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In this paper we prove the global in time existence for weak solutions to a Landau-Lifschitz system with magnetostriction arising from ferromagnetism theory. We describe also the ω-limit set of a solution.

Modelization

The applications of ferromagnetic materials are more and more numerous: hard-disks, recording heads, ferromagnetic paints, etc. A general description of these materials is given by Landau-Lifschitz in [START_REF] Landau | Electrodynamique des milieux continues, cours de physique théorique[END_REF] (see also [START_REF] Brown | Micromagnetics[END_REF], [START_REF] Halpern | Modélisation et simulation du comportement des matériaux ferromagétiques[END_REF] and [START_REF] Wynled | Ferromagnetism. Encyclopedia of Physics[END_REF]). The ferromagnetic materials are spontaneously magnetized. Their magnetization is described by a vector field m : R + × Ω -→ R 3 call the magnetic moment, where we denote by Ω the ferromagnetic domain. We assume that the material satisfies the saturation constraint:

|m| = 1. (1) 
The following Landau-Lifschitz equation describes the behaviour of m:

∂m ∂t = -m ∧ H e -m ∧ (m ∧ H e ). (2) 
In simplified models, the so called effective field H e is given by

H e = ∆m + h d (m),
where the demagnetizing field h d (m) is deduced from m by the static Maxwell equations together with the law of Faraday: div (h d (m) + m) = 0 in R 3 , curl h d (m) = 0 in R 3 .

In the previous system, m is the extension of m by zero outside Ω.

Existence results for weak solutions of (2) can be found in [START_REF] Visintin | On Landau Lifschitz equation for ferromagnetism[END_REF] or [START_REF] Carbou | Time average in micromagnetism[END_REF]. Existence of strong solutions is investigate in [START_REF] Carbou | Regular solutions for Landau-Lifschitz equation in a bounded domain[END_REF], [START_REF] Carbou | Regular solutions for Landau-Lifschitz equation in R 3[END_REF] or [START_REF] Carbou | On the ferromagnetism equations in the non static case[END_REF] and [START_REF] Carbou | Relaxed model for the hysteresis in micromagnetism[END_REF] for a more complete model.

In this paper, we investigate the coupling of magnetic and mechanical effects by studying the complete Landau-Lifschitz equation with magnetostriction. In the following two subsections, we give a complete description of the model. Our main results are stated in subsection 1.3. Roughly speaking, we establish a global existence results for the weak solutions of the Landau-Lifschitz equation with magnetostriction, are we describe the ω-limit set of a trajectory. 1

Landau-Lifschitz equation with magnetostriction

In the physical litterature (see [START_REF] Landau | Electrodynamique des milieux continues, cours de physique théorique[END_REF]) or in numerical studies (see [START_REF] Banas | Adaptative techniques for Landau-Lifschitz-Gilbert equation with magnetostriction[END_REF]), the model for a ferromagnetic body with magnetostriction is the following. The magnetic moment satisfies the Landau-Lifschitz equation:

                     ∂m ∂t = -m ∧ H ef f -m ∧ (m ∧ H ef f ) on R + × Ω,
with H ef f = ∆m + h d (m) + Ψ(m) + (λ m : σ)m, m(t = 0) = m 0 in Ω,

∂ n m = 0 on R + × ∂Ω, (3) 
where

• the initial data m 0 is supposed to be given in H 1 (Ω; S 2 ),

• h d (m) is the demagnetizing field,

• Ψ is an anisotropic term. This term is the differential of a non negative quadratic form Φ : R 3 -→ R.

Consequently it is a linear term,

• the magnetostriction field h m links the magnetic moment m with the stress tensor σ. It's given by

h m = (λ m : σ)m,
where λ m is a symmetric non negative 4-tensor and σ is the stress tensor. It is a 2-tensor (see below)

Remark 1 The usual notations and definitions about tensor calculus are recalled in Subsection 1.2.1.

In order to take into account the magnetostriction, the Landau-Lifschitz equation is coupled with the following wave equation:

                         ∂ 2 u ∂t 2 -div σ = 0 on R + × Ω, u(t = 0) = u 0 in Ω, ∂u ∂t (t = 0) = u 1 in Ω, u(t, x) = 0 on R + × ∂Ω, (4) 
where

• the stress tensor σ satisfies σ = λ e : ε e , where λ e is a symmetric positive 4-tensor,

• the tensor ε e is obtained from the deformation tensor ε(u) and the magnetic tensor ε m by

ε(u) = ε e + ε m , • the deformation tensor ε(u) is defined by ε(u) ij = 1 2 ( ∂u i ∂x j + ∂u j ∂x i ) • ε m = λ m : m ⊗ m, that is ε m ij = ijkl λ m ijkl m k m l ,
The initial data u 0 is supposed to be in H 1 0 (Ω; R 3 ) and u 1 is supposed to be in L 2 (Ω; R 3 ).

We consider the Laudau-Lisfschitz-Gilbert form for the Landau-Lifschitz part of the system. In addition, we eliminate the variables σ, ε m and ε e so we deal with the following system coupling the Landau Lifschitz equation:

     ∂m ∂t -m ∧ ∂m ∂t = -2m ∧ H ef f on R + × Ω, H ef f = ∆m + h d (m) + Ψ(m) + (λ m : (λ e : ε(u)))m -(λ m : (λ e : (λ m : m ⊗ m)))m, (5) 
together with the wave equation:

∂ 2 u ∂t 2 -div (λ e : ε(u)) = -div (λ e : (λ m : m ⊗ m)) on R + × Ω, (6) 
with the initial and boundary conditions:

                             m(t = 0) = m 0 in Ω, u(t = 0) = u 0 in Ω, ∂u ∂t (t = 0) = u 1 in Ω, ∂ n m = 0 on R + × ∂Ω, u(t, x) = 0 on R + × ∂Ω. (7) 
Remark 2 For regular enough solutions, the Landau-Lifschitz equation ( 3) is equivalent to tho Landau-Lifschitz-Gilbert equation ( 5). This last formulation is more convenient to write a weak formulation and to establish a global existence theorem.

