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Symmetries and conserved quantities for minimal
surfaces

Pascal Romon
Université de Marne-la-Vallée

2, rue de la Butte Verte
93166 Noisy-le-Grand Cedex, France

Abstract

We describe here a general method for finding symmetries of minimal surfaces
in R3, namely transformations sending a minimal immersion to another minimal
immersion. More specifically we will be looking for infinitesimal symmetries, i.e.
vector fields tangent to a Lie group acting on the set of minimal surfaces. Using
Nœther’s theorem, we derive conserved quantities, i.e. cohomology classes on H1,
that permit us to write so called balancing formulas. Some examples of applications
of such balancing formulas are quoted below. Others may be found in [6].

1 Jet bundles and differential equations

We follow the formalism in [5] transposed in the fiber bundle setting. Though we
are mostly interested in maps from a surface M to R3, we will write them as sections
of the trivial bundle M × R3. This method follows the more general construction
(see [9]) and explains the type of vector fields and transformations we will encounter.

1.1 Jet bundles and prolongation

Let N be a trivial bundle with base Mm and fiber Fn. Coordinates on M and F
will be noted respectively x = (xi)1≤i≤m and u = (uα)1≤α≤n (called the independent
and dependent variables). Two local sections s1, s2 around p ∈M are equivalent at

p if they coincide up to first order, i.e. ∂(uα◦s1)
∂xi

(p) = ∂(uα◦s2)
∂xi

(p) for all i, α. The
equivalence class is called the 1-jet of s1 at p; the collection of all 1-jets is a manifold
N1, called the first jet bundle, endowed with two bundle maps π1 : N1 −→ M and
π1,0 : N1 −→ N . It is easy to describe N1 using the coordinate u(1) = (xi, uα, uαi )

with uαi = ∂(uα◦s)
∂xi

(p); projections π1 and π1,0 are obvious. One defines then a
prolongation operator from Γ(N) to Γ(N1) by

pr1s(x) = (xi, sα,
∂sα

∂xi
)i,α
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In the same way, we can define the k-jet bundle Nk −→ N −→ M and the k-th
prolongation prk : Γ(N) −→ Γ(Nk). We need adopt a multi-index notation1: I =
(i1, . . . , i`) will denote a `-tuple with 1 ≤ i1 ≤ · · · ≤ i` ≤ m and

∂I =
∂

∂xi1
· · · ∂

∂xi`

Furthermore |I| = ` is called the length of I; if |I| = 0 then I = ∅ and ∂If = f .
The k-jet at p of a local section is its equivalence class for the relation s1 ∼p s2 if
∂Is1(p) = ∂Is2(p) for all |I| ≤ k. A coordinate on Nk is u(k) = (xi, uαI ) for |I| ≤ k
and any α, and the k-th prolongation is

prks(x) = (xi, ∂Is
α)i,α,|I|≤k

We have a sequence of fiber bundles

· · · −→ Nk −→ · · · −→ N1 −→ N
↓ ↓ ↓

· · · id−→ M
id−→ · · · id−→ M

id−→ M

and we define N∞ −→M to be its inverse limit. The infinite jet at p of a local section
is its equivalence class for the relation s1 ∼p s2 if ∂Is1(p) = ∂Is2(p) for all I. N∞
is an infinite dimensional bundle with coordinate u(∞) = (xi, uαI )α,I . The infinite
prolongation pr∞ is defined in a similar way.

Vector fields on N∞ are sections of the tangent bundle TN∞; they are written as
linear combinations of the ∂

∂xi
and ∂

∂uαI
without limitation on the number of terms.

