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Abstract This paper presents an interval-based method that follows the branch-
and-prune scheme to compute a verified paving of a projection of the solution set
of an under-constrained system. Benefits of this algorithm include anytime solv-
ing process, homogeneous verification of inner boxes, and applicability to generic
problems, allowing any number of (possibly nonlinear) equality and inequality
constraints. We present three key improvements of the algorithm dedicated to
projection problems: (i) The verification process is enhanced in order to prove
faster larger boxes in the projection space. (ii) Computational effort is saved by
pruning redundant portions of the solution set that would project identically. (iii)
A dedicated branching strategy allows reducing the number of treated boxes. Ex-
perimental results indicate that various applications can be modeled as projection
problems and can be solved efficiently by the proposed method.

Keywords Numerical constraint programming · Interval analysis · Under-
constrained systems · Projection method · Existentially quantified constraints

1 Introduction

Problems in various fields, such as control [11,12,16] and robotics [13,22], amount
to characterizing a set defined by an under-constrained numerical constraint satis-
faction problem (NCSP). For those under-constrained systems, which have generi-
cally an uncountable infinity of solutions, a projection of a solution set plays a key
role in analyzing the system, especially when it becomes high dimensional. Indeed,
not only resorting to projections is the only way for visualizing the solution set, but
some projections can also convey a specific meaning; E.g., the projection on the
pose parameters of the solutions to the kinematic equations of a robot represent
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the reachable workspace of the considered robot, while the projection on the output
parameters of the solutions of a command model represent its response range to
the possible inputs. In many cases, a projected solution set has a positive hyper-
volume1 even though the solution set before projection has a null hyper-volume.

Example 1 Consider the variables (x, y) ∈ [−2, 3]×[−3, 1] and the constraint

(x+ cos 3y)2 + (y + 1)2 − 1 = 0.

The solution set of this under-constrained NCSP is the 2D curve depicted in Figure
1(a). The projection of this solution set onto variable x is illustrated as the interval
x on the x axis in the same figure.

When the constraints are polynomial, symbolic methods can solve a projection
analytically (see e.g., [4]). However, symbolic methods can handle only very small
systems because the size of the symbolic expressions involved grows exponentially
with the number of variables and the degree of the constraints. Interval methods
can handle non-polynomial constraints and they are able to compute a set of boxes
(interval vectors) that approximates a projected solution set. An outer enclosure
of the solution set can be computed using numerical constraint programming,
but verification operators, like the interval Newton, are usually restricted to well-
constrained systems. As an example, [19] is among the first work to provide an
enclosure of the solutions of an under-constrained system of equations, but indeed
it provides no verification. In order to be fully verified, a projected solution set
has to be enclosed within two types of boxes: Inner boxes proved to be included
inside the projected solution set; And (as small as possible) boundary boxes possibly
containing points which are not the projection of any solution. The union of the
inner and boundary boxes contains the projected solution set. The smaller the
volume of the boundary boxes, the sharper the computed approximation.

The projection problem is difficult in general, and most existing interval meth-
ods were proposed to deal with specific subclasses: Linear systems [24]; Inequality
systems [21]; Systems where the different constraints do not share any projected
variables [11,12]. The first method able to deal with equality constraints that share
projected variables is [5]. It consists of a standard BranchAndPrune algorithm using
the parametric Hansen-Sengupta operator as a verification test (i.e. Theorem 2 of
this paper). This method was only applied to projection problems where projected
variables domains do not need to be bisected (e.g. when the constraints depend
linearly on these variables). In this case, Theorem 2 applies efficiently to verify
the projection. However, this verification process becomes highly unstable as soon
as the projected variables domains are bisected, which is necessary in general.
This issue has already been tackled by following two different ways proposed in
[6] and [7]: First, [6] proposes a specific two phase algorithm where a first phase
computes an over approximation of the boundary of the projection using some
necessary conditions related to critical points of projections, and uses connectivity
analysis in order to identify pavings inside and outside the projection using this
boundary over approximation. The second phase intends identifying part of the
boundary over approximation that are in fact inside the projection by considering

1 The hyper-volume, also called Lebesgue measure, is the generalization to arbitrary dimen-
sions of the length in R, the area in R2 and the volume in R3
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(a) Exact projection of the solution set. (b) Solution with standard BranchAndPrune.

(c) Solution with the new verification
process and search strategy.

(d) Solution with the new pruning technique.

Fig. 1 Sketch of the essential components of our BranchAndPrune method on a simple pro-
jection problem.

a perturbed problem. This second phase is critical since the boundary necessary
condition is not sufficient, and the points inside the projection that verify the suf-
ficient condition (called weak boundary points in [6]) can split the projection in
several fake subcomponents. Although being the first method able to verify the
projection of equality constraints sharing variables whose domains require split-
ting, this method presents two main drawbacks: Tuning the precision of the first
phase is very difficult, while the second phase is very sensitive to the output of the
first phase, resulting in an algorithm quite difficult to use and tune in practice. In
addition, it can only handle equality constraints, and it seems not possible to ex-
tend it to problems including inequality constraints. The second method proposed
in [7] tackles the instability of verification when projected variables domains are
bisected using the so-called domain inflation technique which proved to be very
efficient. It is however restricted to the computation of the direct image of set
defined by inequalities through a vector-valued function, which does not require a
BranchAndPrune algorithm since only the projected variables are bisected, resulting
in a simple bisection algorithm.

In this paper, instead of another specialized projection algorithm, we propose to
use the successful paradigm of BranchAndPrune algorithms (Section 2.3) in order to
tackle general projection problems (Section 3). While treating as general problems
as the method in [6], this approach overcomes its disadvantages:
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– BranchAndPrune algorithms are intrinsically anytime2 as they produce arbi-
trarily sharp approximations of solution sets, the user being able to stop the
computation when the desired accuracy of the approximation, or a resource
(e.g., time) limit, is reached [2].

– When run with a sufficient precision, or enough computation time, no weak
boundary box appears in this approach, which leads to a homogeneous inner
approximation.

– Solving projection problems using a standard BranchAndPrune algorithm allows
fully benefiting from numerical constraint programming techniques, including
a native treatment of inequality constraints.

Still, the standard BranchAndPrune algorithm for under-constrained numerical
constraint satisfaction problems is bound to behave poorly when used as it is
for projection problems. Indeed, it will face difficulties for verifying inner boxes
because it requires that the box to be verified contains a unique corresponding
solution for each projected point. This will often be false due to the bisections
employed during the search.

Example 2 Considering again the problem presented in Example 1, Figure 1(b)
illustrates the result computed by the BranchAndPrune algorithm. The boxes in
this figure form the set S , a paving of the solution set of the under-constrained
NCSP. An enclosure of the projection is obtained by taking the union of all the x

component of these boxes, as shown on the x axis. The thick boxes of S are those
whose projection is verified to be inner whereas the thin boxes are not verified.
The inner approximation of the projection of the solution set is the union of the x

component of the verified boxes. As depicted in the figure, it is very poor in this
example and consists of several disjoint parts. In fact, we can see that verified and
non-verified boxes appear somehow arbitrarily in the solution set. This is typical
of an inefficient verification procedure together with an unadapted search strategy.