Structural properties

Tensor calculus

Let us recall notations and definitions about tensors:

• let λ be a 4-tensor λ = (λ ijkl ). We say that λ is symmetric if

λ ijkl = λ jikl = λ ijlk = λ klij .
• We say that a symmetric 4-tensor is positive if there exists a constant λ * such that:

∀ξ ij , ijkl λ ijkl ξ ij ξ kl ≥ λ * ij (ξ ij ) 2
• If λ is a 4-tensor and ν is a two tensor, we denote by λ : ν the 2-tensor given by

(λ : ν) ij = kl λ ijkl ν kl .
• If µ and ν are two 2-tensors, then µ : ν is a scalar given by

µ : ν = ij µ ij ν ij . • for (ξ, ζ) ∈ R 3 × R 3 , then ξ ⊗ ζ is the 2-tensor which entries are given by (ξ ⊗ ξ) ij = ξ i ζ j .
We state now useful lemmas concerning tensors.

Lemma 1 Let λ be a symmetric 4-tensor, let A be a symmetric two tensor, and let ξ 1 and ξ 2 in R 3 . We have

(λ : A)ξ 1 • ξ 2 = A : (λ : ξ 1 ⊗ ξ 2 ).
Proof: we prove this lemma by straightforward calculations.

We define Q by

Q(m) = (λ e : (λ m : m ⊗ m))) : (λ m : m ⊗ m). Lemma 2 The map Q : R 3 -→ R is C ∞ and ∇Q (m) = 4(λ m : (λ e : (λ m : m ⊗ m)))m.
Proof: this lemma is a simple consequence of Lemma 1

Lemma 3 Let λ be a symmetric positive 4-tensor, let A and B be two 2-tensors. Then

(λ : A) : B ≤ ((λ : A) : A) 1 2 ((λ : B) : B) 1 2 
.

Proof: we consider χ : {1, 2, 3} 2 -→ {1, 2, . . . , 9} a bijective map. Let Λ ∈ M 9 (R) the matrix of entries Λ χ(i,j)χ(k,l) = λ ijkl . In the same way, we consider Ā ∈ R 9 such that Āχ(i,j) = A ij , and B ∈ R 9 such that Bχ(i,j) = B ij .

We have (λ :

A) : B = Λ Ā • B.
The matrix Λ is symmetric positive, by property of λ and we introduce Γ ∈ M 9 (R) the square root of Λ. We have:

(λ :

A) : B = Γ Ā • Γ B ≤ Γ Ā Γ B by Cauchy Schwartz inequality. Now Γ Ā 2 = Γ Ā • Γ Ā = Λ Ā • Ā = (λ : A) : A,
and in the same way Γ B 2 = (λ : B) : B, and the proof of Lemma 3 is complete.

Energy Formula

The calculations in this section are formal. They are valid for regular enough solutions.

First, taking the scalar product of ( 5) with m, we obtain that ∂m ∂t • m = 0, that is ∂ ∂t (|m| 2 ) = 0. Since the initial data satisfies |m 0 | = 1, then for all time, m satisfies the saturation constraint |m| = 1.

The proof of the existence of solutions for ( 5)-( 6)-( 7) is built on energy estimates which are the consequence of algebraic properties. Formally, for regular enough functions, the following calculations hold:

On one hand, we take the inner product of (5) by ∂m ∂t -2H ef f , so that we obtain that

Ω ∂m ∂t • ∂m ∂t -2H ef f = 0.
From the first three terms of the effective field, we have:

• by integrations by parts:

Ω ∆m • ∂m ∂t = - 1 2 d dt Ω |∇m| 2 ,
• since -h d is an orthogonal projector for the L 2 inner product,

Ω h d (m) • ∂m ∂t = - 1 2 d dt R 3 |h d (m)| 2 , • since Ψ = -∇Φ, Ω Ψ(m) • ∂m ∂t = - 1 2 d dt Ω Φ(m).
For the magnetostriction terms, we first remark that by symmetry of the 4-tensor λ m and by Lemma 2, we have 2

Ω (λ m : (λ e : (λ m : m ⊗ m)))m • ∂m ∂t = 1 2 d dt Ω Q(m)
where Q(m) is a non negative term of fourth order:

Q(m) = (λ e : (λ m : m ⊗ m))) : (λ m : m ⊗ m).
In addition, by Lemma 1, we have So, from [START_REF] Banas | Adaptative techniques for Landau-Lifschitz-Gilbert equation with magnetostriction[END_REF] we obtain that

Ω ∂m ∂t 2 + d dt Ω |∇m| 2 + Φ(m) + R 3 |h d (m)| 2 + 1 2 Ω Q(m) - Ω ε(u) : ∂ ∂t (λ e : (λ m : m ⊗ m)) = 0. ( 8 
)
On the other hand, we take the inner product of the second equation in (6) by ∂u ∂t .

Using that λ e is symmetric, and that u = 0 on ∂Ω, we obtain after integration by parts that:

- 

Ω div (λ e : ε(u)) • ∂u ∂t = 1 2 d dt Ω (λ e : ε(u)) : ε(u).
d dt Ω | ∂u ∂t | 2 + Ω (λ e : ε(u)) : ε(u) = Ω (λ e : (λ m : m ⊗ m)) : ∂ε(u) ∂t . (9) 
Adding up ( 8) and ( 9), we obtain the energy formula:

d dt E(t) + Ω | ∂m ∂t | 2 = 0, (10) 
with 

E(t) = Ω |∇m| 2 + |h d (m)| 2 + Φ(m) + 1 2 Ω (λ e : (λ m : m ⊗ m))) : (λ m : m ⊗ m) -2ε(u) : (λ e : (λ m : m ⊗ m)) + 1 2 Ω (λ e : ε(u)) : ε(u) + | ∂u ∂t | 2 . (11 
ε : (λ e : (λ m : m ⊗ m)) ≤ Q(m) 1 2 • ((λ e : ε) : ε) 1 2 .
On the contrary, the part of the energy coming from the magnetostriction terms is non coercive since it does not control the term ∇u 2 L 2 (Ω) if we simply apply Young inequality to balance the bad sign term.