Vector fields in X(N) = Γ(TN) can also be prolonged like the sections. However
the formula is more delicate to establish and write; it involves the total derivatives
Di ∈ Γ(TN∞), defined in coordinates by

Di =
∂

∂xi
+
∑
α,I

uαI∪i
∂

∂uαI

and DI = Di1 · · ·Di` (when working in Nk one simply writes a finite sum with
|I| ≤ k). Then if X =

∑
iX

i ∂
∂xi

+
∑

α U
α ∂
∂uα ,

prkX =
∑
i

Xi ∂

∂xi
+
∑
α

∑
0≤|I|≤k

Uα,I
∂

∂uαI
(k ∈ N ∪∞)

where

Uα,I =
∑
i

XiuαI∪i + DI

(
Uα −

∑
i

Xiuαi

)
One frequently uses a specific function algebra on N∞, namely F = lim

−→
F(Nk) =

{f ∈ F(N∞);∃k, f ∈ F(Nk)}.
1Warning: this notation (as found in [5]) is standard in PDE theory but not in jet bundle theory

(see [9]).
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1.2 Differential equations

A differential equation of order k in this context is just a closed subbundle R in Nk;
locally it is given by the equations R(u(k)) = 0 where R = (R1, . . . , Rp) is a p-tuple
of functions in F(Nk). A solution is a section s ∈ Γ(E) such that prks ∈ R. We
can also embed the problem in some superior jet bundle or even N∞; we need then
prolong R in the subbundle R∞ locally defined by the set of equations

DKR
j(u(∞)) = 0 ∀K

In particular a variational principle is given by a lagrangian density2 L ∈ F(Nk).
For any s ∈ Γ(Nk) set

L(s) =

∫
M
L(prks(x)) dx1 ∧ · · · ∧ dxm

The critical points of L are the sections s ∈ Γ(N) whose prolongation prs stay
in the subbundle determined by the Euler-Lagrange equations Eα(L)(u) = 0 for
1 ≤ α ≤ n (Eα(L) generally belongs in F(N2k)):

Eα(L) =
∑
I

(−D)I
∂L

∂uαI

where (−D)I = (−1)|I|DI .
There eventually remains the problem of recognizing the immersions; that is not

a priori implied by the previous study. Either one accepts solutions with singulari-
ties, or one restricts to the sections of the open set inNk given by: rank (u1, . . . , um) =
m.

1.3 Symmetries and variational symmetries

Let G be a Lie group acting on the bundle N . For instance, G may be a group of
transformations for the base space M , or fiber transformations; typically (x, u) 7→
(x̃(x), ũ(u)). These are called classical transformations [2]. Elements of G may
also be gauge transformations (x, u) 7→ (x̃(x), ũ(x, u)); or even more generally point
transformations (x, u) 7→ (x̃(x, u), ũ(x, u)). Given a group G one computes its k-th
prolongation, prkG which acts on Nk (k possibly infinite). Of course G may be only
a local group of transformations. We may also consider the infinitesimal action of
G, i.e. vector fields in the Lie algebra g, and we will always write g as a subalgebra
of Γ(TN).

Let R = (R1, . . . , Rp) be a partial differential equation of order k, i.e. a subbun-
dle R in Nk, satisfying some technical hypotheses3 (clear for minimal surfaces). A
group G leaves R invariant iff prG maps R into itself. A vector field X ∈ Γ(TN)
is an infinitesimal symmetry of R if et prX maps R into itself, that is (prkX)R = 0

2if N is not trivial, L is rather defined as a section of the pull-back bundle π∗
k(
∧m

T ∗M), where πk is
the projection Nk −→M .

3we ask for local solvability, which is implied by analyticity and normality of the Euler-Lagrange
equations.
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on R (taking the Lie derivative). To check for such a symmetry we need only write
the k-th prolongation and apply it to the functions R1, . . . , Rp.

If R is the Euler-Lagrange equation for a Lagrangian L =
∫
M L, we define a

variational symmetry to be a vector field X =
∑

iX
i ∂
∂xj

+
∑

α U
α ∂
∂uα such that

(prX)L+ LDiv (X1, . . . , Xm) = 0

for all u, where Div (X1, . . . , Xm) = D1X
1+· · ·+DmX

m is called the total divergence
of (X1, . . . , Xm). Such an infinitesimal symmetry preserves critical points of L hence
(prX)Eα(L) = 0 for all α. However this condition is too restrictive. Indeed it is
enough for X to be a divergence symmetry :

∃P = (P1, . . . , Pm), (prX)L+ LDiv (X1, . . . , Xm) = Div (P1, . . . , Pm)

This ensures the invariance of the Euler-Lagrange4 equations under X.