In theory, it is impossible to devise a perfect search strategy that would bi-
sect the search space just where needed for the verification process to succeed
everywhere. Hence, in order to devise a suitable BranchAndPrune algorithm for
projection problems, we propose to enhance the verification mechanism so as to
compensate the wrong bisections: Our verification method presented in Section 3.1
applies an inflation technique to the considered box, dynamically shifting the pa-
rameters in order to match each of the projected points in the box. In addition,
our BranchAndPrune algorithm adopts a specific search strategy which avoids un-
necessary splitting and facilitates the verification process.

Example 3 Figure 1(c) presents the result of the BranchAndPrune algorithm that
uses our verification method and search strategy on the problem introduced in Ex-
ample 1. It shows that most of the boxes are verified thanks to our enhancements.
The boxes that are not verified are too close to critical points of the projection,
i.e., points where the solution set is orthogonal to the projection. No verification
method could prove boxes enclosing such points.

Still, it appears much could be gained by considering the projection mechanism
during the computation of the paving S . Indeed, as soon as a portion of the

2 As long as their search strategy is fair at least.
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projection has been verified to be inner, it becomes useless to pave additional
parts of the solution set that would project identically. Hence the cylinder above
the projection of a verified box can be used for pruning during the rest of the
computation (Section 3.2).

Example 4 It is clear in Figures 1(b) and 1(c) that some redundant computations
are performed because there are overlapping of up to 4 solutions within the pro-
jection. Considering verified boxes as a mean of pruning redundant portions of the
search space, we can obtain the much less verbose paving depicted in Figure 1(d).

The paper is organized as follows: Section 2 introduces the necessary back-
ground on NCSPs and recalls the generic BranchAndPrune algorithm; Section 3 de-
fines formally projection problems and details the adaptation of the BranchAndPrune
algorithm to these problems, in particular the new verification process (Section 3.1),
the new pruning technique (Section 3.2) and the new search strategy (Section 3.3);
Section 4 presents experimental evidences of the practical usefulness and perfor-
mances of our method, especially in comparison to results from the literature;
Section 5 concludes the paper.

2 Numeric Constraint Solving

Numeric constraint solving inherits principles and methods from discrete con-
straint solving [23] and interval analysis [18]. Indeed, the specificity of the problems
they address is that their variables take values in continuous subsets of R. It is thus
impossible to enumerate the possible assignments as classically done in discrete
constraint solving. To overcome this situation, numeric constraint solvers resort to
interval computations : Each variable takes an interval as a domain, representing
the fact it can take any value within this interval. It is then possible to enumerate
machine-representable interval assignments using the dichotomy principle of the
BranchAndPrune scheme.

The following subsection recalls the necessary definitions of interval analysis,
the following one defines numeric constraint satisfaction problems and the one after
presents the classical BranchAndPrune algorithm for numeric constraint solving.

2.1 Interval Analysis

The goal of interval analysis [18,20] is to extend real computations to interval
computations. It is based on the containment principle, i.e., intervals must be un-
derstood as “any possible real value in the interval” and thus the result of interval
computations must be intervals enclosing any possible result of the correspond-
ing real computations. As a tool capable of handling rigorously uncertainties and
computational errors, interval analysis has become a framework of choice for ver-
ified floating-point computations on machines. Below are the basic concepts and
notations from interval analysis used in this paper.

The notation of intervals in this paper conforms to the standard [14]. A (bounded)
interval a = [a, a] is a connected set of real numbers {b ∈ R | a ≤ b ≤ a}. IR denotes
the set of intervals. For an interval a, a and a denote the lower and upper bounds;
wida denotes the width, i.e., a−a; inta denotes the interior, i.e., the open interval
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{b ∈ R | a < b < a}; and mida denotes the midpoint, i.e., (a+ a)/2. For intervals a
and b, dist(a, b) denotes the hypermetric between the two, i.e., max(|a−b|, |a−b|),
and a \ b denotes the set difference, i.e., {c ∈ R | c ∈ a, c /∈ int b}, which can
also be represented as the union of at most two intervals. All these definitions are
naturally extended to interval vectors.

A d-dimensional box (or interval vector) a is a tuple of d intervals (a1, . . . ,ad).
IRd denotes the set of d-dimensional boxes. For a real vector a ∈ Rd and a box a ∈
IRd, we use the inclusion notation a ∈ a that is interpreted as ∀i∈{1, . . . , d} (ai ∈
ai). A paving P is a set of boxes {a1, . . . ,ak} such that all ai have the same
dimension d. Boxes in a paving may overlap. We denote ∪P the union of the boxes
in a paving P , i.e., the set {a ∈ Rd | ∃ai∈P (a ∈ ai)}.

For a function f : Rd → R, f : IRd → IR is called an interval extension of f if
and only if it satisfies the containment condition:

∀a∈IRd ∀a∈a (f(a) ∈ f(a)).

This definition is generalized to function vectors F : Rd → Re.

2.2 Numeric Constraint Satisfaction Problems

A numeric constraint satisfaction problem (NCSP) is defined as a triple P = ⟨v,vInit, c⟩
that consists of

– a list of variables v = (v1, . . . , vd),
– an initial domain, in the form of a box, represented as vInit ∈ IRd, and
– a constraint c described as

F (v) = 0 ∧ G(v) ≥ 0,

where F : Rd → Rp and G : Rd → Rq, i.e., the constraint is a conjunction of
equations3 and inequalities.

Throughout the rest of the paper, d (resp. p, q) will denote the number of variables
(resp. equations, inequalities) of the considered problem. A solution of an NCSP is
an assignment of its variables ṽ ∈ vInit that satisfies its constraints. The solution

set Σ of an NCSP is the region within vInit that satisfies its constraints:

Σ(P) := {v ∈ vInit | c(v)}.

An NCSP is said to be over-constrained when d < p (generically, its solution set is
empty), well-constrained when d = p (generically, its solution set is discrete), and
under-constrained when d > p (generically, its solution set is continuous).

2.3 Standard BranchAndPrune for NCSPs

The BranchAndPrune algorithm is the standard complete solving method in the con-
straint programming paradigm. It interleaves refutation phases, known as prune

operation, that eliminate inconsistent assignments, and exploration steps, known
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Algorithm 1 BranchAndPrune algorithm.

Input: NCSP ⟨v,vInit, c⟩
Output: pair of lists of boxes (L,S)
1: L← {vInit}
2: S ← ∅
3: while ¬Stop() do

4: v ← Extract(L)
5: v ← Prune(v)
6: if v ̸= ∅ then
7: if Prove(v) then

8: S ← S ∪ {v}
9: else

10: L← L ∪ Branch(v)
11: end if

12: end if

13: end while

14: return (L,S)

as branch operation, that divide the search space into parts to be processed itera-
tively. Algorithm 1 is a generic implementation of this scheme.

It takes as an input the problem to be solved and returns as an output a paving
that distinguishes: Verified solutions in S , and unproven (or indiscernible) boxes
in L. This implementation makes use of five abstract routines4:

– Stop decides when the solving is completed. In numeric constraint solving it is
usually implemented as a test on the precision of the boxes in L, but it can
also involve a timeout check in an anytime solving context.

– Extract selects, at each iteration, the portion of the search-space to be pro-
cessed. Together with the Branch operation, it defines the search strategy of
the algorithm. In numeric constraint solving, it typically implements either
a depth-first search (DFS), breadth-first search (BFS) or width-first search
(WFS) strategy, respectively implemented by considering L as a stack, a queue,
or a priority queue ordered by the width of the contained boxes (i.e., the width
of their largest intervals).