Statement of the results

Definition 1 We say that (m, u) is a weak solution for ( 5)-( 6)-( 7) if

1. m ∈ L ∞ (R + ; H 1 (Ω; R 3 )) satisfies the saturation constraint |m(t, x)| = 1 for almost every (t, x) ∈ R + × Ω, 2. ∂m ∂t ∈ L 2 (R + ; L 2 (Ω; R 3 )), 3. m(0, •) = m 0 in the trace sense in H 1 2 (Ω), 4. u ∈ L ∞ (R + ; H 1 0 (Ω; R 3 )) and ∂u ∂t ∈ L ∞ (R + ; L 2 (R 3 ; R 3 )), 5. u(0, •) = u 0 in the trace sense in H 1 2 (Ω), 6. for all χ ∈ C ∞ c (R + ; H 1 (Ω; R 3 )) R + ×Ω ∂m ∂t -m ∧ ∂m ∂t χ(t, x)dt dx = 2 R + ×Ω 3 i=1 m ∧ ∂m ∂x i • ∂χ ∂x i -2 Ω (h d (m) + Ψ(m)) • χ -2 Ω (λ m : (λ e : ε(u)))m -(λ m : (λ e : (λ m : m ⊗ m)))m • χ, 7. for all χ ∈ C ∞ c (R + ; H 1 0 (Ω; R 3 )) R + ×Ω ∂u ∂t • ∂χ ∂t - R + ×Ω (λ e : ε(u)) : ε(χ) + Ω u 1 χ(0, x)dx = - R + ×Ω (λ e : (λ m : m ⊗ m)) : ε(χ),
8. for all t ≥ 0, we have the following energy inequality:

E(t) + t 0 Ω ∂m ∂t 2 ≤ E(0)
where E is defined by [START_REF] Carbou | Relaxed model for the hysteresis in micromagnetism[END_REF].

Remark 4 Since m ∈ L ∞ (0, T ; H 1 (Ω)) and ∂m ∂t ∈ L 2 (0, T ; L 2 (Ω)), then m ∈ C 0 (0, T ; H 1 2
(Ω)) (see [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF]) and m ∈ C 0 (0, T ; H 1 w (Ω)) (see [START_REF] Boyer | Eléments d'analyse pour l'étude de quelques modèles d'écoulements de fluides visqueux incompressibles[END_REF] Lemma II.5.9). So the trace of m at t = 0 exists in H 1 2 (Ω) for example. In the same way, u ∈ C 0 (0, T ; H

1 2 (Ω)). Moreover, u ∈ L ∞ (0, T ; H 1 0 (Ω) so div (λ e : ε(u)) is in L ∞ (0, T ; H -1
), and by the wave equation,

∂ 2 u ∂t 2 ∈ L ∞ (0, T ; H -1 (Ω)). So ∂u ∂t ∈ C 0 (0, T ; H -1 2 (Ω) ∩ C 0 (0, T ; L 2 w (Ω)).
Hence the trace of ∂u ∂t at t = 0 as a sense in H -1 2 (Ω).

Our first theorem is an existence result for global in time weak solutions of the system ( 5)-( 6)- [START_REF] Boust | 3D dynamic micromagnetic simulations of susceptibility spectra in soft ferromagnetic particles[END_REF].

Theorem 1 Let m 0 ∈ H 1 (Ω; S 2 ), let u 0 ∈ H 1 0 (Ω; R 3 ) and u 1 ∈ L 2 (Ω; R 3 ).
Then there exists a weak solution for ( 5)-( 6)- [START_REF] Boust | 3D dynamic micromagnetic simulations of susceptibility spectra in soft ferromagnetic particles[END_REF].

Remark 5

The formal calculations of the previous section are not allowed for weak solutions. Therefore, the saturation constraint and the energy inequality are obtained by construction. We remark that we only obtain an inequality energy (and not an equality as in the formal calculations). This is usual for the weak solutions of the Landau-Lifschitz equations (see [START_REF] Alouges | On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness[END_REF] and [START_REF] Carbou | Time average in micromagnetism[END_REF]).

Our second result describes the ω-limit set of a fixed solution fo ( 5)-( 6)- [START_REF] Boust | 3D dynamic micromagnetic simulations of susceptibility spectra in soft ferromagnetic particles[END_REF].

Definition 2 Let m be a weak solution of ( 5)-( 6)- [START_REF] Boust | 3D dynamic micromagnetic simulations of susceptibility spectra in soft ferromagnetic particles[END_REF] given by Theorem 1. Let m ∞ ∈ H 1 (Ω). We say that m ∞ is in the ω-limit set of m if there exists a sequence of times (t n ) n∈N such that t n tends to +∞ and m(t n ) tends weakly to m ∞ in H 1 (Ω) when n tends to +∞.

Theorem 2 Let m be a weak solution of ( 5)-( 6)- [START_REF] Boust | 3D dynamic micromagnetic simulations of susceptibility spectra in soft ferromagnetic particles[END_REF]. Its ω-limit set is non empty, and if m ∞ is in the ω-limit set of m, then m ∞ satisfies the saturation constraint |m ∞ | = 1 and satisfies, for all test function

ξ ∈ H 1 (Ω; R 3 ), - Ω 3 i=1 m ∞ ∧ ∂m ∞ ∂x i • ∂ξ ∂x i + Ω h d (m ∞ ) + ψ(m ∞ ) + (λ m : (λ e : ε(u ∞ )))m ∞ • ξ - Ω (λ m : (λ e : (λ m : m ∞ ⊗ m ∞ )))m ∞ • ξ = 0.
where u ∞ is deduced from m ∞ by:

   u ∞ ∈ H 1 0 (Ω), div (λ e : ε(u ∞ )) = div (λ e : (λ m : m ∞ ⊗ m ∞ )) in H -1 (Ω).
The paper is organised as follows. In the following subsection, we recall the Aubin-Simon compacteness lemma. Theorem 1 is proved in Sections 2 and 3. Theorem 2 is established in Section 4.

Our proof of Theorem 1 follows the method due to Alouges and Soyeur in [START_REF] Alouges | On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness[END_REF] and generalized in [START_REF] Carbou | Time average in micromagnetism[END_REF] for the system coupling the Landau-Lifschitz with the Maxwell equations. First we study a penalized system in which the saturation constraint is relaxed and we take the limit when the penalization constant tends to zero. The new difficulty here is that the energy coming from the magnetostriction is non coercive (see Remark 3). The lack of coercivity is balanced by coupling the magnetostriction part with the penalization term (see Section 2.3).

Concerning the description of the ω-limit set, the key tool is taking averages for m and u on time intervals [t na, t n + a], and performing the limit when n tends to +∞ in a first step and when a tends to +∞ in a second step. This method is used in [START_REF] Carbou | Time average in micromagnetism[END_REF] for a simpler model.

