
HAL Id: hal-00868016
https://hal.science/hal-00868016v3

Preprint submitted on 5 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Variable size vector bin packing heuristics - Application
to the machine reassignment problem

Michaël Gabay, Sofia Zaourar

To cite this version:
Michaël Gabay, Sofia Zaourar. Variable size vector bin packing heuristics - Application to the machine
reassignment problem. 2013. �hal-00868016v3�

https://hal.science/hal-00868016v3
https://hal.archives-ouvertes.fr

Variable size vector bin packing heuristics –

Application to the machine reassignment problem

Michaël Gabay∗ Sofia Zaourar†

Abstract

In this paper, we introduce a generalization of the vector bin packing problem, where the
bins have variable sizes. This generalization can be used to model virtual machine placement
problems. In particular, we study the machine reassignment problem. We propose several
greedy heuristics for the variable size vector bin packing problem and show that they are
flexible and can be adapted to handle additional constraints. We highlight some structural
properties of the machine reassignment problem and use them to adapt our heuristics. We
present numerical results on both randomly generated instances and Google realistic instances
for the machine reassignment problem.

Keywords Variable Size Vector Bin Packing · Heuristics · Machine Reassignment · Virtual
Machine Placement

1 Introduction

In service hosting and virtualized hosting, services or virtual machines must be assigned to clus-
tered servers. Each server has to provide enough resources, such as cpu, ram or disk, in order to
have all of its processes running. The machine reassignment problem, proposed by Google for the
ROADEF/EURO challenge 2012, is such a problem, with some additional constraints and a cost
function to minimize.

In this paper, we propose a modeling framework for these packing problems and a greedy heuris-
tic framework to find feasible assignments. We adapt several classical bin packing heuristics and
propose new variants. We provide a worst-case complexity analysis of these algorithms and present
numerical results on different classes of randomly generated instances. We also highlight some
structural properties of the machine reassignment problem and use them to adapt our heuristics.
We provide experimental results on realistic instances for the machine reassignment problem.

1.1 Bin packing problems

In the classical Bin Packing (BP) problem, we are given a set I = {I1, . . . , In} of n items, a capacity
C ∈ N and a size function s : I → N. The goal is to find a feasible assignment minimizing the
number of bins used. A feasible assignment of the items into N bins is a partition P1, . . . , PN of the

∗Laboratoire G-SCOP, UMR 5272, 46, avenue Félix Viallet - 38031 Grenoble Cedex 1 - France
michael.gabay@g-scop.grenoble-inp.fr
†UJF, Inria Grenoble, 655 avenue de l’Europe, Montbonnot 38334 Saint Ismier Cedex, France.

sofia.zaourar@inria.fr

1

items, such that for each Pk, the sum of the sizes of the items in Pk does not exceed the capacity C.
In the decision version of this problem, the number of bins N is part of the input and the objective
is to decide if all of the items can be packed using at most N bins. This problem is known to be
strongly NP-hard (Garey and Johnson, 1979).

Garey et al (1976) introduced a generalization of this problem, called Vector Bin Packing
(VBP) or d-Dimensional Vector Packing (d-DVP). In this problem, item sizes are described by
a d-dimensional vector: (s1i , . . . , s

d
i) and bins have a capacity C in all dimensions. A feasible as-

signment of the items into N bins is a partition P1, . . . , PN of the items such that for each Pk, on
each dimension, the sum of the sizes of the items in Pk does not exceed the capacity:

∀k ∈ {1, . . . , N}, ∀j ∈ {1, . . . , d},
∑
i∈Pk

sji ≤ C

Vector bin packing is often used to model virtual machine placements (Lee et al, 2011; Panigrahy
et al, 2011; Stillwell et al, 2010). In such cases, all machines are supposed to have the same
capacities. This could be the case when a new computer cluster is built. However, as it grows and
servers are renewed, new machines are introduced and the cluster becomes heterogeneous.

Hence, we are interested in a further generalization of this problem, where each bin has its own
vector of capacities (c1k, . . . , c

m
k) and the goal is to find a feasible packing of the items. We call

this problem the Variable Size Vector Bin Packing (VSVBP) problem. This problem has not been
studied yet to the best of our knowledge. VSVBP can be used to model previously mentioned
virtual machine placement problems in a realistic heterogeneous environment.

1.2 Machine reassignment problem

The machine reassignment problem was proposed by Google for the 2012 ROADEF Challenge.
This challenge was based on problems occurring in Google’s data centers and realistic instances
were provided. In the machine reassignment problem, a set of processes needs to be (re)assigned
to a set of machines. There are m resources and each machine (resp. process) has its own capacity
(resp. requirement) for each resource. There are also additional constraints presented in Section 4.
The aim is to find a feasible assignment minimizing a weighted cost.

In the challenge, an initial feasible solution was provided. Therefore, local search based heuristics
were a natural (and successful) approach. Local search aims at improving iteratively a given solution
by applying small modifications, and is well-suited to quickly improve solutions of very large-scale
problems. See Aarts and Lenstra (1997) survey on local search.

When using local search, the search space is limited by the initial solution and the set of accepted
moves. This space can be enlarged by running several local searches, starting from diversified initial
solutions. This is the idea behind the Greedy Randomized Adaptive Search Procedure (GRASP)
(Feo and Resende, 1989, 1995). This approach is an iterative process where one successively creates
a new feasible solution, then optimizes it using a local search heuristic. When applying a GRASP
heuristic to the machine reassignment problem, VSVBP arises as a subproblem for generating
new initial solutions. We explain how we can handle additional constraints and find new feasible
assignments by solving VSVBP problems in Section 4.

1.3 Outline

In this paper, we study different heuristics to solve VSVBP and point out properties of the machine
reassignment problem. In Section 2, we define VSVBP and present related works on vector bin

2

packing. In Section 3, we propose several heuristics for this problem. In Section 4, we discuss
structural properties of the machine reassignment problem and adapt our heuristics. Experimental
results are reported Sections 3.5 and 4.5.

2 Variable size vector bin packing problem

An instance of the variable size vector bin packing problem is defined by C an NN×d capacity
matrix and S an Nn×d size matrix, where cjk (resp. sji) denotes the capacity of bin k (resp. the size
of item i) in dimension j.

We define the following index sets: B = {1, . . . , N} for the bins, I = {1, . . . , n} for the items,
and D = {1, . . . , d} for the dimensions.