Generalizations: It is possible to look for more general type of infinitesimal
symmetries and indeed we will meet some of these in the following. A first approach
(due to Nœther herself) consists in taking fields in F⊗ Γ(TN) :

X =
∑
i

Xi ∂

∂xi
+
∑
α

Uα
∂

∂uα

with Xi and Uα in F (more generally X is a section of the pull back bundle π∗`,0(TN)
for some finite `, where π`,0 : N` −→ N ; see [9] for details). Another approach uses
contact transformations and vector fields: we take X in Γ(TN`) instead of Γ(TN);
however we have to restrict to those which map solutions to solutions; there is
then a compatibility condition written in terms of connection or differential ideal
(see [2, 10]). This might however take us too far from the classical transformations.
Finally we may consider vector fields X defined only on R; that enlarges our scope
(e.g. the conjugate family for minimal surfaces).

1.4 Nœther’s theorem

A conservation law is a (m−1)-form ω in Ωm−1(M)⊗F, whose restriction to R∞ is
closed for the total exterior derivative D. In other words, let s ∈ Γ(N) be a solution
with prolongation prs, then

(Dω)(prs) = d(ω(prs)) = 0

Let γ be a (m− 1)-chain in M ; then
∫
γ ω(prs) only depends on the homology class

of γ, for any fixed solution s. We call this integral a conserved quantity.

4The Euler-Lagrange equations usually have higher order than L; hence this condition is a simpler one;
however there may be symmetries of the Euler-Lagrange equation which are not variational symmetries
(even not divergence symmetries).

4



Nœther’s theorem states the equivalence between variational symmetries and
conservation laws. We will use it in the simple case where L is an order 1 la-
grangian, and the variational symmetry is vertical, i.e. only changes the fiber N :
X =

∑
Xα ∂

∂uα . Then using integration by parts:

(pr1X)L =
∑
α

[
Xα ∂L

∂uα
+
∑
i

DiX
α ∂L

∂uαi

]

=
∑
α

[
Xα ∂L

∂uα
−
∑
i

XαDi
∂L

∂uαi

]
+
∑
i

Di

(∑
α

Xα ∂L

∂uαi

)

= XE(L) +
∑
i

DiCi with Ci =
∑
α

Xα ∂L

∂uαi

We define the conservation law

ω =
∑
i

(−1)i+1Ci dx
1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxm

so that Dω = (
∑

iDiCi) dx
1 ∧ · · · ∧ dxm which vanishes when evaluated at a pro-

longed solution u(∞) = prs. If X is a divergence symmetry, so that (pr1X)L =
Div (P1, . . . , Pm), we need only replace Ci by Ci − Pi .

2 Minimal surfaces

Let M be a simply-connected bounded domain of R2 and N be the trivial bundle
M × R3. We will see later how and when symmetries and conserved quantities
extend to non-simply connected surfaces. For the sake of simplicity, we assume that
M is the domain of a coordinate chart (x1, x2). Minimal surfaces M −→ R3 are the
critical points of the order 1 lagrangian

L =

∫
M
L(

∂f

∂x1
,
∂f

∂x2
) dx1dx2

with L ∈ F(N1) is the map : u(1) 7→ ‖u1 × u2‖; × is the cross product in R3

and ‖.‖ the Euclidean norm associated to the scalar product 〈·|·〉. As the target
space is a vector space, we use simpler index-free notations, like ∇uIL for the vector
( ∂L∂uαI

)1≤α≤3. Then the Euler-Lagrange equation in the second order jet bundle is:

Eα(L)(u(2)) =
∑
J

(−D)J
∂L

∂uαJ
(u(2))

= −
∑
β

((
uβ11

∂

∂uβ1
+ uβ12

∂

∂uβ2

)
∂L

∂uα1
+

(
uβ12

∂

∂uβ1
+ uβ22

∂

∂uβ2

)
∂L

∂uα2

)
or in vector notation, calling ν the unit normal vector field, ν = (u1 × u2)/L :