Remark 6

Ferromagnetism is a wide domain in Physics. In Mathematics, recent developments have been obtained from the numerical point of view (see [START_REF] Banas | A convergent implicit finite element discretization of the Maxwell-Landau-Lifshitz-Gilbert equation[END_REF], [START_REF] Boust | 3D dynamic micromagnetic simulations of susceptibility spectra in soft ferromagnetic particles[END_REF], [START_REF] Labbé | Fast computation for large magnetostatic systems adapted for micromagnetism[END_REF], [START_REF] Labbé | Microwave polarisability of ferrite particles with non-uniform magnetization[END_REF] for example). Asymptotic studies are done in [START_REF] Alouges | Néel and cross-tie wall energies for planar micromagnetic configurations[END_REF], [START_REF] Ammari | Asymptotic analysis of thin ferromagnetic films[END_REF], [START_REF] Carbou | Stability of static walls for a three-dimensional model of ferromagnetic material[END_REF], [START_REF] Desimone | Two-dimensional modelling of soft ferromagnetic films[END_REF] for example. In particular, the description of wall structures is a very important and challenging question (see [START_REF] Carbou | Stability of static walls for a three-dimensional model of ferromagnetic material[END_REF] and [START_REF] Carbou | Stability for static walls in ferromagnetic nanowires[END_REF] and the references therein). The interested reader can also read [START_REF] Ammari | Global existence and regularity of solutions to a system of nonlinear Maxwell equations[END_REF] for a related model of ferroelectric materials.

Compactness lemma

By applying the Aubin-Simon lemma (see [START_REF] Boyer | Eléments d'analyse pour l'étude de quelques modèles d'écoulements de fluides visqueux incompressibles[END_REF] Theorem II.5.16), we obtain:

Lemma 4 We define W by W = v ∈ L ∞ (0, T ; H 1 (Ω)), ∂v ∂t ∈ L 2 (0, T ; L 2 (Ω)) .
Then the injection of W in L ∞ (0, T ; L 4 (Ω)) is compact.

Penalized system

We consider for η > 0 the following penalized system:

                                                             ∂m η ∂t + m η ∧ ∂m η ∂t -2H η ef f + 1 η (|m η | 2 -1)m η = 0 on R + × Ω, H η ef f = ∆m η + h d (m η ) + Ψ(m η ) + (λ m : (λ e : ε(u η )))m η -(λ m : (λ e : (λ m : m η ⊗ m η )))m η ∂ 2 u η ∂t 2 -div (λ e : ε(u η )) = -div (λ e : (λ m : m η ⊗ m η )) on R + × Ω, m η (t = 0) = m 0 u η (t = 0) = u 0 ∂u η ∂t (t = 0) = u 1 ∂ n m η = 0 on R + × ∂Ω u η (t, x) = 0 on R + × ∂Ω (12) 
Claim : there exists a weak global in time solution for [START_REF] Carbou | Time average in micromagnetism[END_REF].

In this section, η > 0 is fixed.

First step: Galerkin approximation

For m, we use an Galerkin basis (e 1 , e 2 , . . .) of eigenvectors of -∆ with homogeneous Neumann conditions at the boundary.

   -∆e i = α i e i in Ω,
∂ n e i = 0 on ∂Ω.

We denote by V N =span(e 1 , . . . , e N ) and by P N the orthogonal projection map onto V N .

For u, we use the Galerkin basis (f 1 , f 2 , . . .) of eigenvectors of -div (λ e : ε) with homogeneous Dirichlet conditions at the boundary:

   -div (λ e : ε(f j )) = β j f j in Ω, f j = 0 on ∂Ω.
We denote by W N =span(f 1 , . . . , f N ) and by Π N the orthogonal projection map onto W N .

We consider for a fixed N the solution (m η N , u η N ) : R + t -→ V N × W N of the o.d.e. approximation:

                                             ∂m η N ∂t + P N (m η N ∧ ∂m η N ∂t ) -2P N (H N ef f ) + 1 η P N (|m η N | 2 -1)m η N = 0 on R + , H N ef f = ∆m η N + h d (m η N ) + Ψ(m η N ) + (λ m : (λ e : ε(u η N )))m η N -(λ m : (λ e : (λ m : m η N ⊗ m η N )))m η N , ∂ 2 u η N ∂t 2 -div (λ e : ε(u η N )) = -Π N div (λ e : (λ m : m η N ⊗ m η N )) on R + , m η N (t = 0) = P N (m 0 ), u η N (t = 0) = Π N (u 0 ), ∂u η N ∂t (t = 0) = Π N (u 1 ), (13) 
In order to apply the Cauchy-Lipschitz theorem for this system, we remark that the operator

G N (m N ) defined for m N ∈ V N by G N (m N ) : V N -→ V N w → w + P N (m N ∧ w)
is invertible. Indeed, for a fixed m N ∈ V N , the operator G N (m N ) is linear on the finite dimensional space V N . Its kernel is reduced to zero: if G N (m N )(w) = 0, then w = 0. Indeed, taking the inner product is

L 2 (Ω) with w ∈ V N , we obtain 0 = Ω G N (m N )(w) • w = Ω |w| 2 + Ω P N (m N ∧ w) • w = Ω |w| 2 + Ω (m N ∧ w) • w since P N is selfadjoint and since w ∈ V N = Ω |w| 2 
So, inverting this operator, the first equation can be written as

∂m η N ∂t = F (m η N , u η N ),
which is an ordinary differential equation. Then by the Cauchy-Lipschitz theorem, there exists a unique solution for (13) which maximal existence time is denoted by T N .

Energy estimate on the Galerkin approximation

On one hand, we take the inner product of the second equation in ( 13) by ∂u η N ∂t .

Using that λ e is symmetric, and that u = 0 on ∂Ω, we have:

- Ω div (λ e : ε(u η N )) • ∂u η N ∂t = 1 2 d dt Ω (λ e : ε(u η N )) : ε(u η N ).
Furthermore, as

∂u η N ∂t belongs to W N , one obtains Ω -Π N div (λ e : (λ m : m η N ⊗ m η N )) • ∂u η N ∂t = Ω -div (λ e : (λ m : m η N ⊗ m η N )) • ∂u η N ∂t = Ω λ e : (λ m : m η N ⊗ m η N ) :
∂ε(u η N ) ∂t by symmetry of λ e .