The problem is to find a feasible assignment x ∈ Nn×N of the items into the bins such that:

∑
i∈I

sjixi,k ≤ cjk ∀j ∈ D, ∀k ∈ B (1)∑
k∈B

xi,k = 1 ∀i ∈ I (2)

xi,k ∈ {0, 1} ∀i ∈ I, ∀k ∈ B (3)

Inequality (1) models the capacity constraints while constraints (2) and (3) ensure that each
item is assigned to a bin.

2.1 Related work

Since VSVBP is a generalization of BP, this problem is strongly NP-hard. Moreover, Chekuri and
Khanna (1999) proved that 2-DVP is APX-hard and showed d1/2−ε hardness of approximation.
Woeginger (1997) proved that there is no asymptotic PTAS (unless P=NP). Hence, as a general-
ization of d-DVP, the optimization version of VSVBP (with costs on the bins) is APX-hard and
cannot have an asymptotic PTAS.

Maruyama et al (1977) generalized classical bin packing heuristics into a general framework for
VBP.

There are many theoretical results for the vector bin packing problem: Kou and Markowsky
(1977) studied lower and upper bounds and showed that the worst case performance ratio for the
generalization of some classical bin packing algorithms is larger than d, where d is the dimension.
Yao (1980) proved that any o(n log n) time algorithm has a worst case performance ratio bigger
than d. Bansal et al (2006) proposed a randomized (log d+ 1 + ε)-approximation. Their algorithm
is polynomial for fixed d. Spieksma (1994) proposed two lower bounds for 2-DVP and a branch-
and-bound algorithm using these bounds. Caprara and Toth (2001) analyzed several lower bound
for 2-DVP and showed that the lower bound obtained by the linear programming relaxation of the
(huge) integer programming formulation they propose, dominates all of these bounds. Chang et al
(2005) used 2-DVP to model a packing problem where steel products have to be packed into special
containers and they proposed a heuristic. Caprara et al (2003) showed that there is a PTAS for
d-DVP if all items sizes are totally ordered. Shachnai and Tamir (2003) studied Data Placement
problem as an application of VBP and proposed a PTAS for a subcase of VBP. Karp et al (1984)
studied VBP where all items sizes are drawn independently from the uniform distribution over [0,1].

3

They proved that the expected wasted space by the optimal solution is Θ(n
d−1
d) and proposed an

algorithm that tries to pack two items in each bin and has the same expected wasted space.
Stillwell et al (2010) implemented and compared several heuristics for VBP with additional real-

world constraints in the case of virtualized hosting platforms. They found out that the algorithm
which is performing the best is the choose pack heuristic from Leinberger et al (1999) with items
sorted by decreasing order of the sum of their requirements.

Han et al (1994) studied 2-VSVBP optimization problem, with several types of available bins
and the aim is to minimize the sum of bin costs. They proposed exact and heuristic approaches
along with a process to improve lower bounds.

In the classical First Fit Decreasing (FFD) heuristic, one has to select the largest item and
then pack it into a bin. Hence, if one generalizes this heuristic to the multidimensional case,
it has to be determined how to measure and compare items. Panigrahy et al (2011) presented
a generalization of the classical First Fit Decreasing (FFD) heuristic to VBP and experimented
several measures. A promising measure is the DotProduct which defines the largest item as the
item that maximizes some weighted dot product between the vector of remaining capacities and
the vector of requirements for the item.

3 Heuristic framework

We generalize the classical First Fit Decreasing (FFD) and Best Fit Decreasing (BFD) heuristics
to VSVBP. Algorithm 1 is the classical BFD algorithm. Panigrahy et al (2011) proposed a different
approach of this algorithm which focuses on the bins, as illustrated by Algorithm 2. In order to
use these algorithms in multidimensional packing problems, one needs to define an ordering on bins
and items.

This ordering can be defined using a measure: a size function which returns a scalar for each bin
and item. In the following sections we propose several measures based on the remaining capacities
of the bins and decisions made.

Since orderings are based on a measure, both the orderings of items and bins may change in the
course of the algorithm. Remark that if the order is unchanged then item centric and bin centric
heuristics give the same results (either both are infeasible or both are feasible and return the same
solution).

Remark that any greedy algorithm for this problem can be reduced to a best fit item centric
heuristic by computing the next decision of the algorithm in the measure and returning size 2 for
chosen item, size 0 for chosen bin and size 1 for other bins and items.

Algorithm 1: BFD Item Centric

while There are unpacked items do1

Compute sizes2

Pack the biggest item into the smallest feasible bin3

if the item cannot be packed then4

return Failure5

return Success6

4

Algorithm 2: BFD Bin Centric

while The list of bins is not empty do1

Compute sizes2

Select b the smallest bin3

while An unpacked item fits into b do4

Compute sizes5

Pack the biggest feasible item into b6

Remove b from the list of bins7

if An item has not been packed then8

return Failure9

return Success10

3.1 Measures

In order to sort items and bins, we define a measure. Let i ∈ I, k ∈ B, j ∈ D. We define Ir as
the set of unpacked items and Br as the set of remaining bins (unless we are using a bin centric
approach, Br = B). We denote by rjk the remaining capacity of bin k in dimension j, by C(j)
the total remaining capacity in dimension j and by R(j) the total requirement in dimension j:
C(j) =

∑
k∈Br

rjk and R(j) =
∑
i∈Ir s

j
i .

A natural idea to define a scalar size from vector size is to take a weighted sum of the vector
components. We define the following sizes:

SB(k) =
∑
j∈D

αjr
j
k ∀k ∈ B

SI(i) =
∑
j∈D

βjs
j
i ∀i ∈ I

where α and β are two scaling vectors. We propose three different scaling coefficients: 1
C(j) ,

1
R(j)

and R(j)
C(j) . The first ratio normalizes based on bins capacities. The second ratio normalizes based

on items requirements. The last coefficient takes both remaining capacities and requirements into
account and normalizes on the rarity of resources.

We can also define the size of an item by choosing its maximal normalized requirement over the
resources. We obtain the priority measure:

Sprio(i) = max
j∈D

rji
C(j)

∀i ∈ I

Sizes are either computed once and for all, before the first run of the algorithm, in such case we
say that the measure and the resulting heuristics are static, or at every iteration of the algorithm.
In this latter case, we have dynamic measures and heuristics.