E(L)(u(2)) =
∑
J

(−D)J∇uJL(u(2)) = −D1(u2 × ν)− D2(ν × u1)

= −u2 × D1ν − u12 × ν − ν × u12 − D2ν × u1
= −u2 × D1ν − D2ν × u1
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One checks that 〈E(L)|u1〉 = 〈E(L)|u2〉 = 0 thus E(L) = 〈E(L)|ν〉ν = −2LHν =
−2H(u1 × u2) with H the mean curvature:

H =
〈ν| ‖u2‖2u11 + ‖u1‖2u22 − 2〈u1|u2〉u12〉

2‖u1 × u2‖2

If the immersion is conformal then H = 1
2L〈∆u|ν〉. Furthermore ∆u is parallel to

ν, hence E(L) = −∆u.

2.1 Symmetries

Notice that L does not depend on the x variable, but actually we know more :
a change in parametrisation does not change the minimality5. This can be easily
verified : let X = X1 ∂

∂x1
+X2 ∂

∂x2
; its first prolongation is

(pr1X)L(u) = −
∑
α

[(X1
1u

α
1 +X2

1u
α
2 )
∂L

∂uα1
(u) + (X1

2u
α
1 +X2

2u
α
2 )
∂L

∂uα2
(u)]

= −〈X1
1u1 +X2

1u2|∇u1L〉 − 〈X1
2u1 +X2

2u2|∇u2L〉
= −〈X1

1u1 +X2
1u2|u2 × ν〉 − 〈X1

2u1 +X2
2u2|ν × u1〉

= −(X1
1 +X2

2 )〈ν|u1 × u2〉 = −LDiv (X1, X2)

This equation tells us that a change of variable x̃ = φ(x) is a symmetry; indeed L
may change, but the area L does not.

From now on we restrict our attention to infinitesimal symmetries keeping x
fixed (so-called vertical generalized vector fields)6, so the term LDiv (X1, . . . , Xm)
will always vanish, so we write:

X =
3∑

α=1

Xα ∂

∂uα

and Xα ∈ F. The first prolongation is simply

pr1X = X +
∑
α

[(D1X
α)

∂

∂uα1
+ (D2X

α)
∂

∂uα2
]

and noting DiX = (DiX
1,DiX

2,DiX
3), X is a variational symmetry if

(pr1X)L(u(1)) = 〈D1X|u2 × ν〉+ 〈D2X|ν × u1〉 = 0 (1)

Let us analyse what are the known symmetries.

5for that very reason we often think of the minimal surface independently of its parametrisation.
6as proven in [5], we can do so without loss of generality.
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Classical transformations: Classical vector fields7 leaving the metric in R3

invariant will not change L, let alone H. These are simply translationsX = constant
(hence D1X = D2X = 0) and rotations in R3 for which X(u) = A×u for some axis
vector A.

(pr1X)L(u(1)) = 〈A×u1|u2×ν〉+〈A×u2|ν×u1〉 = 〈ν|(A×u1)×u2+u1×(A×u2)〉

Jacobi’s equality for the cross product implies:

(A× u1)× u2 + u1 × (A× u2) = (A× u1)× u2 + (u2 ×A)× u1 = −(u1 × u2)×A

hence (pr1X)L(u(1)) = 〈ν|A× (u1 × u2)〉 = 0. Dilations are not variational symme-
tries, however it will be useful to compute (pr1X)L(u(1)) for X =

∑
uα ∂

∂uα :

(pr1X)L(u(1)) = 〈u1|u2 × ν〉+ 〈u2|ν × u1〉 = Div (P1, P2)

with P1 = 〈u|u2 × ν〉 and P2 = 〈u|ν × u1〉; indeed

Div (P1, P2) = 〈u1|u2 × ν〉+ 〈u|u12 × ν + u2 × D1ν〉
+〈u2|ν × u1〉+ 〈u|ν × u12 + D2ν × u1〉

= (pr1X)L(u(1)) + 〈u|u2 × D1ν + D2ν × u1〉
= (pr1X)L(u(1))− 〈u|E(L)(u(1))〉

which vanishes for minimal surfaces only.