Hence we obtain that 1 2

d dt Ω | ∂u η N ∂t | 2 + Ω (λ e : ε(u η N )) : ε(u η N ) = Ω λ e : (λ m : m η N ⊗ m η N ) : ∂ε(u η N ) ∂t . (14) 
On the other hand we take the inner product of the first equation in ( 13) by

∂m η N ∂t . Since ∂m η N ∂t is in
V N (so that we can remove P N ) we get

Ω ∂m η N ∂t 2 + d dt Ω |∇m η N | 2 + Φ(m η N ) + 1 2η (|m η N | 2 -1) 2 + d dt R 3 |h d (m η N )| 2 -2 Ω λ m : (λ e : ε(u η N )) m η N • ∂m η N ∂t + 2 Ω λ m : (λ e : (λ m : m η N ⊗ m η N )) m η N • ∂m η N ∂t = 0.
As in the formal case, we remark that by symmetry of the 4-tensor λ m , we have 2 Ω (λ m : (λ e : (λ m :

m η N ⊗ m η N )))m η N • ∂m η N ∂t = 1 2 d dt Ω Q(m η N ) with Q(m) = (λ e : (λ m : m ⊗ m))) : (λ m : m ⊗ m).
In addition, by Lemma 1, we have The previous three formulae together with [START_REF] Carbou | Regular solutions for Landau-Lifschitz equation in R 3[END_REF] yield

Ω ∂m η N ∂t 2 + d dt E η N + 1 2η d dt Ω (|m η N | 2 -1) 2 = 0 where E η N (t) = Ω |∇m η N | 2 + Φ(m η N ) + R 3 |h d (m η N )| 2 + 1 2 Ω Q(m η N ) -2ε(u η N ) : (λ e : (λ m : m η N ⊗ m η N )) + ∂u η N ∂t 2 + (λ e : ε(u η N )) : ε(u η N ) .
We integrate this inequality with respect to time and we obtain: for all T < T N ,

E η N (T ) + 1 2η Ω (|m η N | 2 -1) 2 + T 0 Ω ∂m η N ∂t 2 = E η N (0) + 1 2η Ω (|P N (m 0 )| 2 -1) 2 . ( 15 
)
By Lemma 3, we obtain that the energy is positive, but if we use a simple Young inequality to absorb the bad sign term with the good sign terms given by the lemma, then we loose the control for the L 2 norm of ∇u η N . To avoid this problem, we will absorb at this step the bad sign term using a part of the penalization term as it is explained below. With Lemma 3, there exists C such that ε(u η N ) : (λ e : (λ m :

m η N ⊗ m η N )) ≤ 1 4 (λ e : ε(u η N )) : ε(u η N ) + C m η N 4 L 4 .
Inequality [START_REF] Carbou | On the ferromagnetism equations in the non static case[END_REF] together with the claim give a uniform bound on m η N and u η N since

E η N + 1 2η Ω (|m η N | 2 -1) 2 ≥ ∇m η N 2 L 2 (Ω) + 1 2 ∂u η N ∂t 2 L 2 (Ω) + 1 4 Ω (λ e : ε(u η N )) : ε(u η N ) + 1 2 Ω Q(m η N ) + 1 2η Ω (|m η N | 2 -1) 2 -C m η N 4 L 4 (Ω) . Now we remark that (|ξ| 2 -1) 2 ≥ 1 2 |ξ| 4 -1 so C m η N 4 L 4 (Ω) ≤ 2C Ω (|m η N | 2 -1) 2 + 2Cmeas(Ω),
and if η is so that 2C ≤ 1 4η , we obtain that

1 4η Ω (|m η N | 2 -1) 2 -C m η N 4 L 4 ≥ -2Cmeas(Ω).
So if η is small enough, we obtain that

E η N + 1 2η Ω (|m η N | 2 -1) 2 ≥ ∇m η N 2 L 2 (Ω) + 1 2 ∂u η N ∂t 2 L 2 (Ω) + 1 4 Ω (λ e : ε(u η N )) : ε(u η N ) + 1 2 Ω Q(m η N ) + 1 4η Ω (|m η N | 2 -1) 2 -2Cmeas(Ω). ( 16 
)
Remark 7 The previous trick to absorb the bad sign term will be re-used in Part 3.

Limit in the Galerkin Approximation

From ( 16) together with the energy estimate [START_REF] Carbou | On the ferromagnetism equations in the non static case[END_REF], we obtain that for η small enough

∇m η N 2 L 2 (Ω) + 1 2 ∂u η N ∂t 2 L 2 (Ω) + 1 4 Ω (λ e : ε(u η N )) : ε(u η N ) + 1 2 Ω Q(m η N ) + 1 4η Ω (|m η N | 2 -1) 2 ≤ 2Cmeas(Ω). + E η N (0) + 1 2η Ω (|P N (m 0 )| 2 -1) 2 . ( 17 
)
Claim: the right hand side of ( 17) is bounded uniformly with respect to N .

Proof of the claim: using Lemma 3, using that |Q(m)| ≤ K|m| 4 and the Sobolev embedding H 1 (Ω) ⊂ L 4 (Ω), we get:

E η N (0) ≤ C P N (m 0 ) 2 H 1 (Ω) + Π N (u 1 ) 2 L 2 (Ω) + C Ω λ e : E(Π N (u 0 )) : ε(Π N (u 0 )).
Since P N and Π N are orthogonal projection maps in L 2 , we have:

P N (m 0 ) L 2 (Ω) ≤ m 0 L 2 (Ω) and Π N (u 1 ) L 2 (Ω) ≤ u 1 L 2 (Ω) .
Furthermore,

∇P N (m 0 ) 2 L 2 (Ω) = - Ω ∆P N (m 0 ) • P N (m 0 ) = - Ω ∆P N (m 0 ) • m 0 since V N is stable by P N = Ω ∇P N (m 0 ) • ∇m 0 ≤ ∇P N (m 0 ) L 2 (Ω) ∇m 0 L 2 (Ω) . So, ∇P N (m 0 ) L 2 (Ω) ≤ ∇m 0 L 2 (Ω) . (18) 
In the same way,