– Prune filters out inconsistent parts of the considered portion of the search-
space, using various definitions of local and global consistencies. In numerical
constraint solving, it typically removes only boundary portions of the con-
sidered box in order to preserve domains represented as intervals (shaving).
It usually makes use of local numerical consistencies like Hull or Box consis-
tency [17,25], or enhanced versions like MOHC [1], and global contractors like
the interval Newton [7].

3 The vectorial equation F (v) = 0 stands for the system f1(v) = 0, . . . , fp(v) = 0, vectorial
inequalities being defined component-wise as well.

4 For the sake of clarity, the problem P and the lists L and S are supposed to be accessible
from within all these routines without being explicitly passed as parameters.
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– Prove verifies that the considered portion of the search-space is a solution of
the problem5. Being a solution can take different meaning depending on the
considered problem and the question asked. For instance, if the question is to
find the real solution of a well-constrained NCSP, then it will generally im-
plement a solution existence (and often uniqueness) theorem, e.g., Miranda,
Brouwer or interval Newton [20], that guarantees that the considered box con-
tains a (unique) real solution; on the other hand, if the question is to compute
an inner paving of the continuous solution set of an under-constrained NCSP,
then it will usually implement a solution universality test that guarantees that
every real assignment in the considered box is a solution of the NCSP.

– Branch splits the considered search-space into sub-parts that are inserted back
into the list L of portions to be processed. In numeric constraint solving, it
typically amounts to bisecting the considered box along one of its dimension.
The choice of the dimension to be split, and the split point, are elements of the
search strategy of the algorithm. In general, domains are split in a round-robin
mode and at their midpoints.

3 Branch-and-Prune Algorithm for Projection Problems

A projection problem consists in computing the projection of the solution set of
an under-constrained NCSP. More precisely, a projection problem is defined as an
NCSP P = ⟨v,vInit, c⟩ and a partition of the variables v = (x, y) where x and y

are of size n and m respectively. The variables x and y are respectively called the
projection scope and the projected variables. For commodity, the initial domain
of x is denoted xInit and that of y is denoted yInit, hence vInit = (xInit,yInit). The
solution to a projection problem is the projected solution set of its NCSP and is
defined as

Σx(P) := {x ∈ xInit | ∃y∈yInit (c(x, y))},

which is the projection of the solution set Σ onto the x variables.
We consider projection problems where c is the conjunction of p equality con-

straints, where p ≤ m, and arbitrarily many inequality constraints. This require-
ment on the number of equality constraints ensures that the projected solution
set generically has a dimension equal to n, i.e. it has a non-null hyper-volume. In
this situation, one has to compute both an inner and an outer approximation of
Σx(P), therefore the output of Algorithm 1 specialized to projection problems has
the following interpretation:

∪Sx ⊆ Σx(P) ⊆ ∪(Lx ∪ Sx), (1)

where Sx := {x | ∃y ((x,y) ∈ S)} is the projection on x of the boxes contained in
S , and Lx is defined similarly from L.

In the following subsections, we show how the generic BranchAndPrune algo-
rithm described in Algorithm 1 has to be implemented in order to compute ef-
ficiently pavings satisfying (1). In particular, the implementation of functions in
Algorithm 1, i.e., Prove (Subsection 3.1), Prune (Subsection 3.2) and Branch (Sub-
section 3.3) dedicated to projection problems are defined below. These subsections

5 This routine is the main difference with the discrete variant of the BranchAndPrune where
it basically amounts to checking that the assignment is complete.
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present techniques restricted to the well-constrained case (i.e., the number m of
projected variables is equal to the number p of equations). Their adaptation to the
under-constrained case (i.e., p < m) is presented in Subsection 3.4. Appendixes A
and B provide the pseudo code that implements the subroutines of BranchAndPrune.

3.1 Verification of Inner Boxes

This section describes how we implement Prove in Algorithm 1. The goal of our
implementation is to verify that the processed box is projected striclty inside Σx.
More formally, it operates on a box (x,y) and tries to prove that ∀x ∈ x ∃y ∈
yInit (F (x, y) = 0). The verification process proposed here is based on a para-
metric version of the well known Hansen-Sengupta operator: Indeed, the system
F (x, y) = 0 can be interpreted as a parametric system Fx(y) = 0 for which the
previous quantified proposition intends proving that it has a solution for every
parameters values. We first recall the verification of solutions to nonparamet-
ric systems of equations in Subsection 3.1.1. Then, we show that a parametric
Hansen-Sengupta operator can be used to prove ∀x∈x ∃y∈y (F (x, y) = 0), which
is a sufficient condition for the first proposition since y ⊆ yInit; we also argue that
such a verification process does not lead to convergent inner approximations. Fi-
nally, we propose the domain inflation technique dedicated to parametric systems
of equations in Subsection 3.1.3.

3.1.1 Verification of Solutions to Nonparametric Systems

The Hansen-Sengupta operator is a computationally efficient version of the interval
Newton operator defined as follows: Let F : Rm → Rm, F be an interval extension
of F , y ∈ IRm, ỹ be any6 point in y, J be an interval enclosure of the Jacobian of
F on y, and C ∈ Rm×m be any7 nonsingular matrix used as a preconditioner for
J ,

H(y) := ỹ + Γ (CJ ,−CF (ỹ),y − ỹ), (2)

where
Γ (A,a, b) := (Diag−1A)(a− (OffDiagA)b)

with Diag−1A the diagonal interval matrix whose diagonal entries are (Diag−1A)ii
= 1/aii and OffDiagA the interval matrix whose diagonal entries are null and off-
diagonal entries are (OffDiagA)ij = aij .

Note that this operator is defined only for systems that have exactly as many
variables as equations. This requirement is mandatory for the application of inter-
val Newton operators, and we discuss how to change under-constrained systems
into well-constrained ones in Section 3.4. Note also that in this version of the
operator, diagonal entries must be intervals that do not contain 0 otherwise the
operator cannot be applied8. Finally, remark that contrarily to most forms found

6 Usually, ỹ := midy.
7 The preconditioning matrix is usually chosen as C := (midJ)−1 since it guarantees some

good convergence properties while the approximate inversion is not too expensive for the
systems of relatively small size usually handled by interval analysis.

8 An extended version of the operator handles general interval matrices but the existence
proof fails as soon as an interval that contains 0 lies on the diagonal of J .
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in the literature, the result of the operator presented here is not intersected with
the original box y. Its interpretation is summarized by the following theorem:

Theorem 1 ([10,20]) Let y ∈ IRm, F : Rm → Rm be a differentiable function.

Then, every zero of F that belongs to y also belongs to H(y). Furthermore, F has a

unique zero in H(y) if the following condition holds:

∅ ̸= H(y) ⊆ inty.

In other words, the Hansen-Sengupta prunes a box without losing any solution,
and strict inclusion of the pruned box in the initial box guarantees the existence
of a unique solution.

3.1.2 Verification of Solutions to Parametric Systems

The parametric Hansen-Sengupta operator is defined as follows: Let F (x, y) : Rn×
Rm → Rm, F be an interval extension of F , (x,y) ∈ IRn+m, ỹ be any point in
y, Jy be an interval enclosure of the Jacobian of F on (x,y) with respect to the
m projected variables y, and C ∈ Rm×m be any nonsingular matrix used as a
preconditioner for Jy

Hx(y) := ỹ + Γ (CJy,−CF (x, ỹ),y − ỹ). (3)

Like its nonparametric version, this parametric Hansen-Sengupta operator is de-
fined only for functions that have exactly as many components as variables y, i.e.,
as many equations as existentially quantified variables.