For static measures, the ordering is fixed and Algorithms 1 and 2 become first fit heuristics.
Observe that for a same static measure, Algorithms 1 and 2 return the same results.

Both the static and dynamic heuristics are considered in this paper. In the following, we choose
α = β. As a consequence, the measure S has the following property:

5

Property 1. If α = β and SB(k) < SI(i) then the item i does not fit into the bin k.

Proof. If SB(k) < SI(i), then
∑
j∈D αr(r

j
k − s

j
i) < 0. Since both r and s are positive, rjk < sji for

some j.

3.2 Bin balancing

In Section 3.1, we presented measures which yield different heuristics, using Algorithms 1 and 2.
However, since bin capacities are different, it is hard to predict which resource, bin or item will be
the bottleneck(s). Moreover, we can take advantage of the fact that we are only interested in finding
feasible assignments. Instead of packing as many items as possible in a bin, we can try to balance
the load. The Permutation Pack and Choose Pack heuristics from Leinberger et al (1999) use such
an approach to pack items. We propose another approach: using the item centric heuristic, pack
current item into the first feasible bin. Then, move this bin (or a subset of the bins) to the end of
the list of bins. This approach is detailed in Algorithm 3. Line 7, lB is updated by one of the two
following ways:

• Single bin balancing: Used bin is moved to the end of the list

• Bin balancing: All bins tried (including the successful bin) are moved to the end of the list
in the same order: let l be the new list. We have:
l(1) = lB(j + 1), . . . , l(N − j) = lB(N), l(N − j + 1) = lB(1), . . . , l(N) = lB(j)
(this is actually achieved through a simple modulo)

Algorithm 3: Bin Balancing Heuristics

Sort lB (bins list) and lI (items list)1

while There are unpacked items do2

Let I be the biggest unpacked item3

for j = 1 to N do4

if item I can be packed into lB [j] then5

Pack I into lB [j]6

Update lB7

break8

if I has not been packed then9

return Failure10

return Success11

The main idea of this algorithm is that once an item is assigned to a bin, we try to assign the
following items to other bins, in order to prevent critical bins from being overwhelmed too early.

3.3 Dot Product

We generalize the DotProduct heuristic from Panigrahy et al (2011). In this heuristic we select the
feasible pair (i, k) maximizing the (weighted) dot product si · rk (resp.

∑
j∈D αi,ks

j
i r
j
k) and pack

item i into bin k.

6

We propose three variants of this heuristic: maximize the dot product (αi,k = 1), or the weighted

dot product with αi,k = (‖si‖2 ‖rk‖2)−1 or αi,k = ‖rk‖−22 .
On the first iteration, we compute dot products for all feasible pairs, then store these values. On

the following iterations, only the dot products concerning the bin where an item has just been packed
are computed. The worst case time and space complexity for initializing sizes is O(dnN log(nN)).
The complexity of computing costs afterwards is at most O(dn) and the list can be maintained in
O(n log(nN)).

This heuristic maximizes the similarity of a bin and an item (the scalar projection of the item
sizes onto the bin remaining capacities). Moreover, we need to be able to compare these dot products
for all pairs of bins and items. On one hand, if we do not scale the vectors, then we maximize both
the similarity and the size used. On the other hand, if we normalize both sizes and capacities, we
minimize the angle between the two vectors. Eventually, if we re-scale by 1

‖rk‖22
, then we focus on

maximizing the scalar projection of the item and maximize similarity.

3.4 Complexity

We denote p = max(n,N). In the worst case scenario, both the item centric and the bin centric
algorithms behave as shown in Algorithm 4. Hence, the overall time complexity is O(dp2 +p2 log p).
The space complexity is O(p2 + dp) for the dot product and O(dp) for the other measures.

Algorithm 4: Worst-case heuristics behavior

Initialize sizes // O(dp2) (DotProduct)1

for i = 1 to p do // p×2

Compute sizes // O(dp) (for given measures)3

Sort lists // O(p log p)4

Pick an item // O(1)5

Pack it // O(dp)6

Obviously, one shall not implement the algorithm as described by Algorithm 4. When using a
static measure, bins and items should only be sorted at the beginning of the algorithm. The overall
complexity will be O(dp2).

Moreover, when checking whether an item fits into a bin, we can stop on the first dimension
where the remaining capacity is smaller than the size of the item. Furthermore, when using one of
the measures described in Section 3.1 or any other measure verifying Property 1, we can use this
property to avoid checking feasibility when SI(i) > SB(k). These optimizations, however, do not
improve the worst-case complexity of the algorithm.

3.5 Experiments

We experimented all described heuristics on 5 classes of generated instances. For each of these
classes, we generated 100 feasible instances for each configuration with 10, 30 and 100 bins and
2, 5 and 10 dimensions. The whole test bench contains 4500 generated instances. In this sec-
tion, we say that x% of bin k has been used if the average usage of the bin is more than x, i.e.∑

j∈D
s.t. cjk 6=0

(
cjk−r

j
k

cjk
− x

100) ≥ 0.

Instances. In the first class of instances (Random uniform), bin capacities are chosen indepen-
dently using a uniform distribution on [10;1000]. Then, items sizes are independently drawn from

7

a uniform distribution on [0; 0.8× rjk] until at least 80% of the bin capacity is used.
The second class of instances (Random uniform with rare resources) is the same as the first,

except that after generating the capacities of a bin, the capacity in dimension d is set to 0 with
probability 0.25. Last dimension is a rare resource.

In the third class of instances (Correlated capacities), for each bin, an integer b0 ∈ [10; 1000] is
uniformly generated. Then, each capacity j ∈ D is set to 0.9× b0 +Xj where Xj is an exponentially
distributed random variable with rate parameter 1/(0.1 × b0) (standard deviation is equal to 10%
of b0). Items sizes are generated as in the first and second classes.

Bins in the fourth class (Correlated capacities and requirements) are generated as in the third
one. Items in this class are generated similarly to the bins, with b0 ∈ [1; 0.8× rjk] and until at least
80% of the bin capacity is used or we failed 100 times to generate a feasible item.

In the fifth class of instances (Similar items and bins), bin capacities are chosen uniformly and
independently on [10;1000]. For each item, size in dimension j is set to Xj + cjk/5 where Xj is an

exponentially distributed random variable with rate parameter 1/(0.2× cjk/5) (standard deviation

is equal to 20% of cjk/5). Items are generated until at least 70% of the bin capacity is used or we
failed 100 times to generate a feasible item.