Ω λ e : ε(Π N (u 0 )) : ε(Π N (u 0 )) = - Ω div λ e : ε(Π N (u 0 )) Π N (u 0 ) = - Ω div λ e : ε(Π N (u 0 )) u 0 since W N is stable by div (λ e : ε) = Ω λ e : ε(Π N (u 0 )) ε(u 0 ) ≤ Ω λ e : ε(Π N (u 0 )) ε(Π N (u 0 )) 1 2 Ω λ e : ε(u 0 ) ε(u 0 ) 1 2 from Lemma 3. So, Ω λ e : ε(Π N (u 0 )) ε(Π N (u 0 )) ≤ Ω λ e : ε(u 0 ) ε(u 0 ). ( 19 
)
We remark now that

1 2η Ω (|P N (m 0 )| 2 -1) 2 ≤ 1 η 1 + P N (m 0 ) 4 L 4 (Ω) ≤ C(1 + m 0 4 H 1 (Ω)
) by Sobolev embeddings. [START_REF] Labbé | Microwave polarisability of ferrite particles with non-uniform magnetization[END_REF] Inequalities ( 18), ( 19) and [START_REF] Labbé | Microwave polarisability of ferrite particles with non-uniform magnetization[END_REF] yield that the right hand side of ( 17) is bounded uniformly with respect to N and the proof of the claim is complete (we remark that at this step, the bound for the right hand side term depends on η).

Therefore we obtain for η small enough an uniform bound for the following quantities:

• ∂m η N ∂t in L 2 (0, T N ; L 2 (Ω)), • ∇m η N in L ∞ (0, T N ; L 2 (Ω)), • m η N in L ∞ (0, T N ; L 4 (Ω)), • ∇u η N in L ∞ (0, T N ; L 2 (Ω)), • ε(u η N ) in L ∞ (0, T N ; L 2 (Ω)).
This proves first that T N = +∞. In addition, since the bounds do not depend on N , we can assume by a diagonal extraction process that for all T , we have the following weak limits:

• m η N ⇀ m η in L ∞ (0, T ; H 1 (Ω)) weak *, • m η N -→ m η in L ∞ (0, T ; L 4 (Ω)) strong (with Lemma 4), • ∂m η N ∂t ⇀ ∂m η ∂t in L 2 (0, T ; L 2 (Ω)) weak, • u η N ⇀ u η in L ∞ (0, T ; H 1 (Ω)) weak *, • ∂u η N ∂t ⇀ ∂m η ∂t in L ∞ (0, T ; L 2 (Ω)) weak *.
So we can take the limit on the variational formulation of the Galerkin approximation [START_REF] Carbou | Regular solutions for Landau-Lifschitz equation in a bounded domain[END_REF] and in the energy formula [START_REF] Carbou | On the ferromagnetism equations in the non static case[END_REF] by convexity arguments.

Therefore we obtain for a fixed η small enough that there exists (m η , u η ) weak solution of ( 12) and satisfying the energy formula for all T :

E η (T ) + 1 2η Ω (|m η | 2 -1) 2 + T 0 Ω ∂m η ∂t 2 = E η (0). (21) 
where

E η (t) = Ω |∇m η | 2 + Φ(m η ) + 1 2 Q(m η ) -ε(u η ) : (λ e : (λ m : m η ⊗ m η )) + R 3 |h d (m η )| 2 + 1 2 Ω ∂u η ∂t 2 + (λ e : ε(u η )) : ε(u η ) .
Remark 8 Since the initial data m 0 satisfies |m 0 | = 1 a.e., the right hand side of the energy estimate does not depend on η since the penalization term vanishes at t = 0. This is a crucial point to obtain uniform bound when η tends to zero in the following section.

3 Weak solutions for Landau-Lifschitz equation with magnetostriction

We take the limit in the penalized system when η tends to zero. From the energy estimate (21) and from Remark 8, using the same arguments as in the previous section, we obtain that the following quantities are uniformly bounded with respect to η:

• ∂m η ∂t is bounded in L 2 (R + ; L 2 (Ω)), • ∇m η is bounded in L ∞ (R + ; L 2 (Ω)), • m η is bounded in L ∞ (R + ; L 4 (Ω)), • ∇u η is bounded in L ∞ (R + ; L 2 (Ω)), • ε(u η ) is bounded in L ∞ (R + ; L 2 (Ω)).
With this bound, using the diagonal extraction process, we obtain that there exists (m, u) such that for all T ,

• m η ⇀ m in L ∞ (0, T ; H 1 (Ω)) weak *, • m η -→ m in L ∞ (0, T ; L 4 (Ω)) strong (with Lemma 4), • ∂m η ∂t ⇀ ∂m ∂t in L 2 (0, T ; L 2 (Ω)) weak, • u η ⇀ u in L ∞ (0, T ; H 1 (Ω)) weak *, • ∂u η ∂t ⇀ ∂m ∂t in L ∞ (0, T ; L 2 (Ω)) weak *.
Using [START_REF] Landau | Electrodynamique des milieux continues, cours de physique théorique[END_REF],

Ω (|m η | 2 -1)
2 tends to zero and since m η -→ m in L ∞ (0, T ; L 4 (Ω)) strong, we obtain that |m| = 1 a.e.

In addition, using convexity or strong convergence arguments, taking the limit when η tends to zero in [START_REF] Landau | Electrodynamique des milieux continues, cours de physique théorique[END_REF] that for all T ,

E(T ) + T 0 Ω | ∂m ∂t | 2 ≤ E(0). (22) 
where

E(t) = Ω |∇m| 2 + Φ(m) + 1 2 Q(m) -ε(u) : (λ e : (λ m : m ⊗ m)) + 1 2 (λ e : ε(u)) : ε(u) + R 3 |h d (m)| 2 + 1 2 Ω ∂u ∂t 2 .
In order to obtain that the weak limit m satisfies the Landau-Lifschitz equation, as in [START_REF] Alouges | On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness[END_REF] and in [START_REF] Carbou | Time average in micromagnetism[END_REF], we consider χ ∈ C ∞ c (R + ; C ∞ (Ω)) compactely supported in [0, T [, and we take the test function (t, x) → m η (t, x) ∧ χ(t, x) in the weak formulation for the first equation of [START_REF] Carbou | Time average in micromagnetism[END_REF].