Proposition 1 The classical variational vertical symmetries correspond exactly to
the translations and affine rotations of R3.

Proof: Let X ∈ X(R3) be a variational symmetry; then (1) is true for any
prolonged solution u = prs; in particular for conformal immersions, satisfying
〈u1|u2〉 = 0 and ‖u1‖ = ‖u2‖. We get the simpler equation:

(pr1X)L(u(1)) = 〈dX(u)u1|u1〉+ 〈dX(u)u2|u2〉 (2)

For any rotation R, Rs still is minimal and conformal. Fix any point p ∈ M , and
choose an affine rotation keeping s(p) fixed (so uα(p) does not change); only u1 and
u2 vary, and take actually arbitrary values (provided 〈u1|u2〉 = 0 and ‖u1‖ = ‖u2‖).
Clearly for any u ∈ R3, dX(u) is a linear map satisfying

∀ξ, η ∈ R3 such that 〈ξ|η〉 = 0, ‖ξ‖ = ‖η‖, 〈dX(u) ξ|ξ〉+ 〈dX(u) η|η〉 = 0 (3)

Then dX(u) is skew-symmetric (see lemma 2 below). That is not possible, except for
constant X. Indeed the second order differential d2X(u) = d(dX)(u) is a symmetric
vector valued form and we have both properties:{

〈d2X(u) (ζ, η)|ξ〉 = 〈d2X(u) (η, ζ)|ξ〉 symmetry
〈d2X(u) (ζ, η)|ξ〉 = 〈d2X(u) (ζ, ξ)|η〉 skew-symmetry of d2X(u)ζ

7in the sense defined above: vector fields on R3 only.
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We get a contradiction by writing

〈d2X(u) (ζ, η)|ξ〉 = −〈d2X(u) (ζ, ξ)|η〉 = −〈d2X(u) (ξ, ζ)|η〉

so that the expression is both symmetric and skew-symmetric in ζ and η ! We

conclude that d2X vanishes identically, so X(u) = dX(0)u+constant with dX(0) ∈
so(3), which is indeed an affine rotation (or simply a translation if dX(0) = 0). �

Lemma 2 Let A ∈ L(R3) be such that

∀ξ, η ∈ R3 such that 〈ξ|η〉 = 0, ‖ξ‖ = ‖η‖, 〈Aξ|ξ〉+ 〈Aη|η〉 = 0

then A is skew-symmetric.

Proof: Obviously skew-symmetry is a sufficient condition for that property
to hold. Now let ξ be a unit real eigenvector of A with associated eigenvalue
λ (there has to be at least one such). Then for any unit vector η ∈ ξ⊥,
〈Aη|η〉 = −λ = −λ〈η|η〉. Thus on ξ⊥, ζ 7→ 〈Aζ|ζ〉 is just the quadratic
form −λ‖ζ‖2. Let (η1, η2) be a orthonormal basis of ξ⊥; then applying the
hypothesis yields:

0 = 〈Aη1|η1〉+ 〈Aη2|η2〉 = −2λ

So in the orthonormal basis (ξ, η1, η2) the matrix of the bilinear form 〈A · |·〉
is written  0 a b

0 0 c
0 −c 0


But reapplying the hypothesis to (η2,

ζ+η1√
2

) yields:

0 = 〈Aη2|η2〉+
1

2
〈A(ξ + η1)|(ξ + η1)〉 =

1

2
〈Aη1|ξ〉 = a

The same computation gives b = 0. We conclude that A is skew-symmetric. �

Let us now describe generalized symmetries.