In classes 1 to 4, on average, 85% of the bins capacities are used in generated instances. In class
5, 79% of bins capacities are used on average.

Heuristics. We use the following measures: nothing (static, items and bins are kept as provided
in the input), static shuffle, static 1/C, static 1/R, static R/C, dynamic shuffle, dynamic 1/C,
dynamic 1/R and dynamic R/C. We use these measures with the item centric, bin centric, bin
balancing and single bin balancing heuristics. This gives 31 heuristics since item centric and bin
centric heuristics are the same for static measures. We also use the 3 variants of the dot product
heuristic.

Heuristics and instance generator were implemented in Python and were not optimized. Still,
except the dot product heuristics for which we unnecessarily recompute all sizes on all iterations,
all of the heuristics run in less than 0.1 second on any of the instances (using PyPy interpreter).

In order to benchmark our heuristics, we compute the number of successes (number of feasible
solutions) and the average percentage of items packed (we keep packing items even if we know that
the solution will be infeasible). Figure 7 of Appendix A shows the total number of successes of all
heuristics on the benchmark.

Results. We benchmarked our heuristics against random orderings and a first observation is
that random heuristics achieve the worst performance. Among random heuristics, the static item
centric ones are leading to better results than the other ones. This was expected since the static
item centric heuristics corresponds to first fit heuristics while the other ones are just performing
random assignments.

In Figures 1, 2, 3, 4 and 6, we show the heuristic achieving the highest total number of successes
on this class for each family of heuristics.

8

Figure 1: Random uniform instances, number of feasible solutions

Figure 2: Random uniform instances with rare resources, number of feasible solutions

Figure 3: Random uniform instances with rare resources, average ratios of items packed

9

Figure 4: Correlated bin capacities, number of feasible solutions

In Figure 1, on random uniform instances, we observe that static best fit, dynamic item centric,
dynamic bin centric and dot product heuristics are roughly achieving the same performance. Yet,
the dot product heuristic is the only heuristic providing feasible solutions with 100 bins and 5
resources. With a rare resource, in Figure 2, bin centric heuristics are providing slightly better
results than other heuristics. Since bin centric heuristics focus on the bins rather than the items,
they can make better use of the bins, especially if they first consider bins with null rare resources
before considering bins providing rare resources. This helps to avoid getting stuck later on in the
algorithm if items with null sizes in the rare resource were packed in bins providing this resource.

Paradoxically, with 10 bins, instances with 10 resources are easier to solve than instances with 5
resources. The reason is that the higher the number of resources, the lower is the probability that
an item fits into a different bin other than its initial bin. With very few bins, this actually guides
the heuristic.

In Figure 3, we observe that even though heuristics may not provide feasible solutions, 90% of
the items are packed on average. The average percentage of items packed only depend on the class
of instance, and not the heuristic used.

In Figure 4, we observe that when bin capacities are correlated, heuristics perform very well on
instances with few resources while their performance drastically decrease as the number of resources
increases. The dot product accounts for these correlations and achieves better performance than
other heuristics.

When both capacities and item sizes are correlated, the problem is almost the same as the single
dimensional bin packing decision problem. In Figure 5, we observe that all heuristics are performing
very well except the random ones and the third dot product. In this latter case, remark that since
items and bins are normalized, all items and bins are roughly the same to this heuristic, resulting
in a random assignment.

10

Figure 5: Correlated bin capacities and item sizes, cumulative results

Figure 6: Similar bins and items, number of feasible solutions

11

For the similar instances, in Figure 6, the third dot product heuristic outperforms other heuristics
(including the two other dot products). Remark that on the initial configuration (all items remaining
and empty bins), the normalized dot product of an item with its initial bin will be close to 1 with
high probability. Other heuristics are blind to this similarity criterion.

On this benchmark we observe that as the number of resources grows, the problem quickly
becomes much harder. Moreover, dynamic item centric, dynamic bin centric and dot product
heuristics outperform bin balancing heuristics in terms of number of feasible solutions found. If we
analyze the data, we remark that if we combine the results of all heuristics from the same family,
the total number of feasible solutions will almost remain the same. Yet bin balancing heuristics
provide solutions on some instances which are infeasible for all other heuristics. Since all of these
heuristics are very fast to compute, one can consider applying all of them to problem instances.

4 Application to the Machine Reassignment Problem

The machine reassignment problem is a simplified version of problems encountered with data centers:
several processes are assigned to different servers, in several data centers, all over the world. The
system needs to be robust to energy or machine failures. Moreover, some processes depend on each
other and hence have to run on machines which are close to each other. Occasionally they consider
moving processes to different servers in order to increase system performance. In the machine
reassignment problem, system performance is modeled by an aggregated cost and the aim is to
minimize it.

The variable size vector bin packing problem is a subproblem of the machine reassignment prob-
lem: any feasible assignment for the machine reassignment problem is a feasible VSVBP assignment
for the problem defined with items sizes being processes requirements and bins capacities being the
machines capacities. Yet, there are some additional constraints in the machine reassignment prob-
lem:

• Conflict constraints: Processes are partitioned into services and two processes of the same
service cannot be assigned to the same machine.

• Transient usage constraints: when a process is moved from one machine to another, some
resources (such as disk space) remain used on the first machine. Thus, the process consumes
its requirement of these transient resources on both its initial and final machines.

• Spread constraints: Machines are partitioned into locations and each service s needs to have
its processes spread over a minimum number of distinct locations, denoted spreadMin(s).

• Dependency constraints: Machines are partitioned into neighborhoods and if a service sa

depends on a service sb, then any process from sa has to run on some machine having in its
neighborhood a machine running a process from sb.

The goal of the machine reassignment problem is to find a feasible assignment minimizing a weighted
cost. The whole subject can be found on the challenge webpage1.

In order to use a diversified multi-start approach, we need to get various, diversified, initial
feasible solutions. We only consider feasibility and not solution costs. In this section, we highlight
some structural properties of the machine reassignment problem and show how our heuristics can
be adapted to this problem and its constraints.