We obtain then that: (23) From algebraic calculations, we have:

T 0 Ω ∂m η ∂t + m η ∧ ∂m η ∂t • m η ∧ χ = -2 T 0 Ω 3 i=1 ∂m η ∂x i • ∂ x i m η ∧ χ
T 0 Ω ∂m η ∂t + m η ∧ ∂m η ∂t • m η ∧ χ = T 0 Ω ∂m η ∂t -m η ∧ ∂m η ∂t • χ + T 0 Ω |m η | 2 -1 ∂m η ∂t • χ - T 0 Ω (m η • ∂m η ∂t )(m η • χ).
Since m η -→ m in L ∞ (0, T ; L 4 (Ω)) strong and ∂m η ∂t ⇀ ∂m ∂t in L 2 (0, T ; L 2 (Ω)) weak, we obtain that

T 0 Ω ∂m η ∂t + m η ∧ ∂m η ∂t • m η ∧ χ -→ T 0 Ω ∂m ∂t -m ∧ ∂m ∂t • χ + T 0 Ω |m| 2 -1 ∂m ∂t • χ - T 0 Ω (m • ∂m ∂t )(m • χ).
As |m| = 1, we obtain that m • ∂m ∂t = 0, and so

T 0 Ω ∂m η ∂t + m η ∧ ∂m η ∂t • m η ∧ χ -→ T 0 Ω ∂m ∂t -m ∧ ∂m ∂t • χ.
By the same kind of arguments, we take the limit in the right hand side of ( 23) and we obtain that

R + ×Ω ∂m ∂t -m ∧ ∂m ∂t χ(t, x)dt dx = 2 R + ×Ω 3 i=1 m ∧ ∂m ∂x i • ∂χ ∂x i -2 Ω (h d (m) + Ψ(m)) • χ -2 Ω (λ m : (λ e : ε(u)))m -(λ m : (λ e : (λ m : m ⊗ m)))m • χ,
By standart arguments, we pass to the limit in the wave equation, and we obtain that (m, u) satisfies ( 5)-( 6)- [START_REF] Boust | 3D dynamic micromagnetic simulations of susceptibility spectra in soft ferromagnetic particles[END_REF].

So we have proved the existence of a global in time weak solution of ( 5)-( 6)-( 7) satisfying the saturation constraint (1) and the energy estimate [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF] and such that

• m ∈ L ∞ (R + ; H 1 (Ω)), • ∂m ∂t ∈ L 2 (R + ; L 2 (Ω)), • u ∈ L ∞ (R + ; H 1 (Ω)), • ∂u ∂t ∈ L ∞ (R + ; L 2 (Ω)).

ω limit set

We fix a weak solution of ( 5)-( 6)-( 7) satisfying the previous conditions, so its ω-limit set is non empty, that is we can consider m ∞ such that there exists a sequence (t n ) n with t n -→ +∞ and such that m(t n ) ⇀ m ∞ in H 1 (Ω) weakly and in L p (Ω) strong for all p < 6 by Sobolev theorems.

For a fixed a > 0, we define V n (s, x) = m(t n + s, x), defined on ]a, a[×Ω with values in S 2 .

In the spirit of [START_REF] Carbou | Time average in micromagnetism[END_REF], we begin by performing the limit when t n tends to +∞ for a fixed value of a.

Using that ∂m ∂t is in L 2 (R + ; L 2 (Ω)), we obtain by this way the limit equation satisfied by m ∞ . This equation contains a terms U ∞ coming from u. In order to obtain the limit equation satisfied by U ∞ , in a second step, we take the limit in the wave equation when a tends to +∞.

Limit when n tends to +∞

We remark that

1 2a a -a Ω |V n (s, x) -m(t n , x)| 2 dxds ≤ 1 2a a s=-a x∈Ω s τ =tn ∂m ∂t (τ, x)dτ 2 dxds ≤ a +∞ tn-a Ω | ∂m ∂t | 2 , (24) 
so extracting a subsequence if necessary, V n -→ m ∞ in L 2 (]a, a[; L 2 (Ω)) strongly and almost everywhere, and by the bounds for the gradient,

V n ⇀ m ∞ in L ∞ (] -a, a[; H 1 (Ω)) weak *.
In the same way, we define

U n (s, x) = u(t n + s, x). Let us introduce for a > 1 the map ρ a ∈ C ∞ (R; R) such that        ρ a (s) = 0 out of [-a, a], ρ a (s) = 1 on [-a + 1, a -1], 0 ≤ ρ a ≤ 1, |ρ ′ a (s)| ≤ 2. We set U n a = 1 2a a -a u(t n + s, x)ρ a (s)ds.
By the estimates on u, there exists a constant C such that for all n and all a, U n a H 1 (Ω) ≤ C.

Let ξ ∈ H 1 (Ω) be a test function. In the weak formulation of ( 5) with the test function 1 2a ρ a (t-t n )ξ(x), and we obtain that:

1 2a a -a Ω ∂V n ∂t -V n ∧ ∂V n ∂t ρ a (s)ξ(x)dsdx = T 1 + . . . + T 4
where

T 1 = 1 a a -a Ω i V n ∧ ∂V n ∂x i • ∂ξ ∂x i ρ a (s)dsdx, T 2 = - 1 a a -a Ω V n ∧ (h d (V n ) + ψ(V n )) • ξ(x)ρ a (s)dsdx T 3 = - 1 a a -a Ω V n ∧ (λ m : (λ e : (ε(U n )))V n ) • ξ(x)ρ a (s)dsdx, T 4 = 1 a a -a Ω V n ∧ ( λ m : (λ e : (λ m : V n ⊗ V n )))V n )ξ(x) • ξ(x)ρ a (s)dsdx.
The left hand side term tends to zero when n tends to +∞, since

1 2a a -a Ω ∂V n ∂t -V n ∧ ∂V n ∂t ρ a (s)ξ(x)dsdx ≤ 2 √ 2a [tn-a,+∞] Ω | ∂m ∂t | 2 1 2 ξ L 2 (Ω) .
We denote by

ρ a = 1 2a a -a ρ a (s)ds.
From [START_REF] Wynled | Ferromagnetism. Encyclopedia of Physics[END_REF], we obtain that,

T 1 -→ 2ρ a Ω 3 i=1 m ∞ ∧ ∂m ∞ ∂x i • ∂ξ ∂x i dx when n tends to +∞.
Moreover, since ψ is linear and since h d maps continuously l 2 (Ω) in L 2 (R 3 ), we have