The following theorem allows using the parametric Hansen-Sengupta as a ver-
ification procedure for the projection x of a box (x,y) to be included inside Σx.

Theorem 2 ([5]) Let (x,y) ∈ IRn+m, F (x, y) : Rn × Rm → Rm be a differentiable

function. Then, ∃(x, y) ∈ (x,y) such that F (x, y) = 0 implies y ∈ Hx(y). Further-
more, ∀x∈x ∃y∈Hx(y) (F (x, y) = 0) holds when:

∅ ̸= Hx(y) ⊆ inty

Proof Using the inclusion monotonicity of the interval arithmetic, H x̃(y) ⊆Hx(y)
holds for an arbitrary x̃ ∈ x. On the other hand, H x̃(y) is exactly H(y) applied
to the function F (x̃, ·). Theorem 2 then directly follows from the application of
Theorem 1. ⊓⊔

Figure 2(a) illustrates the successful application of Theorem 2: The plain box
(x,y) is contracted to the dashed box Hx(y) (here vectors x, y and F (x, y) have
only one component). The parametric Hansen-Sengupta allows strictly contracting
the y variable domain, and hence proves ∀x∈x ∃y ∈Hx(y) (F (x, y) = 0), which
proves that x ⊆ Σx since Hx(y) ⊆ y ⊆ yInit.

Consider now the same situation but where the interval y is the half of the
previous one. This is illustrated in Figure 2(b), where the failure of Theorem 2
is obvious: The quantified proposition ∀x ∈ x ∃y ∈ y (F (x, y) = 0) is now false,
and accordingly the dashed box Hx(y) is not anymore strictly contained in the
original box. This situation is likely to happen during a bisection algorithm where
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Fig. 2 Verification of boxes using the parametric Hansen-Sengupta.

projected variables domains have to be bisected to ensure the convergence of the
computation9.

This is dramatic for the success of the BranchAndPrune algorithm which is
based on the hypothesis that the smaller the domains, the better the involved
operators behave. Under this hypothesis, splitting fairly all domains usually entails
the convergence of BranchAndPrune. Oppositely, we meet here a situation where a
smaller domain leads to the failure of the proving process which strongly impacts
the efficiency and the convergence of BranchAndPrune, as already illustrated on an
example in Figure 1(b), page 3.

3.1.3 Domain Inflation Technique for Projection Problems

This key issue was addressed for a simpler class of problems in [7] by the so-called
domain inflation technique. The idea of domain inflation can be extended to pro-
jection problems as follows: Given a box (x,y) to be processed by the Prove routine
of the BranchAndPrune, instead of checking that the parametric Hansen-Sengupta
is strictly contracting the domain y, we use the domain y as the starting point of
a search for a new domain y∗ for which the parametric Hansen-Sengupta operator
will be strictly contracting. Then provided that the inflated domain is included
inside the initial domain, i.e., y∗ ⊆ yInit, the verification x ⊆ Σx succeeds. Fig-
ure 2(b) provides a hint for computing y∗: Although Hx(y) is not strictly included
in y, it is obviously a good candidate for y∗. Repeating this process leads us to
consider the limit y∞ of the sequence yk+1 := Hx(y

k), with y0 := y. When this
sequence is convergent, its limit satisfies y∞ = Hx(y

∞) and therefore defining y∗

by slightly inflating y∞ (i.e., increasing by a small percentage its widths) generally
allows the parametric Hansen-Sengupta to be strictly contracting. For efficiency
reasons, the slight inflation step is interleaved with the sequence computation so
as to allow obtaining strict contraction of the parametric Hansen-Sengupta opera-
tor the soonest. The algorithm that interleaves slight inflation and the parametric

9 Some specific classes of problems do not require splitting the projected variables y domains.
In this case, the simple application of parametric existence theorems can be successful, see
e.g. [5].
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Hansen-Sengupta iteration is described in Appendix A where a dedicated stopping
criterion allows stopping the sequence early when the parametric Hansen-Sengupta
is strictly contracting or when the sequence is diverging.

This iterated parametric Hansen-Sengupta process together with the inflation
technique succeeds in verifying the inner projected boxes in both Figures 2(a) and
2(b). Hence, it will typically allow verifying large portions of the projection during
the BranchAndPrune process, as shown on the example in Figure 1(c), page 3.

3.2 Pruning Methods

The BranchAndPrune algorithm we propose makes use of three different pruning
operations: general pruning methods implemented as the Prune routine, and more
specific ones implemented within the Prove and Extract routines.

The Prune function in our algorithm can use any typical constraint propagation
mechanism (e.g., AC3 -like propagation) based on numerical contracting operators
like BC3-revise or HC4-revise, that respectively enforce Box and Hull consisten-
cies [3,17]. This is a strength of our method to be able to make use of any pruning
method that applies to standard NCSPs to address projection problems. See Al-
gorithm 5 in Appendix B for the detail.

The goal of the Prune routine in our method is to quickly get rid of infeasible
regions in order to be able to verify early large boxes. In particular, it might be
counterproductive to spend a lot of time pruning a box that could be verified as
is. For this reason, we simply use a cheap AC3-like propagation of HC4-revise
operators in this work. Evaluating the effect of using more expensive pruning
operators should be a future work since, as typically observed, stronger operators
are sometimes required to address more difficult problems.

Still, it is possible to achieve strong pruning without incurring any extra cost for
it by using smartly the method implemented in the Prove function. Indeed, the box
Hx(y) computed during this routine, whether it was successfully verified or not,
can ultimately be intersected with the original box (x,y) to produce a reduced box.
This reduction applies only to the y variables however. The verification process we
have described in Section 3.1 guarantees this reduced box contains all the solutions
in the original box if any exists. Hence, by trying to verify each box in the process,
we can also prune them with a strong consistency enforcing operator.

The BranchAndPrune algorithm we use computes a paving of the solution set
Σ of an under-constrained NCSP, but we are only interested in its projection Σx.
In this projection, several boxes from the computed paving may overlap, meaning
several y values correspond to the same x value. This is undesirable because, to
verify that any given point x̃ is inside the projected solution set, we need only
verifying one box (x,y) where it belongs. In order to avoid unnecessary (and time-
consuming) iterations of the algorithm, we thus propose to eliminate from any
box to be treated all the portions whose projections correspond to already verified
projections: for a box (x,y) ∈ L and any verified box (x′,y′) ∈ S , we can replace
(x,y) by (x\x′,y) in L. This process can also be considered a pruning, except that
it does not refute inconsistent portions of the search-space but avoids exploring
redundant ones instead. We implement it in the Extract routine of BranchAndPrune
(see Algorithm 4). A positive side-effect is that the produced projection appears
more regular since no two projected boxes overlap thanks to this process.
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For efficiency reasons, the fact that boxes overlap in the projected space is not
recomputed each time; it is maintained all along the BranchAndPrune algorithm
as a neighboring relation: two boxes (x,y) and (x′,y′) in L are neighbors if their
projections overlap with a non-null volume, i.e., intx ∩ x′ ̸= ∅. Hence, the list L

in BranchAndPrune stores pairs (v, N) of boxes v along with a set N of (pointers
to) neighboring boxes v′. Then, each time we prune (Line 5 of Algorithm 1) and
split a box (Line 10 of Algorithm 1), the associated list N is updated.