1http://challenge.roadef.org/2012/en/

12

We will use the subject notations in the remainder of this section: we denote by M the set of
machines, N the set of neighborhoods, P the set of processes, R the set of resources, T R ⊆ R the
set of transient resources and S the set of services. N is a partition ofM and S is a partition of P.
The function N :M→N maps each machine to its neighborhood. M : P →M is the assignment:
it maps each process to its machine. M0 denotes the initial assignment.
R(p, r) is the requirement of resource r ∈ R for the process p ∈ P. We denote by C(m, r) the
capacity of resource r ∈ R for the machine m ∈ M. The two functions R(r) and C(r) are
shorthands for

∑
p∈P R(p, r) and

∑
m∈M C(m, r), the overall requirement and capacity on resource

r. We denote the initial amount of resource r consumed on machine m by

U0(m, r) =
∑
p∈P

s.t. M0(p)=m

R(p, r) .

In this problem, we have an initial feasible solution which is used to define transient usage con-
straints. We will rely on this initial solution to derive properties and set a few process assignments.

In the following subsections, we present several properties of the machine reassignment problem
and explain how we can use them to ensure that a feasible solution exists in the search space.

4.1 Transient usage constraints

Our heuristics can easily be adapted to integrate transient usage constraints. Indeed we can take
them into account as follows: when initial bin capacities are set, let r1 be a non-transient resource
and r2 a transient resource. For each machine m ∈M, we set its capacity in resource r1 to C(m, r1)
while we set its capacity in resource r2 to C(m, r2)− U0(m, r2). Then, process requirements depend
on machines: for all r ∈ R− T R and all machines, they are equal to R(p, r), while for all r ∈ T R
they are equal to 0 for the machine M0(p) and to R(p, r) otherwise. When a process is assigned to
its initial machine, the capacity constraints on transient resources are always satisfied.

These constraints can be taken into account when sizes are computed. We can decide, for
instance, that processes with huge requirements on some transient resources will not be moved.
Moreover, remark that if a process is moved from its initial machine, then for all of its transient
resources, the space used is lost. Hence, we have the following property:

Property 2. For each process p ∈ P, if there is a transient resource r ∈ T R such that R(p, r) >
C(r)−R(r), then in every feasible assignment, p has to be assigned to its initial machine.

Proof. Let p be a process and r a transient resource such that R(r) > C(r)−R(p, r). If process p
is moved, since r is transient, a space R(p, r) on machine m cannot be used by any process. Hence,
the total available space for all processes in resource r is C(r)−R(p, r), which is smaller than the
total requirement. Therefore, any assignment M with M(p) 6= M0(p) is not feasible.

Using Property 2, we can determine that some processes cannot be moved. In such cases, we
can fix them to their initial machines. If we are interested in moving a set of processes P , then we
obtain the following corollary:

Corollary 1. Let P ⊆ P be a subset of processes. If there is a transient resource r ∈ T R such
that

∑
p∈P R(p, r) > C(r)−R(r), then in every feasible assignment, at least one process from P is

assigned to its initial machine.

13

In a greedy approach, Property 2 and Corollary 1 can be used with C and R, the residual
capacities and requirements. Moreover, they allow us to fix items and to conclude – before being
unable to pack an item – that an intermediate solution (a partial assignment) is infeasible. Note
that Property 2 and its corollary can be used during the optimization phase as well.

4.2 Conflict constraints

In order to satisfy conflict constraints, when trying to assign a process p from a service s to a
machine m, one just needs to check that there is no process from service s which is already assigned
to m.

Remark VSVBP can be reduced to VBP with conflict constraints. Indeed, let cmax = maxk∈B,j∈D c
j
k.

Set bins capacities in VBP to cmax. Add N conflicting items pn+1, . . . , pn+N , with requirements
sjn+k = cmax − cjk. Any feasible solution to this VBP problem with conflict constraints gives a
feasible assignment for the VSVBP problem.

4.3 Spread constraints

A simple way to make sure that these constraints are satisfied is the following: for each service
s ∈ S, take a subset of processes P ⊆ s such that |P | = spreadMin(s), and assign all processes of
P to distinct locations. To make sure that there is a feasible solution, we use the initial solution to
choose a subset of processes which will be assigned to their initial machines.

4.4 Dependency constraints

Dependency constraints are difficult constraints to cope with, because they bound processes to
each other and can be cyclic. We propose to take advantage of these constraints to decompose the
problem into smaller subproblems where all dependency constraints are satisfied. More precisely, let
g ∈ N be a neighborhood, m1,m2 ∈ g and p ∈ P. Remark that if M is a feasible assignment with
M(p) = m1, then, setting M(p) = m2 does not violate any dependency constraint. We can even
generalize this property to all the processes from any neighborhood into any other neighborhood:

Property 3. Let M be a feasible assignment. Denote by Pn the set of processes assigned to
neighborhood n ∈ N : Pn = {p ∈ P : M(p) ∈ n}. Any assignment M ′ such that ∀n ∈ N , ∀p1, p2 ∈
Pn, N(M ′(p1)) = N(M ′(p2)), satisfies all dependency constraints.

Proof. Let sa, sb ∈ S, sa depends on sb. Let p ∈ sa. The assignment M is feasible, hence ∃p′ ∈ sb
such that M(p′) ∈ N(M(p)). Moreover p, p′ ∈ PN(M(p)). Therefore p′ ∈ N(M ′(p)).

Property 3 implies that if one takes all processes from a given neighborhood and reassign all of
them to a same neighborhood, then the new assignment satisfies all dependency constraints.

We use Property 3 with M = M0 to decompose the problem into several subproblems where
we either try to find an assignment for all processes from a given neighborhood into itself, or
into another. In this latter case, recall that all transient resources used by the processes are lost.
Hence, we have to make sure that Corollary 1 does not immediately induce that there is no feasible
assignment. Moreover, such reassignment also implies that every process will be moved, possibly
resulting in huge move costs.

14

4.5 Experiments

In this section, we apply several variants of VSVBP heuristics to machine reassignment problems.

Test problems. We use the 30 instances (sets A, B and X) provided during the ROADEF/EURO
challenge. They are realistic instances, randomly generated according to real-life Google statistics.
The largest instances contain up to 5, 000 machines, 50, 000 processes and 12 resources. More details
on the instances can be found on the challenge webpage2.
Implemented heuristics. Combining the above ideas to handle the additional constraints, our
algorithm proceeds as follows. First, some processes are assigned to their initial machines in order
to satisfy the spread constraints. In our experiments, on average 26% of the processes are assigned
during this phase. Then, we decompose the problem into smaller independent subproblems. We
define a subproblem by selecting all processes initially assigned to a neighborhood and the aim is to
find a feasible assignment of these processes into this neighborhood. This makes dependency con-
straints automatically satisfied by any feasible assignment of the subproblems. We apply our various
VSVBP heuristics to each neighborhood. Conflict and transient usage constraints are checked on
the fly. Finally, the subproblems assignments are combined to form the global assignment.