The conjugate family: We define an action of S1 on the solutions by
θ 7→ uθ = cos θ u + sin θ v, where v is “the” conjugate immersion (since v
is only defined up to translation, assume a point p ∈ M is fixed and and
u(p) = v(p) = 0). If u is harmonic, v is just a conjugate harmonic map;
otherwise there exists a change of coordinates φ such that û = u◦φ is harmonic;
then set v = v̂ ◦φ−1. It is straightforward to check that the definition does not
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depend on the choice of φ. Thus we define: X = d
dθ |θ=0

uθ = v. A (somewhat

long) calculation, eliminating φ, shows that

D1X = u1 × ν D2X = u2 × ν

which corresponds to D1X = v1 = −u2 and D2X = v2 = u1 in the conformal
case. Clearly condition (1) is satisfied. Although DiX exists for any u ∈ TN∞
it is locally integrable if and only if D2D1X = D1D2X but D1(u2 × ν) −
D2(u1 × ν) = −E(L) vanishes exactly on minimal maps. So this is truly
a generalized variational symmetry tangent only to the solution subbundle.
Moreover, X =

∫ x
u1 × ν dx1 + u2 × ν dx2 cannot truly be described as a

function on any k-th order jet space; but – considering analyticity – as a
function of all derivatives, i.e. X ∈ F(N∞)⊗ X(N).

The imaginary rotations: Start with the Weierstrass (hence conformal)
representation for minimal surfaces, so u(x) = Re

∫ x
p

(g−1 − g, i(g−1 + g), 2)η;

following Lopez and Ros ([7]), we define an action of R∗+ : (g, η) 7→ (λg, η), so
uλ(x) = Re

∫ x
p

(λ−1g−1 − λg, i(λ−1g−1 + λg), 2)η Thus

X =
duλ

dλ |λ=1
= Re

∫ x (
− (g−1 + g), i(−g−1 + g), 0

)
η

Comparing it with the conjugate surface parametrisation v = Re
∫ x
p

(
i(g−1 −

g),−(g−1 + g), 2i
)
η we infer that X = (v2,−v1, 0) = v× e3. Obviously we can

generalize to the field X = A × v for some fixed vector A (here again X is
only defined on the solution subbundle). We get

(pr1X)L(u(1)) = 〈A× (u1 × ν)|u2 × ν〉+ 〈A× (u2 × ν)|ν × u1〉
= 〈A|(u1 × ν)× (u2 × ν) + (u2 × ν)× (ν × u1)〉
= 2〈u1 × u2|A〉

Hence (pr1X)L(u(1)) = Div (P1, P2) with P1(u
(1)) = 〈u× u2|A〉 and P2(u

(1)) =
〈u1 × u|A〉. We see that its form is very similar to rotations (but for taking v
instead of u); meaning of the name ”imaginary rotations” will become more
obvious later.

3 Applications of Nœther’s theorem

3.1 Formulation

For minimal surfaces it is very easy to define a Nœther 1-form ω. Let X be
a variational (possibly divergence) symmetry: (pr1X)L = D1P1 +D2P2. Then
set

ωX = (〈X|u1 × ν〉+ P2) dx
1 + (〈X|u2 × ν〉 − P1) dx

2

9



and by construction ωX is closed, hence locally integrable on the solution
subbundle into a function fX .

Translations and flux: Take X any constant vector A ∈ R3 generating a
translation subgroup, then there is no divergence term and

ω = 〈A|(u1 × ν)dx1 + (u2 × ν)dx2〉

Clearly one can put together these results for various A by defining a R3-valued
1-form

~ω = (u1 × ν)dx1 + (u2 × ν)dx2

then
∫
γ
~ω is a homological invariant, called the flux or force F along the curve

γ. We note that the primitive of ~ω is nothing else than the conjugate map v
(up to a constant); indeed the flux of u along γ is the period of v along that
same curve.

Rotations and torque: For rotation with vector axis A, we get

ω = 〈A× u|(u1 × ν)dx1 + (u2 × ν)dx2〉

Here again we define a vector-valued 1-form ~ω = u× (u1 × ν) dx1 + u× (u2 ×
ν) dx2. The integral of ~ω along a curve is called the torque T of γ. It must be
noted that unlike the flux, T (γ) changes when the immersion u is translated
(because of the Lie bracket of the translation with the rotation); so if u −→ u+c
then T (γ) −→ T (γ) + c×F(γ). A neat result can be proved using the torque:

Proposition 3 : Let M be a minimal surface with two (or three) vertical
catenoidal ends, with axes labelled D1, D2 (D3). If there are two ends then
both axes are identical. In there are three ends, then all three axes lie on the
same vertical plane.