This method is not only a pruning operation but also a branching one. Indeed,
the result of the set difference x\x′ is in general not a box, but can be represented
as the union of various sets of boxes. In this case, all the resulting boxes must be
pushed back into the list L. However, generating too many boxes as the result of
this operation is counterproductive and can yield memory consumption problems.
Still, it is possible to restrict the use of this method to reasonable cases, for instance
when the result of the set difference is at most one box, i.e., the projection x′ covers
completely x (then (x,y) is entirely pruned) or it covers all the x dimensions but
one (then the boundary of this dimension is reduced in (x,y). This is the technique
we have implemented since it does not induce any additional memory issues.

Using these pruning techniques altogether allows obtaining inexpensively a reg-
ular paving of the projection as already illustrated on the example in Figure 1(d).

3.3 Search Strategy Tweaking

In the implementation of the Branch procedure of BranchAndPrune, we can tweak the
search strategy in several ways in order to accommodate the projection problem
(see also Algorithms 6 and 7 in Appendix B). We have chosen to adapt only the
variable selection strategy and leave the split-point strategy to its default setting:
balanced bisection. Indeed, there is no obvious split-point strategy that could be
applied to projection problems, while there is a natural difference between selecting
x or y variables.

The variable selection strategy role is to select a component of a box v to be
split (because the box could not be verified yet) in order to produce sub-boxes to
be pushed back into list L (Line 10 of the BranchAndPrune algorithm). Standard
variable selection strategies for NCSPs are round-robin (RR), largest-first (LF) and
smear-splitting (SS) [15]. RR selects at each application of the Branch procedure
the next variable in an arbitrarily fixed order, and loops over all the variables; LF
always selects the variable with the largest domain; SS selects the variable whose
splitting have the highest potential impact on future prune phases according to
an analysis of the partial derivatives of all constraints w.r.t. this variable.

None of them are appropriate to handle projection problems. Indeed, in order
to minimize the computation time, our method aims at treating as few boxes as
possible. To this end, for each point x̃ in the projected solution set Σx we want to
verify a single box (x,y) such that x̃ ∈ x. For the verification process to succeed,
the considered box must contain a single ỹ value for each possible x̃ value in
it. Hence we need to split y variables as much as necessary to separate multiple
values, but not more if possible. The existing strategies do not distinguish x and y

variables and thus cannot minimize the computational effort to pave the projected
solution set.
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Unfortunately, no strategy can in general decide whether y variables are suffi-
ciently split or not. Hence we propose a heuristic variable selection strategy, called
the dynamic dual round-robin (DDRR), that relies on the other aspects of the al-
gorithm in order to estimate whether it is still needed or not (Algorithm 7). This
strategy selects in a round-robin manner all the x variables until all of them have
been split s times, then it splits one y variable (also selected in a round-robin man-
ner) and restarts considering only x variables similarly. The idea behind DDRR is
to select the x variables more often than the y variables. The dynamical selection
ratio s is proportional to the length of the list N of neighbor boxes, i.e., the num-
ber of boxes whose projections overlap the projection of the considered box (see
Section 3.2). Indeed, the more neighbors a box has, the more it has already been
split in the y dimensions and the more likely it is that the multiple y values for
any given x value are already separated. We implement s := max{1, w · length(N )}
where w is a predefined weight. Like RR, LF and SS, this strategy has the impor-
tant property to be fair, i.e., all variables continue being split all along the solving
process, which guarantees the convergence of the process.

3.4 Under-Constrained Projection Problems

We now explain how the routines we have defined in the previous sections can be
adapted in order to address under-constrained projection problems, i.e., problems
with more y variables than equations (i.e., m > p).

As usually done in the context of global optimization to prove the existence of
a feasible point, the key idea for verifying a box is to instantiate m− p projected
variables to the mid-points of their domains, so that the remaining variables induce
a well-constrained system. Once m − p variables are instantiated, the successful
application of the verification process defined in Subsection 3.1 requires that the
reduced system is well-conditioned (in particular that its Jacobian is strongly
regular). A Gram-Schmidt orthogonalization process applied to the mid-point of
the original system allows heuristically identifying the m−p variables that lead to
the most well-conditioned subsystem. This heuristic ensures convergence since the
size of the boxes treated during the iterations of the BranchAndPrune get smaller and
smaller, and converge to zero, implying that the interval evaluation of the Jacobian
gets thinner and thinner, and thus closer to its midpoint. This is confirmed by the
experiments presented in Section 4.

4 Experiments

This section presents applications of the proposed method to several problems.
We have implemented our algorithm in C++. The implementation is based on

the following libraries:

– The Gaol interval arithmetic library [8].
– The Realpaver library implements the generic BranchAndPrune framework [9]

and uses Gaol for its computations. Each of the abstract routines Stop, Extract,
Prune, Prove, and Branch in the algorithm is implemented as a class and we
adapt it to our method by providing our own implementation according to the
algorithms in Section 3.
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Prune is implemented as an AC3-like propagation of HC4-revise operators provided
by the Realpaver library. The constant weight w used within the variable selection
heuristic DDRR of the search strategy is set to 0.005 based on experiments.

Section 4.1 describes the problems and provides some qualitative analysis of
the results, in particular in comparison to the other methods from the state of
the art. Section 4.2 presents a more detailed analysis of the performances of the
proposed method, with emphasis on its asymptotic convergence. The experiments
were run using a 3.4GHz Intel Xeon processor with 16GB of RAM.

4.1 Considered Problems

Three problems inspired by the existing literature were solved in our experimen-
tation. The first example is a simple academic projection problem, and two others
are more practical ones that model, respectively, the command of sailboat and
a robotics problem. For each problem, we illustrate its projected solution set by
presenting a paving computed by our method, using a precision check set to 10−2

as the Stop criterion. We also compare our paving with the paving computed by
the methods in [6,7].

4.1.1 An Academic Problem

We consider the academic problem proposed in [6]. Its solution set is defined as
the intersection between a sphere and a plane. This problem is interesting because
for each projected point x there exist exactly10 two solutions (x, y1) and (x, y2),
except on the boundary of the projection, where the two solutions merge. Proving
that a projected box is inside the verified projection requires separating these two
solutions, which is the main difficulty in projection problems.

We generalize this problem to a complete family of similarly defined problems
S&Pn,m,p with n+m variables constrained by p equations (1 hypersphere and p−1
hyperplanes, p ≤ m), projected onto n variables:

F (x, y) =


x21 + · · ·+ x2n + y21 + · · ·+ y2m − 1
x1 + · · ·+ xn + y1 + · · ·+ ym−p+2

x1 + · · ·+ xn + y2 + · · ·+ ym−p+3

...
x1 + · · ·+ xn + yp−1 + · · ·+ ym

 = 0. (4)

In [6], two instances of this problem were considered: S&P2,2,2, a well-constrained
projection problem, and S&P2,3,2, an under-constrained projection problem. The
domain for the variables is given as x ∈ [−1, 1]2 and y ∈ [−0.7, 0.7] × [−0.8, 0.8] ×
[−2, 2].