We implemented the different types of VSVBP heuristics: item centric, bin centric and bin
balancing. For each type, we used several measures, including the static 1/C, 1/R and R/C
measures, and the dynamic dot product and process priority measures. We also combined these
measures with random orderings. In this case, we report the average results over 50 runs.

We implemented these heuristics in C++ using efficient data structures. Although there is still
room for code optimization, we will see below that most heuristics are already very fast.

Results. In order to compare the different heuristics even on instances where they do not find
feasible assignments, we report the percentage of assigned processes. 100% means that we found
a feasible solution. Table 1 presents for each heuristic type, the best results obtained among the
different measures, for each problem instance. The assignment column values are in bold font for
the highest assignment percentage over the heuristics. The results of other implemented variants
are reported in Tables 2 and 3 of Appendix B.

In Table 1, we see that best performing heuristics are the bin balancing heuristics, with priority
measure for processes and random machine order, or 1/C measure for machines and random pro-
cesses order. These variants successfully assign more than 98% of the processes in average. Since
the priority measure is updated after each assignment, this variant is way slower than the other one.
The bin centric heuristic with machines and processes ordered randomly gives an average of 97.7%
of processes assigned. Item centric heuristics with priority measure for the processes and either
1/C measure or random order for the machines give a similar average result. However, again, the
running time is higher for this latter because of the priority measure cost. Note that for instance
a 1 4, since each neighborhood is reduced to one machine, our neighborhood decomposition makes
all the heuristics find the initial solution.

Now combining the different heuristics, we see that a feasible assignment is found for 16/30
instances, with 2/10 for A instances, and 8/10 for both B and X instances. We observe that our
heuristics are likely to find solutions when R(r)/C(r) is below 85% on average.

Remark that even in the worst case (instance a 1 2), 92.9% of the processes are assigned. In such
situations, if we optimize machine utilization, we may be able to assign the remaining processes.

2http://challenge.roadef.org/2012/files/Roadef%20-%20results.pdf

15

Bin balancing Bin centric Item centric
Prio Proc Rand Proc Rand Proc Prio Proc Prio Proc

Rand Mach 1/C Mach Rand Mach Rand Mach 1/C Mach
Pbs % time % time % time % time % time
a 1 1 99 0.00 99 0.00 99 0.00 97 0.00 98 0.00
a 1 2 90.2 0.02 89.8 0.00 91.9 0.00 92.1 0.02 92.9 0.02
a 1 3 96.1 0.00 95.9 0.00 96.7 0.00 97.5 0.00 97.2 0.00
a 1 4 100 0.00 100 0.00 100 0.00 100 0.00 100 0.00
a 1 5 96.3 0.01 96.4 0.00 96.7 0.00 99.9 0.01 97.2 0.01
a 2 1 98.7 0.02 98.7 0.00 98.2 0.00 96.4 0.02 96.9 0.02
a 2 2 96.1 0.01 96 0.00 96.7 0.00 96.4 0.01 96.8 0.01
a 2 3 96.5 0.01 96.5 0.00 97.1 0.00 96.9 0.01 97.1 0.01
a 2 4 96.5 0.01 96.2 0.00 96.4 0.00 97.5 0.01 96.7 0.01
a 2 5 95.3 0.01 95.3 0.00 95.1 0.00 94.2 0.01 95.3 0.01
b 1 97.3 0.25 96.8 0.00 97.2 0.01 97.1 0.25 97.5 0.26
b 2 92 0.24 93.1 0.00 85.8 0.01 87.8 0.24 86 0.24
b 3 99.8 3.44 99.8 0.01 99.9 0.02 99.9 3.26 99.9 3.43
b 4 100 1.32 100 0.01 99.9 0.06 100 1.37 99.9 1.39
b 5 99.9 16.06 99.9 0.03 100 0.05 100 14.64 100 16.00
b 6 100 8.71 100 0.02 100 0.07 100 8.54 100 8.77
b 7 99.7 8.65 99.7 0.03 100 0.92 100 9.17 100 9.41
b 8 99.9 17.94 100 0.03 99.9 0.05 99.8 15.38 100 17.73
b 9 99.9 6.45 99.9 0.02 98.6 0.31 97.8 6.63 97.7 6.87
b 10 99.9 6.41 99.9 0.03 100 0.92 100 7.33 100 7.54
x 1 96.6 0.25 96.6 0.00 96.8 0.01 97.2 0.25 97.1 0.25
x 2 92.8 0.24 92.9 0.00 85.9 0.01 86.1 0.24 85.7 0.24
x 3 99.8 3.43 99.8 0.01 99.9 0.02 99.9 3.24 99.9 3.43
x 4 100 1.10 100 0.01 100 0.06 100 1.15 100 1.18
x 5 99.9 15.98 99.9 0.03 100 0.05 100 14.53 100 15.91
x 6 100 8.43 100 0.02 100 0.07 100 8.27 100 8.48
x 7 99.6 9.08 99.6 0.03 100 0.95 100 9.63 100 9.87
x 8 99.9 18.08 100 0.03 100 0.05 100 15.44 100 17.83
x 9 99.9 6.29 99.9 0.02 99 0.31 98.2 6.46 98.6 6.68
x 10 99.9 6.25 99.9 0.03 100 0.92 100 7.12 100 7.33

avg/sum 98.1 138.6 98.1 0.38 97.7 4.8 97.7 133.2 97.7 142.9

Table 1: Results of the three types of proposed VSVBP heuristics on ROADEF/EURO challenge
machine reassignment instances. For each heuristic type, the best variants results are reported, in
terms of percentage of processes assigned (column “%”) and CPU time (in seconds)

16

5 Conclusion

Our paper introduces the VSVBP problem, a generalization of the VBP which allows to account for
many real-life problems. We propose a family of heuristics for the VSVBP, including adaptation of
the well-known first fit and best fit bin packing heuristics, and some new variants taking advantage
of the multidimensional resources and variable bin sizes. These heuristics are flexible and easy to
implement.

We analyze the machine reassignment problem and highlight some of its properties. We use
these properties to adapt our heuristics to this problem. We generate diversified feasible solutions
that can be used as starting points for local search heuristics for instance.