Proof: Let us first compute the flux and torque around a vertical catenoidal
end8 centered around the third coordinate axis. The end can be parametrized
as an analytic graph :

x3(x1, x2) = c logR + b+O(r−2)

where c, b are constants and r = ‖x‖ =
√

(x1)2 + (x2)2. Then up to an
additive factor O(r−3)

u1 =

 1
0

cx1/r2

 , u2 =

 0
1

cx2/r2

 , ν =

 −cx1/r2
−cx2/r2

1− c2/2r2


8meaning by that along a positively oriented curve representing the homology of the end.
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u1×ν =

 c2x1x2/r4

−1 + c2((x2)2 − (x1)2)/2r4

−cx2/r2

 , u2×ν =

 1 + c2((x2)2 − (x1)2)/2r4

−c2x1x2/r4
cx1/r2


so ∫

‖x‖=r
~ω = 2πc e3 +O(r−2)

Since the integral is independent of r for homological reasons, F = 2πc e3. For
the torque note that it is hence invariant by vertical translation; we may as
well assume b = 0. Then up to O(r−2)

u× (u1 × ν) =

 c log r − c3 log r((x2)2 − (x1)2)/2r4 − c(x2)2/r2
c3 log r x1x2/r4 + cx1x2/r2

−x1 + c2((x2)2 − (x1)2)x1/2r4 − c2x1(x2)2/r4


Hence the torque vanishes (taking the limit as r −→ +∞). Now if the catenoidal
end is not centered on the x3-axis, but on an axis D, such that D−c is the x3-
axis, then the torque around the end is T = c×F . If we have many catenoidal
ends with respective fluxes Fi = fie3 and torques Ti = ci × Fi = fici × e3
(taking all ci to be horizontal vectors). We choose oriented representatives γi
of all ends, and they bound a compact piece of the surface, hence the conserved
quantity vanish. For instance, the sum of fluxes and the sum of torques vanish.
For two ends, f1 = −f2 6= 0 and

0 = T1 + T2 = f1(c1 − c2)× e3

thus c1 = c2. For three ends, the sum of torques is(
3∑
1

fici

)
× e3 = 0

However we may translate the surface so that c3 = 0; we then get f1c1+f2c2 =
0, a non trivial linear relation. Of course similar relationship hold for a greater
number of ends, though without giving sufficient information. This kind of
relation is called a balancing formula. �

Dilations: For dilations the conserved quantity may be computed (though
dilations are no generalized variational symmetries), but it is simply a con-
stant, indeed if X(u) = u, ωX = 0.

Conjugate family: We denote here v a conjugate surface; notice however
that v is not well-defined, since periods may be non-zero; so that v is defined
on some cover of M ; furthermore v is only defined up to translation. For any
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closed curve γ, the invariant associated with the infinitesimal conjugate action
is

C(γ) =

∫
γ

〈v|dv〉

A different choice of origin for v changes this invariant; if v −→ v + c, C(γ) −→
C(γ) + 〈c|F(γ)〉. which makes the invariant geometrically meaningful only for
curves with zero flux9. Notice however that this integral is trivial for zero flux,
yielding

∫
γ
d ‖v‖2 = 0.

Lopez-Ros transformation: The infinitesimal symmetry is X = A × v
for a chosen vector A; taking all direction in account we define here a vector
valued 1-form ~ω by

~ω = (v × v1 − u× u1)dx1 + (v × v2 − u× u2)dx2 = v × dv − u× du

and we set P(γ) =
∫
γ
~ω. Clearly P is independent of translations of u, but if

v −→ v + c, then P −→ P + c×F(γ).