Figure 3 and Figure 4 present the pavings of the x projections of their solution
sets. They display, on the left-hand side the paving obtained with the method

10 In fact, the under-constrained flavor of this problem has infinitely many (x, y) solutions for
each projected point x, describing a full circle of solution points as the result of the intersection
of a sphere and a plane. However, fixing one of the y variables to the mid-point of its domain,
as explained in Section 3.4, reduces this under-constrained case to the well-constrained case,
i.e., with at most two solutions for each projected point x.
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Fig. 3 Pavings for the S&P2,2,2 problem computed by the method presented in [6] (left) and
by our method (right).
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Fig. 4 Pavings for the S&P2,3,2 problems computed by the method presented in [6] (left)
and by our method (right).

described in [6] (at that time, the computation took 1 minute for S&P2,2,2 and
15 minutes for S&P2,3,2 respectively), and on the right-hand side the paving re-
turned by our method (in 7.2 seconds for S&P2,2,2 and 14 seconds for S&P2,3,2

respectively). Interestingly, our method is not only able to reproduce the results
of the previous work but also avoids to aggregate on fake boundaries located in-
side the pavings on the left-hand side. This is really striking on S&P2,3,2 where
the new method returns an homogeneous paving, while [6] computed a poor inner
approximation with large unproved inner areas.

4.1.2 Speed Diagram of a Sailboat

The problem taken from [6,11] models the behavior of a sailboat within its control
domain:

F (x, y) =
(

αs(V cos(x1 + y1)− x2 sin y1) sin y1 − αrx2 sin
2 y2 − αfx2

αs(V cos(x1 + y1)− x2 sin y1)(L−Rs cos y1)−Rrαrx2 sin y2 cos y2

)
= 0,
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Fig. 5 Pavings of the sailboat problem computed by the method presented in [6] (left) and
by our method (right).

where the variables x1 and x2 represent the heading angle and the speed of the
sailboat, respectively, and the variables y1 and y2 represent the input commands
for the sailboat. Given a domain for the variables, the x projection of the solution
set represents the speed diagram of the sailboat, i.e., its response to the input
commands in terms of speed and direction. The domain for each variable is given
as x ∈ [0, 2π]× [0, 20] and y ∈ [−π/2, π/2]2. The other symbols represent constants
of the model of the sailboat and are defined in [11]. Here we use αs = 100, αr =
300, αf = 60, V = 10, Rr = 2, Rs = 1, and L = 1.

Figure 5 presents two pavings11 of the speed diagram for these settings. On the
left-hand side is displayed a paving obtained with the method described in [6]; At
that time, it was computed in 10 minutes. On the right-hand side is displayed the
paving returned by our method in 1.1 minutes. Qualitatively speaking, this figure
shows again that our method is more stable than the two-phase method in [6] as
it does not aggregate on fake boundaries.

4.1.3 Workspace of Serial Robots

The last problem, inspired by [7], models the workspace (reachable region) of a
serial robot consisting of a bar AB (fixed or variable length) that can rotate around
point A, which itself can slide along a line segment. An additional inequality
constraint models collision avoidance with a circular obstacle centered at point
C with radius R. Here we consider C = (3, 1) and R = 1.

The coordinates of point B, the hand of the robot, are the x variables. The
robot is commanded with two inputs: y1 defines the position of A on the line
segment (i.e., the coordinates of A are (y1, y1)), and y2 is the rotation angle of the
bar with respect to the horizon. The length L of the bar AB is either considered
a structural parameter of the robot, i.e., it is a constant (we use L = 2), or it
is commanded with a third input y3 such that L = y3. In the latter case, the
projection becomes under-constrained. The domains of the variables are set to
x ∈ [−10, 10]2 and y ∈ [0, 4]× [−2, 2]× [1, 2].

11 Figure 5 is actually a polar diagram obtained after interpreting the computed paving in
polar coordinates (x2, x1), x2 being the norm and x1 the angle.
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Fig. 6 Pavings of the fixed-length-bar serial robot problem computed by the method in [7]
(left) and by our method (right).

The problem is then defined by

F (x, y) = x−
(
y1 + L cos y2
y1 + L sin y2

)
= 0

∧ G(x, y) = d2(C,A, x)−R2 ≥ 0,

where d2(p, a, b) denotes the square of the distance separating a point p and a
line segment between two points a and b, which is computed by (⟨· | ·⟩ denotes the
scalar product) :

⟨p− a | p− a⟩ if ⟨b− a | p− a⟩ < 0,

⟨p− b | p− b⟩ if ⟨a− b | p− b⟩ < 0,

⟨p− a | p− a⟩ − ⟨b− a | p− a⟩2

⟨b− a | b− a⟩ otherwise.

Figure 6 illustrates the pavings of the x projection (i.e., the workspace) of
the fixed-length-bar robot obtained in 5.9 seconds with the precision 0.025 by the
method presented in [7] (left-hand side of the figure) and by our method in 13
seconds (right-hand side of the figure). It is difficult to compare qualitatively the
two methods for this problem, as they seem to produce similar results. However,
note that the method in [7] is restricted to a small subclass of projection problems,
for which a very efficient algorithm was proposed. Therefore, it is very positive for
the new method to be competitive with the method in [7] for the problems they
can both tackle.

Moreover, the method in [7] cannot handle under-constrained projection prob-
lem, and thus it cannot compute the workspace of the variable-length-bar robot.
Oppositely, the new method computes this workspace in 58 seconds (see Figure 7).
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Fig. 7 Paving of the variable-length-bar serial robot problem computed with our method.

4.2 Performance Evaluation

The goal of the performance evaluation is to assess the merits of the proposed
method, and more specifically the respective merits of its three main components
dedicated to projection problems: The verification procedure with box inflation,
the redundancy pruning by set difference, and the dedicated search strategy with
dynamical dual round-robin (DDRR). To this end, we compare it with three vari-
ants, each without one of these components, and with a standard BranchAndPrune

method incorporating none of our components. Hence the results we present essen-
tially measure the impact of our implementation of the Prove, Extract and Branch

routines of BranchAndPrune.

In the following, we will present three different evaluations that compare vari-
ous computations in order to sort out different aspects of the practical efficiency of
our method. All are based on the problems introduced in the previous section. All
we use a timeout check set to 1000 seconds as the Stop criterion. Some runs may
also terminate prematurely due to over-consumption of the memory, an indicator
of a poor behavior of the algorithm causing too many splits and resulting in too
many boxes. Finally, all are based on the same indicator, namely the convergence

speed which measures the proportion of the volume of the projected solution set
a method can verify within a certain amount of time. More formally, we mea-
sure during the experiments the proportion of the not-verified projection volume
defined as

1− v(t)

ṽ
,

where v(t) is the total volume of the inner projection computed at time t and ṽ is
the exact volume of the x projection of the solution set.12 This indicator should
converge to zero when the method is convergent, and its variation over time clearly
indicates the convergence speed of the method.

12 For the problems other than S&P, the exact volume is unknown and we used the best known
approximate volume instead. This approximation has a marginal impact when comparing
methods relatively to one another as this value remains constant.
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4.2.1 Assessment of the three components

We first compare the convergence speed of the following methods on all the prob-
lems presented in Section 4.1:

A. The method with all of the components (thick plain lines).
B. The method without the box inflation method (thick dashed lines).
C. The method without the set difference method (thin plain lines).
D. The method without the DDRR strategy, i.e., standard RR is used instead

(thin dashed lines).
E. The standard BranchAndPrune algorithm (dotted lines).

