | w2y + 19l s w2y + W as (ms)) -
Proof. This lemma is a direct consequence of the Sobolev inequalities.
Proof of Proposition 6.1. We estimate each term of G separately (see (4.16)).

o We recall that

G1 = A(R(0))Ay R(0) 4+ A(R(0), w)(w)(dpe R(0)) + A(R(0, w) (w) Ay R(c) + A(R(c) 4+ w) Aw.

N | =

In addition from proposition 2.2, there exists K such that for |{]| <
[A(Q)] < K¢, [A"(9)] < K,
A(u,v) < K(Ju| + |[v]) and |8, A(u, v)| + [0y A(u,v)| < K.
Therefore
|G1| < K|R(0)||Ay R(0)| + Kwl|02: R(0)| + K|w||Ay R(0)| + (|R(0)] + [w])| Awl,
so that

Gl 2mey < K (1R(0) | e oy + Wl poe (o)) (I1AY R(0) + | Aw]l 2 ()

K [0p2 R(0) | oo () | 0]| L2(r5)

IN

K|\(o, 0, W)lwe (I1AY |5 (m2) + ol 22y + 1W 2 (ms)) »
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from Lemma 6.2 and Lemma 6.3.
Concerning the gradient we have
IVG1| < K|VR(0)[|[Ay R(0)| + K|R(0)[[VAy R(0)| + K ([VR(0)| + [Vw]) [w][0ze R(0)]
+K[Vwl|0z: R(0)| + K (IVR(0)| + [Vw|) [w]||Ay R(0)]
+K[Vul||Ay R(o)| + ([VR(0)| + [Vw]) |Aw| + K (|R(0)] + |w]) [V Aw].
Thus
||VG1||L2(1R3) < K||VR(J)||L4(R3)||AYR(J)”L4(R3) + K||R(U)||Lm(ﬂ%3)||VAYR(U)||L2(1R3)
+K (||VR(U)||L4(JR3) + ||Vw||L4(1R3)) ||w||L4(R3)||8mmR(0)”L°°(R3)
+K (V| 2 (g3 1022 B(0)[ oo (m2)
+K (||VR(U)||L4(JR3) + ||Vw||L4(1R3)) |0l oo (m3) | Ay R(0) || L4 (3
+K||Vw| pa(msy Ay R(0) || La(rs)
+ (||VR(U)||L4(JR3) + ||Vw||L4(1R3)) | Awl| ()
+K ([|R(0)|| oo (ms) + 1wl Lo (ms)) VAW 23
< Kl[(o,0, W)l (||AY||H1(JR2) + Il g3 (m2) + ||W||H3(1R3)) )
using Lemmas 6.2 and 6.3.
We have
G2 = 2B(R(0))(0:R(0),0sw) + B(R(0)) (0w, dyw) + B(R(0, w)(w)(9z R(0), 8: R(v))

+2B(R(0, w)(w)(8; R(0), O,w) + B(R(o, w)(w)(8pw, dpw).
Furthermore, we recall that from Proposition 2.2, there exists K such that for |£] < % one has
|B(&)| < K¢, |B'(§)] < K,
and for |u| <1/2 and |v| < 1/2,
|B(u,v)| + [0uB(u,v)| + 0, B(u,v)| < K.

A straightforward calculation, Lemma 6.2 and Lemma 6.3 yield the expected estimates on Gs
and VGa.

The term Gj is given by
3 3
Gs = B(r)(0:R(0),0.R(0))|Vo|* + 2> B(r)(9:R(0), dw)d;o + Y _ B(r)(dyw, diw).
i=2 =2

Using that |B(§)| < K[¢| and that |B'(§)| < K for £ € B(0,1/2), since, by Lemma 6.1,
IVyollLamey < Kol pem2) | Ay ol L2(r2), we obtain the claimed estimate on G3.

To estimate G4, we remark that

Gy = Oz, R(0))(9,w) + C(x, R(0), w)(w)(8: R(0)) + C(x, R(0), w)(w)(dsw),
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and we recall that for [£] < 1/2,

K
O, ) + 1.0 8) < e,

and
K
0, )] + 10:0:C, ) + |6cCla,6)] < 7 —
so that
K

|C(z,u,v)| + 0,C(z,u,v)| + |0,C(z,u,v)| < e
chx
The expected estimate of G4 is then a straightforward consequence of these remarks.

e The last term G5 is estimated with the same kind of arguments, using that
|D(a, u,v)| + 0, D, u,0)| < K(Jul + [v]),

and that ~ ~
|OuD(z,u,v)| + |0y D(x, u,v)| < K

for uw and v in B(0,1/2).

With these estimates, we conclude the proof of Proposition 6.1.

Now we conclude the proof of Estimate (5.26): we remark that for s € IN, there exists C' such that
if w € H*(IR?; IR®), then I'(u) € H*(IR?*; IR) and
18 ()| 1o 2y < Cllull e (ms)-
This estimate together with Proposition 6.1 yield the expected estimates on 77 and T». By difference
we obtain the claimed result on T3.
6.2 Splitting of 77 — T
We aim to split 77 — T3 on the form : Ty — Th = T, + Tb, where T}, and T}, satisfy the following
estimates: there exists K such that for all (o, ¢, W) € X, if ||(0, o, W)|ln2 < 71, then
~ 2
1TallL(m2y < K (||VYUHH2(1R2) + el as(m2y + HWHH3(R3))
and

HTb”L%(Bg) <K (||VYU||H2(1R2) + el ms(m2y + ||W||H3(R3)) llollLa(me)-

The method is the following: each term of T7 — T3 is at least quadratic. Either it contains a product
of two absorbing components (that is Vyo, Ayo, or ¢ , W and their derivatives), and we put this
term in 7}, or it contains o multiplicated by an absorbing component, and we put it in T}, (the terms
quadratic in o are removed by using (4.14) in Section 4). Let us precise this splitting.