Our code is open source and publicly available3.
In future works, one can experiment more sophisticated measures, possibly based on the LP

relaxation or the permutation pack and choose pack heuristics from Leinberger et al (1999). We
can also reason on partial solutions and infer that some items have to be packed in a subset of
the remaining bins. We can use constraint programming to implement this approach: propagate
decisions taken by the heuristic, then take the next decision using updated domains.

Acknowledgements

This work has been partially supported by the LabEx PERSYVAL-Lab (ANR–11-LABX-0025).

References

Aarts E, Lenstra JK (1997) Local search in combinatorial optimization. John Wiley & Sons, Inc.

Bansal N, Caprara A, Sviridenko M (2006) Improved approximation algorithms for multidimensional
bin packing problems. In: Foundations of Computer Science, 2006. FOCS’06. 47th Annual IEEE
Symposium on, IEEE, pp 697–708

Caprara A, Toth P (2001) Lower bounds and algorithms for the 2-dimensional vector packing
problem. Discrete Applied Mathematics 111(3):231–262

Caprara A, Kellerer H, Pferschy U (2003) Approximation schemes for ordered vector packing prob-
lems. Naval Research Logistics (NRL) 50(1):58–69

Chang SY, Hwang HC, Park S (2005) A two-dimensional vector packing model for the efficient use
of coil cassettes. Computers & operations research 32(8):2051–2058

Chekuri C, Khanna S (1999) On multi-dimensional packing problems. In: Proceedings of the tenth
annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial and Applied Math-
ematics, Philadelphia, PA, USA, SODA ’99, pp 185–194

Feo TA, Resende MG (1989) A probabilistic heuristic for a computationally difficult set covering
problem. Operations research letters 8(2):67–71

Feo TA, Resende MG (1995) Greedy randomized adaptive search procedures. Journal of global
optimization 6(2):109–133

3https://github.com/TeamJ19ROADEF2012/ROADEF2012-J19

17

Garey MR, Johnson DS (1979) Computers and intractability, vol 174. Freeman New York

Garey MR, Graham RL, Johnson DS, Yao AC (1976) Resource constrained scheduling as generalized
bin packing. Journal of Combinatorial Theory 21:257–298

Han BT, Diehr G, Cook JS (1994) Multiple-type, two-dimensional bin packing problems: Applica-
tions and algorithms. Annals of Operations Research 50(1):239–261

Karp RM, Luby M, Marchetti-Spaccamela A (1984) A probabilistic analysis of multidimensional
bin packing problems. In: Proceedings of the sixteenth annual ACM symposium on Theory of
computing, ACM, pp 289–298

Kou LT, Markowsky G (1977) Multidimensional bin packing algorithms. IBM Journal of Research
and development 21(5):443–448

Lee S, Panigrahy R, Prabhakaran V, Ramasubramanian V, Talwar K, Uyeda L, Wieder U (2011)
Validating heuristics for virtual machines consolidation. Microsoft Research, MSR-TR-2011-9

Leinberger W, Karypis G, Kumar V (1999) Multi-capacity bin packing algorithms with applications
to job scheduling under multiple constraints. In: Parallel Processing, 1999. Proceedings. 1999
International Conference on, IEEE, pp 404–412

Maruyama K, Chang S, Tang D (1977) A general packing algorithm for multidimensional resource
requirements. International Journal of Computer & Information Sciences 6(2):131–149

Panigrahy R, Talwar K, Uyeda L, Wieder U (2011) Heuristics for vector bin packing. Tech. rep.,
Microsoft Research

Shachnai H, Tamir T (2003) Approximation schemes for generalized 2-dimensional vector pack-
ing with application to data placement. In: Approximation, Randomization, and Combinatorial
Optimization.. Algorithms and Techniques, Springer, pp 165–177

Spieksma FC (1994) A branch-and-bound algorithm for the two-dimensional vector packing prob-
lem. Computers & operations research 21(1):19–25

Stillwell M, Schanzenbach D, Vivien F, Casanova H (2010) Resource allocation algorithms for
virtualized service hosting platforms. Journal of Parallel and Distributed Computing 70(9):962–
974

Woeginger GJ (1997) There is no asymptotic ptas for two-dimensional vector packing. Information
Processing Letters 64(6):293–297

Yao ACC (1980) New algorithms for bin packing. Journal of the ACM (JACM) 27(2):207–227

18

A Comparison of all heuristics on random VSVBP instances

Figure 7 shows the total number of successes on all instances. We observe that random heuristics
are outperformed by all other heuristics. Even if the dot product heuristic has the highest total
number of successes, it does not significantly outperform other heuristics.

B Heuristics detailed results on machine reassignment prob-
lems

In this section, we give the results for some variants of VSVBP heuristics, adapted to the machine
reassignment problem. Table 2 reports the performance of several bin balancing heuristics with
different measures, in terms of number of assigned processes and running time. Similarly, Table 3
presents the performances of several bin centric heuristic variants.

The two last variants in Table 2 as well as the fourth variant in Table 3 give results close to the
best heurictics presented Table 1. More generally, observe that all variants find feasible assignment
for some instances.

Regarding CPU time, bin balancing variants with static measures are the fastest: less than
one second to solve all the instances. Bin centric static variants take a few seconds. As expected,
the slowest variants are the ones using dynamic measures. In particular, bin centric dot product
heuristic does not scale well to large instances.