The setting A activates all of the three components we have proposed. The settings
B, C and D deactivate one of the three components. The setting E applies the
standard BranchAndPrune algorithm without any modification. Figure 8 illustrates
the convergence speeds of the five methods with a log-log scale. A quick look at
the graphs shows our method converges much faster for all tested problems. For
instance, it took 30 seconds to verify 99% of the workspace of S&P2,2,2 for our
method, compared to 49 and 180 seconds for the settings C and D, settings B
and E reaching the timeout with a much lower accuracy (resp. 62% and 5%). As
another evidence, after 10 seconds, our method had verified 92% of the volume of
the speed diagram of the sailboat problem, against only 80%, 70%, 18% and 0%
for the settings C, D, B and E, respectively. In addition, we confirmed that the
results computed by our method always converged to the exact volume (or its best
known approximation) of these problems.

In Figure 8(b), the graph for our method (setting A) shows sudden speed-ups
of the convergence, notably around 5, 20, 80 and 200 seconds, preceded by slow-
downs. Following the trace of the solving process, we note the flat portions of the
curve correspond to periods of time when almost no new box is verified, hence all
boxes are split iteratively until they reach a threshold allowing their verification.
Because the search strategy we employ is width-first-search, the boxes in the list L
are then approximately all of the same size and thus, when this threshold is reached
for one of them, so it is for the others, which explains the observed speed-ups. The
repetition of this behavior is explained by the relative hardness for verifying certain
central regions of the speed diagram, which appears clearly in Figure 5(right) paved
using a lot of similarly sized boxes. Note that the convergence speed graphs for
some computations end before the timeout (1000 seconds) because the solving
processes consumed all the memory of the machine (16GB).

We conclude that the combination of the three components is essential in
achieving quickly good verified pavings for projection problems. No component
appears to be clearly dominated by the others (remark how settings B, C and
D compare differently on the different problems) and none seems to have only a
negligible influence in general (though setting C, without redundancy pruning by
set difference, behaves quite similarly to our method on three problems in our test
set, it always remain worse than setting A and behaves much less homogeneously
on the whole test set). Another outcome is that, for the well-constrained projec-
tion problems, the verification with box inflation appears the most crucial as the
performances without it (settings B and E) are the worst on our test set. Last
but not least, this experiment illustrate why standard BranchAndPrune algorithms
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(a) S&P2,2,2 (left, ṽ ≈ 1.69); S&P2,3,2 (right, ṽ = π
√
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(b) Sailboat (ṽ ≈ 25.98).
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(c) Serial robot: Fixed-length-bar robot (left, ṽ ≈ 22.57); Variable-length-bar robot
(right, ṽ ≈ 26.11).

Fig. 8 Comparison of convergence speeds of the methods A–E. The horizontal and vertical
axes represent the time and the proportion of the not-verified volume, respectively.

have been inappropriate to handle projection problems until now, and how it can
become drastically better when adapted procedures are used instead.

4.2.2 Assessment of the neighborhood management cost

Two of our components, namely the redundancy pruning by set difference and
the search strategy with DDRR, require the computation and maintenance of the
neighborhood relation between boxes. This is expensive and might be a bottle-
neck of the solving process. This evaluation investigates the trade-off between the
efficiency of our method and the cost of managing the neighborhood information.
Getting rid of neighborhood management requires turning off the two components
depending on it. Since we know from the previous experiment that the deacti-
vation of one component alone can already be dramatic for the performance of
the method, we expect the method without both would be terribly slow. To be
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fair, we thus introduce the static dual round-robin strategy (DRR) that fixes the
selection ratio of DDRR as s = 1, i.e., one y variable is split only when all x vari-
ables have been split. DRR does not require the neighborhood information while
still incorporating part of the principles of DDRR. We thus compare the following
settings:

A. The method with all of the components (thick plain lines).
C. The method without the set difference method (thin plain lines).
D. The method without the DDRR strategy, i.e., standard RR is used instead

(thin dashed lines).
F. The method using DRR strategy instead of DDRR strategy (dotted lines).
G. The method where the set difference method is deactivated, DRR strategy

is activated and the neighborhood management is deactivated (thick dashed
lines).

The settings A, C and D are same as in the previous evaluation. The setting F
is prepared to evaluate DRR with other components activated. It can be seen as
a potential improvement over setting D. The setting G is for the computation
without the neighborhood management.

Figure 9 illustrates the convergence speeds of these settings with a log-log
scale. The graphs show that the convergence speed of our method (setting A) re-
mains always better than the other settings. The computation with the setting C
is globally better than the settings F and G for the well-constrained problems. It
is interesting to see that, for the under-constrained projection problems, the com-
putation without the neighborhood management (setting G) outperforms other
settings and achieves the second-best convergence speed.

This experiment consolidates the conclusions from the previous one and desig-
nates our method (setting A) with all components activated as the most efficient
and robust (as it handles homogeneously well the various problems) among the
tested variants.

4.2.3 Effect of the Parameter Dimension

In order to evaluate the performance of our method with respect to the size of
the problems, we consider a set of instances of the S&Pn,m,p problem in which
the size of the parameter variables is varied. The well-constrained instance scheme
S&P2,k,k consists of the constraint (4), where n = 2,m = k, p = k, and the domain

for the variables is set to x ∈ [−1, 1]2 and y ∈ [−1, 1]k. We solve the instances for
k = 2, 3, 4, 5, 6 with our method (setting A from previous experiments). As the
Stop criterion, we use the timeout check set to 600 seconds.

Figure 10 illustrates the convergence speed of our method with a log-log scale.
The lines from bottom to top correspond to harder instances (i.e., bigger values
of k), since for a fixed time less inner volume is decided as the line is higher.
The exact volume ṽ of each instance is π

√
2, π

√
3/7, π/

√
3, π

√
5/17, and π/2, for

k = 2, 3, 4, 5, 6, respectively. We observe that the lines in this figure are almost
parallel. In a log-log scale, the slope of the line is related to the degree of the
polynomial function that is displayed. Thus parallel lines mean that the complexity
of the algorithm is the same for all the instances. This behavior was expected since
ideally our method should compute and verify a single box for each projected
point. Isolating this box requires a time that grows exponentially with the number
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(a) S&P2,2,2 (left); S&P2,3,2 (right).
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(b) Sailboat.
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(c) Serial robot: Fixed-length-bar robot (left); Variable-length-bar robot (right).

Fig. 9 Comparison of convergence speeds of the methods A, C, D, F and G.

of projected variables (as for any bisection algorithm), but the convergence speed
of the algorithm should remain proportional whatever this dimension, i.e., the
proportion of the verified projection should grow as fast with the time for any
number of projected variables. This is observed in this experiment, giving high
hopes our method could deal with larger scale projection problems.

5 Conclusion

We have presented a numerical algorithm that can compute an inner and an outer
approximation of the projection of the solution set to an under-constrained prob-
lem. The proposed algorithm is a simple adaptation of the standard BranchAndPrune

algorithm for NCSPs. The modifications are designed as separate procedures,
namely those for verification, pruning, branching strategies, and they embed heuris-
tics for optimizing the performance of the algorithm.
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Fig. 10 Comparison of the volume computation of the S&P2,k,k problem (k = 2, 3, 4, 5, 6).

Our method is more generic than the existing interval methods in the sense that
we consider systems described by an arbitrary number of variables and constraints,
which can be inequality constraints. It is also more general in the sense it can
make use of all the techniques available to handle efficiently constraints in the
BranchAndPrune algorithm, e.g., all pruning operators are applicable. Finally, it
can be adapted in order to handle under-constrained projection problems.