We recall that

N Ayo—o) B G e L
Tl(aa P, W) _’7( )(AYQO 90)"" g(o_) |VY | +§(0’)l (G)v

Ty(o,0,W) = (1 — §(0))Ayo + K(0)[Vyo|* + 1*(G),
where v(s) = O(s), §(s) = 1+ O(s) and K(s) = O(s).
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We denote by

~ K(0))|Vyal?,

Ty =v(0)(Ayp — ¢) — (1 - §(0))Ayo.
On one hand we have
~ 2
T2l ey < Kllolle<IVyolZzmey < K (IVyollgzme) + [l msmey + W e @ms))” -

On the other hand, y
Ty | < Klo||Aye — | + K|o]|Ayal,
thus, .
HTbl”L%(le) < K||U||L4(1R2) (||AY<P - <P||L2(1R2) + ||AYU||L2(B2))

< K (||VYU||H2(1R2) + el ms(me2y + ||W||H3(1R3)) llollLa(me)-

Concerning the other two terms, we will split G on the form G = G, + G with the corresponding
estimates on G, and Gp. Let us describe this splitting for each term G; defining G (see (4.16)).

e Concerning G, we recall that
Ay R(0) = 0sR(0)Ayo + 05sR(0|Vyo|?,
and that
with .
Au,v) = / A (u+ sv)ds.
0
Then we set G = G¢ + G% with
G = A(R(0))(0ssR(0)|Vyol?) + A(R(a), w)(w)(9; R(0) Ay o)
+A(R(0),w)(w)(9ss R(0)|Vyo]?) + 2A(R(0), w)(w)(Aw),
Gt = A(R(0))(0sR(0)Ayo) + A(R(0))(Aw).
If (0, ¢, W) is bounded as it is assumed, we have:
K K
al « > 2 il
G5 < S IVyol + 4 lwllAyo] + Klul|Aw],
thus,
a 2
G Ly (msy < K (||VYU||H2(1R2) + loll g3 (m2) + ||W||H3(1R3)) .
On the other hand,
K
7 < —o|(]A A
€] < ol Avol + |Aul),

SO

|Gl1)||L§(]R3) <K (||VYU||H2(1R2) + loll g3 w2y + ||W||H3(R3)) ol 4 m2)-
e The splitting for G5 is the following: Gy = G% + GS where
G§ = B(R(0))(0:w,0,w) + 2B(R(0), w)(w)(92 R(0), Oxw) + B(R(0), w)(w)(Oaw, dyw)
G4 = 2B(R(0))(9:R(0), dyw) + B(R(0), w)(w)(d: R(0), 0, R()).
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K
Since |0, R(0)| < m|a|, we have

K
GY < ——[ol(|0w] + w),

hence

||Gg||L§(,Rs) < Kllwll g msyllollLar2y -

In addition,
G3| < K[d,w|* + K|wl|[d,wl,

SO
G311 (msy < K||w||§11(1R3)-

Since 0;r = 0sR(0)0;0 + 0w for i =2 or i = 3, we set G§ = G3 and Gg =0 and we have
1G5 21 rey < K(IVyollieime) + VWl 72 ms))-
We define the decomposition of G4 setting
Gi= C(z,R(0),w)(w)(@sw),

Gh = C(z,R(0))(0w) + C(a, R(0),w)(w)(8: R()).

K
. < K
Since |C(z, R(0))] < chx|a|’ we have

K
GE < ——[ol(|0sw] + w),

thus
||GZ||L§(,Rs) < Kllwll g msyllollLarm2y -

Furthermore,
1GS 1Lt ey < Kllwl sy

Lastly, for G5, from the Taylor expansion, we have
D(m, R(0),w)(w) = 0:D(z, R(0))(w) + 5(x,R(0),w)(w, w),

where

- 1
D(x,u,v) = %/ (1 —5)0¢eD(z,u + sv)ds.
0

We set .
G¢ = D(x, R(0), w)(w,w) and G2 = 9¢D(x, R(0))(w).

Then we have
b K b
1681 < ol 50 1G5 4 o) < K w2 oo

and
IG5l 1 (mey < K||w||%2(1R3)'
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Denoting G* = Y, G¢ and G® = 3", G?, we have obtained that G = G* + G* with

(2

" 2
1G L msy < K (IVyollgzmey + el gz m2y + 1W g2 ms)) (6.34)
and
IIGbIIL%(Rg) < K (IVyollgzme) + 1ol as ey + W as me)) 1ol me)- (6.35)
We set 1 1
T2 = —I1(G*) — 1*(G") and Ty = —1(G") — I*(G").
g(a)()() bg(a)()()

By properties of the operators ! and 12, (6.34) and (6.35) yield

~ 2
ITZ 11 (m2y < K (IVyollmzmey + lllmsmey + 1Wlaeme)) ™

and ~
T3

L4 (m2) <K (||VYU||H2(1R2) + el ms(mey + HWHH3(1R3)) llollLa(me)-

Defining T, and T}, respectively by
T, = T T2 and Ty = T 4 T2,
we have obtained the expected decomposition. This concludes the proof of Proposition 5.1.
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