T 2 -→ -2ρ a Ω m ∞ ∧ (h d (m ∞ ) + ψ(m ∞ ))ξ(x)dx,
where Concerning T 4 , we denote by F (X 1 , X 2 , X 3 , X 4 ) = X 1 ∧ (λ m : (λ e : (λ m : X 2 ⊗ X 3 ))X 4 ), so that

T 4 = 1 a a -a Ω F (V n , V n , V n , V n ) • ξ(x)ρ a (s)dsdx.
By linearity we write T 4 on the following way:

T 4 = 1 a a -a Ω F (V n -m ∞ , V n , V n , V n ) • ξ(x)ρ a (s)dsdx + 1 a a -a Ω F (m ∞ , V n -m ∞ , V n , V n ) • ξ(x)ρ a (s)dsdx + 1 a a -a Ω F (m ∞ , m ∞ , V n -m ∞ , V n ) • ξ(x)ρ a (s)dsdx + 1 a a -a Ω F (m ∞ , m ∞ , m ∞ , V n -m ∞ ) • ξ(x)ρ a (s)dsdx +2ρ a Ω F (m ∞ , m ∞ , m ∞ , m ∞ ) • ξ(x)dx.
Since V n and m ∞ are bounded by 1 in L ∞ , and since V n -→ m ∞ in L 2 strong, we obtain that

T 4 -→ 2ρ a Ω F (m ∞ , m ∞ , m ∞ , m ∞ ) • ξ(x)dx.
Concerning T 3 , we denote by G(X 1 , X 2 , Y ) = X 1 ∧ (λ m : (λ e : Y )X 2 ), so that

T 3 = - 1 a a -a Ω G(V n , V n , ε(U n )) • ξ(x)ρ a (s)dsdx.
We have, in the spirit of the previous calculations,

T 3 = - 1 a a -a Ω G(V n -m ∞ , V n , ε(U n )) • ξ(x)ρ a (s)dsdx - 1 a a -a Ω G(m ∞ , V n -m ∞ , , ε(U n )) • ξ(x)ρ a (s)dsdx - 1 a a -a Ω G(m ∞ , m ∞ , ε(U n )) • ξ(x)ρ a (s)dsdx.
The first two terms of the right hand side tend to zero when n tends to +∞, since ε(U n ) is bounded in L ∞ (R + ; L 2 (Ω)), V n and m ∞ are bounded by 1 in L ∞ , and since V n -→ m ∞ in L 2 strong. The last term reads:

- 1 a a -a Ω G(m ∞ , m ∞ , ε(U n )) • ξ(x)ρ a (s)dsdx = Ω G(m ∞ , m ∞ , ε(U n a )) • ξ(x)dx
so since U n a is bounded in H 1 (Ω) uniformly with respect to n and a, extracting a subsequence, there exists a subsequence such that U n a ⇀ U a in H 1 (Ω) weak. Therefore,

T 3 -→ Ω G(m ∞ , m ∞ , ε(U a )) • ξ(x)dx when n -→ +∞.
At this step, we have proved that for all a > 1, m ∞ satisfies:

Ω 3 i=1 m ∞ ∧ ∂m ∞ ∂x i • ∂ξ ∂x i dx - Ω m ∞ ∧ h d (m ∞ ) + ψ(m ∞ ) + F (m ∞ , m ∞ , m ∞ , m ∞ ) ξ(x)dx + 1 ρ a Ω G(m ∞ , m ∞ , ε(U a ))
• ξ(x)dx = 0.

We take now the limit of this equation when a tends to +∞.

First, ρ a tends to 1. in addition, U a is uniformly bounded, so we can extract a subsequence such that U a ⇀ U ∞ in H 1 (Ω) weakly when a tends to +∞. Let us precise the equation satisfied by U ∞ .

We write the weak formulation of (6) taking the test function : ξ(x)ρ a (t n + s). We obtain that: We have proved that if m ∞ is in the ω-limit set of a trajectory m, then is satisfies in the weak sense the following system: 

m ∞ ∧ ∆m ∞ + h d (m ∞ ) + ψ(

2 Ω 2 Ω

 22 (λ m : (λ e : ε(u))))m • ∂m ∂t = ε(u) : (λ e : (λ m : m ⊗ ∂m ∂t : (λ m : m ⊗ m)).

Furthermore, by integration

  by parts, Ω -div (λ e : (λ m : m ⊗ m))] • ∂u ∂t = Ω λ e : (λ m : m ⊗ m)) : ∂ε(u) ∂t by symmetry of λ e . Hence we obtain from (6) that 1 2

) Remark 3

 3 Because of the positiveness of λ e , in the energy, Q(m) and (λ e : ε(u)) : ε(u) are positive. The bad sign term -2ε(u) : (λ e : (λ m : m ⊗ m)) can be balanced by both good sign terms, since applying Lemma 3 with λ = λ e , A = ε and B = λ m : m ⊗ m., we have:
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  d (m η ) + Ψ(m η ) + (λ m : (λ e : ε(u η )))m η -(λ m : (λ e : (λ m : m η ⊗ m η )))m η • (m η ∧ χ) .
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 2 : ε(U n )) : ε(ξ)ρ a (s: (λ m : V n ⊗ V n )) : ε(ξ)ρ a (s)dxds.When n tends to +∞, the right hand side term tends toρ a Ω (λ e : (λ m : m ∞ ⊗ m ∞ )) : ε(ξ)dxThe second term satisfies: :ε(U n )) : ε(ξ)ρ a (s)dsdx = Ω (λ e : ε(U n a )) : ε(ξ)dxso it tends to Ω (λ e : ε(U a )) : ε(ξ)dx when n tends to +∞, and after when a tends to +∞, the limit isΩ (λ e : ε(U ∞ )) : ε(ξ)dx.Concerning the first left hand side term, we estimate it on the following way: ∂u ∂t L ∞ (R + ;L 2 (Ω)) , so when n tends to +∞ and after when a tends to +∞, this term tends to zero.Hence, U ∞ satisfies: Ω (λ e : ε(U ∞ )) : ε(ξ)dx = Ω (λ e : (λ m : m ∞ ⊗ m∞)) : ε(ξ)dx.

  m ∞ ) + (λ m : (λ e : ε(u ∞ )))m ∞ -(λ m : (λ e : (λ m : m ∞ ⊗ m ∞ )))m ∞ = 0,where u ∞ is deduced from m ∞ by: e : ε(u ∞ )) = div (λ e : (λ m : m ∞ ⊗ m ∞ )) in Ω.