Many problems in control and robotics can be directly encoded as under-
constrained NCSPs, and a paving of a projected solution set provides a mean
for analyzing the problem. In the experiments, we have shown the applicability of
our method to problems of interest in control and robotics.

The experimental results demonstrate the quality of the output of the proposed
method and its efficiency with respect to prior methods, including ones much more
specifically designed for the projection problem and limited in scope.
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A Verification Algorithm for Parametric Systems of Equations

Algorithm 2 interleaves the fixed point sequence y ← Hx(y) (Line 3) with an inflation of y
(Line 10). It returns true at Line 5 if and only if the Hansen-Sengupta is contracting (Line 4)
and the contracted domain satisfies the inequality constraints G(x,y′) ≥ 0 (Line 5). In all
other cases, it returns false. The amounts of the last two contractions are recorded in variables
d and dprev in order to check the quadratic convergence of the sequence by checking that
d ≤ µdprev holds. This allows stopping the iteration early when the sequence does not converge.
The algorithm is also stopped as soon as y ⊆ yInit is not satisfied since a domain that has
been shifted outside yInit will not come back inside this initial domain. Finite termination is
enforced by requiring a maximum number of iterations in order to prevent some very untypical
(but theoretically possible) cases where the sequence would converge to an exact fixed point
in floating point arithmetic. Typical constants value used in our experiments are µ = 0.9,
τ = 1.01 and kmax = 10.

Algorithm 2 Verification algorithm (Prove).

Input: NCSP ⟨(x, y), (x,y), c⟩, initial domain yInit,
where x ∈ IRn, y,yInit ∈ IRm, c ≡ (F (x, y) = 0 ∧ G(x, y) ≥ 0),

Output: b ∈ {true, false}
1: d← +∞; dprev ← +∞; k ← 0
2: while d ≤ µdprev ∧ y ⊆ yInit ∧ k < kmax do

3: y′ ←Hx(y)
4: if y′ ⊆ inty then

5: return G(x,y′) ≥ 0
6: end if

7: dprev ← d

8: d← dist∞(y,y′)
9: k ← k + 1

10: y ← midy′ + τ(y′ −midy′)
11: end while

12: return false

B Implementation of BranchAndPrune

Algorithm 3 is a modified version of the standard BranchAndPrune in Algorithm 1 that im-
plements our method. L is modified to contain pairs of a box and a list of neighbor boxes,
Stop is implemented to compare the widths of boxes in L with the precision ϵ (Line 3), and
additional arguments are given to each of the sub-procedures Extract, Prune, Prove and Branch.
The sub-procedures are implemented as follows:

– Extract in Algorithm 4 is implemented to manage boxes with the WFS manner and to
prune the extracted box by taking into account the set difference with the already verified
boxes in S . Since we implement L as a list whose elements are sorted by the widths of their
x components, the first element should be the widest box (Line 1). At Line 2, the algorithm
computes the set difference between the extracted box and all the verified boxes. In general,
a set difference results in several boxes, so we recursively compute the set difference between
the resulting set of boxes and each box in S , i.e., v \ S := {v′ ⊆ v | ∀ṽ∈S (v′ \ ṽ = ∅)}.
In the while loop, the algorithm updates the neighborhood information N for each box in
BS (Line 5), and puts it back in L (Line 9) except that the last box in BS is returned to
the main algorithm (Line 7).

– Prune in Algorithm 5 is just a wrapper of a standard filtering procedure e.g. HC4-revise.
The neighborhood information should be updated after a modification to a box (Line 2).
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– Prove is implemented as Algorithm 2.
– Branch in Algorithm 6 selects a variable v (Line 1), and, if there exists a variable v that

can be improved (Line 2), it splits the box along the v component, otherwise it just returns
the input box (Line 8). Again, the neighborhood information of the split boxes should be
updated (Line 5). Algorithm 7 selects a variable of a box based on the DDRR strategy.
For each box in L, the algorithm preserves the state of the previous selection using the five
local counters c, ix, iy , nx, ny : ix and iy represent the previously selected variable from x
and y, respectively; nx and ny counts the number of variables not selected; c is used for
delaying the selection of y variables. For the first m calls, the algorithm selects a variable
in x (Lines 2–7). It checks the search termination criterion before returning a variable
(Line 4) and it returns the special symbol • if the criterion is not satisfied (Line 22). For
the following call, the algorithm tries to select a variable in y (Lines 8–17). Lines 9–12
might delay the selection by resetting the counters for x variables, corresponding to the
number of the neighbor boxes (w is a weight constant, which we set as m+n). Lines 13–17
are for selecting y variables as for x variables. When the counters ix and iy reach the limit,
we reset the whole state and start from the first variable (Line 19).

Algorithm 3 Extended BranchAndPrune algorithm.

Input: NCSP ⟨v,vInit, c⟩, precision ϵ

Output: pair of lists of boxes (L,S)
1: L← {(vInit, ∅)}
2: S ← ∅
3: while ∃(v, ·)∈L (widv > ϵ) do

4: ((v,N ),L)← Extract(L,S)
5: (v,N )← Prune(c,v,N )
6: if v ̸= ∅ then
7: if Prove(⟨v,v, c⟩,vInit) then

8: S ← S ∪ {v}
9: else

10: L← L ∪ Branch(v,N )
11: end if

12: end if

13: end while

14: return (L,S)
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Algorithm 4 Extract algorithm.

Input: sorted list of boxes L, list of verified boxes S

Output: ((v,N ),L)
1: (v,N )← take out the first element of L
2: BS ← v \ S
3: for v ∈ BS do

4: BS ← BS \ {v}
5: N ← update N w.r.t. v
6: if BS = ∅ then
7: return ((v,N ),L)
8: else

9: L← L ∪ {(v,N )}
10: end if

11: end for

Algorithm 5 Prune algorithm.

Input: constraint c, box v, list of neighbor boxes N

Output: (v,N )
1: v ← HC4-revise(c,v)
2: N ← update N w.r.t. v
3: return (v,N )

Algorithm 6 Branch algorithm.

Input: box v, list of neighbor boxes N

Output: set of (v,N )
1: ṽ ← DDRR(v,v,N )
2: if ṽ ∈ v then

3: (ṽ, ṽ′)← split ṽ at mid ṽ

4: (v,v′)← (v[ṽ 7→ ṽ],v[ṽ 7→ ṽ′])
5: (N ,N ′)← update N w.r.t. v and v′, respectively
6: return {(v,N ), (v′,N ′)}
7: else

8: return {(v,N )}
9: end if
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Algorithm 7 DDRR-based variable selection algorithm.

Input: list of variables (x1, . . . , xm, y1, . . . , yn), box v, list of neighbor boxes N

(local static counters: c← 1, ix ← 0, iy ← 0, nx ← 0, ny ← 0)
Output: variable v or a symbol •
1: while nx < m do

2: if ix < m then

3: ix ← ix + 1
4: if widxix > ϵ then

5: return xix
6: end if

7: nx ← nx + 1
8: else if iy < n then

9: if c < w · length(N ) then

10: c← c+ 1; ix ← 0; nx ← 0
11: continue

12: end if

13: iy ← iy + 1
14: if widyiy > ϵ then

15: c← 1; ix ← 0; nx ← 0
16: return yiy
17: end if

18: ny ← ny + 1
19: else

20: if ny < n then

21: iy ← 0; ny ← 0
22: else

23: ix ← 0; nx ← 0
24: end if

25: end if

26: end while

27: return •