19

Figure 7: Total number of successes of the 34 heuristics, on the 4500 generated input

20

Bin balancing variants
1/C Proc 1/R Proc 1/C Proc Rand Proc Prio Proc
1/C Mach 1/C Mach Rand Mach Rand Mach 1/C Mach

Pbs % time % time % time % time % time
a 1 1 97 0.00 95 0.00 91 0.00 99 0.00 99 0.00
a 1 2 76.6 0.00 77.3 0.00 77.5 0.00 89.8 0.00 88.6 0.02
a 1 3 94.5 0.00 93.7 0.00 95 0.00 95.8 0.00 96.2 0.00
a 1 4 100 0.00 100 0.00 100 0.00 100 0.00 100 0.00
a 1 5 81.8 0.00 85.4 0.00 77.7 0.00 96.5 0.00 95.7 0.01
a 2 1 62.7 0.00 61.5 0.00 61.5 0.00 98.6 0.00 98.6 0.02
a 2 2 96 0.00 97.3 0.00 97.1 0.00 96 0.00 95.6 0.01
a 2 3 97.2 0.00 97.2 0.00 97.4 0.00 96.6 0.00 95.9 0.01
a 2 4 93.8 0.00 88.1 0.00 90.9 0.00 96.2 0.00 96.1 0.01
a 2 5 84.7 0.00 85.6 0.00 87.2 0.00 95.2 0.00 95.9 0.01
b 1 82.8 0.00 82.5 0.00 83.4 0.00 96.8 0.00 97.6 0.25
b 2 58.5 0.00 59.8 0.00 60.9 0.00 92.9 0.00 90 0.24
b 3 99.8 0.02 100 0.02 99.5 0.02 99.8 0.01 99.9 3.37
b 4 92.6 0.02 94.7 0.02 94 0.02 100 0.01 100 1.31
b 5 100 0.03 100 0.03 100 0.03 99.9 0.03 99.9 15.05
b 6 100 0.02 100 0.02 100 0.02 100 0.02 100 8.66
b 7 100 0.03 99.9 0.03 99.9 0.03 99.7 0.03 99.7 8.57
b 8 100 0.04 100 0.04 100 0.04 100 0.03 100 16.02
b 9 72.6 0.27 72.4 0.27 73.9 0.27 99.9 0.03 99.9 6.42
b 10 100 0.02 100 0.03 100 0.03 99.9 0.03 99.9 6.38
x 1 82.1 0.00 84.2 0.00 82 0.00 96.6 0.00 95.8 0.25
x 2 62.8 0.00 60.8 0.00 59.8 0.00 92.4 0.00 94.3 0.24
x 3 99.7 0.02 100 0.02 99.4 0.02 99.8 0.01 99.8 3.34
x 4 95.2 0.02 92.3 0.02 95.9 0.02 100 0.01 100 1.10
x 5 100 0.03 100 0.03 100 0.03 99.9 0.03 99.9 14.95
x 6 100 0.02 100 0.02 100 0.02 100 0.02 100 8.39
x 7 99.7 0.04 99.8 0.04 99.6 0.04 99.6 0.04 99.6 9.03
x 8 100 0.04 100 0.04 100 0.04 100 0.03 99.9 16.06
x 9 73.1 0.25 74.7 0.24 77.6 0.23 99.9 0.03 99.9 6.26
x 10 100 0.02 100 0.02 100 0.03 99.9 0.03 99.9 6.22

avg/sum 90.1 0.92 90.1 0.92 90 0.93 98 0.41 97.9 132.19

Table 2: Results of bin balancing heuristics using different measures, on ROADEF/EURO challenge
machine reassignment instances. For each variant, the percentage of processes successfully assigned
(column “%”) and the CPU time (in seconds) are reported.

21

Bin centric variants
1/C Proc 1/R Proc 1/C Proc Rand Proc Dot prod Proc
1/C Mach 1/C Mach Rand Mach 1/C Mach 1/C Mach

Pbs % time % time % time % time % time
a 1 1 88 0.00 88 0.00 89 0.00 98 0.00 88 0.00
a 1 2 79.3 0.00 79.3 0.00 79.8 0.00 92.2 0.00 80.1 0.13
a 1 3 94 0.00 94.7 0.00 96 0.00 96.5 0.00 95.2 0.01
a 1 4 100 0.00 100 0.00 100 0.00 100 0.00 100 0.00
a 1 5 74.4 0.00 78 0.00 76 0.00 94.8 0.00 81.7 0.02
a 2 1 100 0.00 100 0.00 100 0.00 97.9 0.00 100 0.73
a 2 2 98.3 0.00 98.3 0.00 98 0.00 96.8 0.00 97.8 0.01
a 2 3 98.6 0.00 98.7 0.00 98.7 0.00 96.7 0.00 99.1 0.01
a 2 4 95 0.00 95.3 0.00 92.8 0.00 96.2 0.00 94.4 0.01
a 2 5 89.1 0.00 88.3 0.00 87.7 0.00 95.2 0.00 89.4 0.01
b 1 81.5 0.01 81.5 0.01 82.3 0.01 96.7 0.00 74.7 0.69
b 2 57.6 0.01 57.1 0.01 57.9 0.01 86.6 0.01 57.5 0.80
b 3 99.4 0.02 99.4 0.03 99.7 0.02 99.9 0.02 96.2 13.67
b 4 96.8 0.09 97.4 0.09 96.6 0.09 100 0.06 89.3 36.21
b 5 100 0.05 100 0.05 100 0.05 100 0.05 98.4 65.07
b 6 73.3 0.11 71.1 0.12 71.6 0.12 100 0.07 72.3 128.21
b 7 100 1.47 100 1.45 100 1.28 100 0.90 100 1886.06
b 8 100 0.07 100 0.07 100 0.06 99.9 0.05 99.9 61.17
b 9 80 0.50 79.5 0.51 83.1 0.50 98.5 0.31 86.8 397.66
b 10 100 1.56 100 1.55 100 1.32 100 0.91 100 1368.69
x 1 80 0.01 80.8 0.01 81.1 0.01 96.7 0.00 79.5 0.63
x 2 58.6 0.01 58.4 0.01 58 0.01 86 0.01 56.5 0.84
x 3 99.1 0.02 98.8 0.03 99.5 0.02 99.9 0.02 90.7 14.79
x 4 96.2 0.09 95.2 0.09 98.9 0.08 100 0.05 89.2 29.94
x 5 100 0.05 100 0.05 100 0.05 100 0.05 96.3 66.74
x 6 70.6 0.11 69.1 0.12 70.8 0.12 100 0.07 71.9 124.91
x 7 100 1.52 100 1.52 100 1.33 100 0.95 100 2012.85
x 8 100 0.06 100 0.06 100 0.06 100 0.05 98.1 58.98
x 9 89.6 0.51 89.6 0.51 91.7 0.49 99.1 0.31 91.2 381.08
x 10 100 1.53 100 1.50 100 1.31 100 0.90 100 1310.05

avg/sum 90 7.81 90 7.77 90.3 6.95 97.6 4.81 89.1 7960.00

Table 3: Results of bin centric heuristics using different measures, on ROADEF/EURO challenge
machine reassignment instances. For each variant, the percentage of processes successfully assigned
(column “%”) and the CPU time (in seconds) are reported.

22