4 Flat ends

We study in details a flat embedded annular endM . Assume for simplicity that
M is horizontal. Let u(z) = Re

∫ z
(1 − g2, i(1 + g2), 2g)f dz be the standard

Weierstrass representation, defined on a open neighbourhood of zero in C. Up
to a change of orientation, we may assume g(0) = 0 with multiplicity k ≥ 2.
Embeddedness forces f to have a double pole. We may also choose the local
coordinate around zero and rotate the surface so that g(z) = azk + O(zk+1)
for some real number a > 0 and f(z) = eiαz−2 for some other real number α.
Then up to translation and noting z = reiθ

u(z) =

 −r−1 cos(α− θ) +O(r2k−1)
r−1 sin(α− θ) +O(r2k−1)

2a
k−1 cos(α + (k − 1)θ)rk−1 +O(rk)


and the conjugate map is well-defined

v(z) =

 −r−1 sin(α− θ) +O(r2k−1)
−r−1 cos(α− θ) +O(r2k−1)

2a
k−1 sin(α + (k − 1)θ)rk−1 +O(rk)


hence there is no flux around that end. Notice that the integration constants
are chosen so that both ends are “centered”. To imagine the end, we study
its intersections with the asymptotic plane x3 = 0, and that gives us θ ≡

9In this latter case only, the starting point in the integral does not matter.
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(π
2
−α)/(k−1)+O(r) mod π/(k−1) . So the intersection stays within bounded

distance from 2(k − 1) rays from the origin given by r 7→ (−r−1 cos(α −
θ), r−1 sin(α−θ), 0) for any θ satisfying the previous relation. In particular for
multiplicity 2 ends, the intersection stays close to the line R(sin 2α, cos 2α, 0).

The positively oriented curve γ will be for constant r θ 7→ re−iθ (coherent
with the Gauss map pointing towards the south pole). Let us compute the
torque T =

∫
γ
u× dv.

u×∂v
∂θ

=

 −r−1 cos(α + θ) +O(r2k−1)
r−1 sin(α + θ) +O(r2k−1)

2a
k−1 cos(α− (k − 1)θ)rk−1 +O(rk)

×
 −r−1 cos(α + θ) +O(r2k−1)

r−1 sin(α + θ) +O(r2k−1)
−2ark−1 cos(α− (k − 1)θ) +O(rk)



=

 − 2ka
k−1r

k−2 sin(α + θ) cos(α− (k − 1)θ) +O(rk−1)

− 2ka
k−1r

k−2 cos(α + θ) cos(α− (k − 1)θ) +O(rk−1)

O(r2k−2)


When we integrate as r −→ 0, all positive powers of r vanish and only constant
terms may remain, that is in rk−2 iff k = 2; otherwise the torque simply
vanishes10. Let us compute T in the k = 2 case. Then

T = −4a

∫ π

−π

 sin(α + θ) cos(α− θ)
cos(α + θ) cos(α− θ)

0

 dθ = −4πa

 sin 2α
cos 2α

0


That is a horizontal vector, depicting the asymptotic direction characteriz-
ing the end. Indeed the intersection with the asymptotic horizontal plane is
parametrised by : r 7→ ±r−1(sin 2α, cos 2α) + O(1); hence there is a well-
defined asymptotic direction, with vector T . The sign of T determines on
which side of this asymptotic line is the surface above (or under) the asymp-
totic plane (see figure ??).
[[ Image ]]
That stays true, even under less restrictive conditions as those used above for
the computations. In the general case, the end is still horizontal but we do
not assume that the leading coefficients in g and f expansion are respectively
real and unitary. Then

T = 4π

 Im c
Re c

0

 where c = Res (
√
g fdz; 0)2

Indeed it is possible to choose locally a square root h of g defined up to sign.
So c is a well defined invariant.

10A few simple consequences may be drawn from this and the previous proposition, such as: surfaces
with two catenoidal ends and flat ends of multiplicities greater than 2 have the same axis for both
catenoidal ends (e.g. Costa’s surface).
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The conserved quantity for the infinitesimal conjugation is C =
∫
γ
〈v|dv〉

〈v|∂v
∂θ
〉 = 〈

 −r−1 sin(α + θ) +O(r2k−1)
−r−1 cos(α + θ) +O(r2k−1)

2a
k−1 sin(α− (k − 1)θ)rk−1 +O(rk)

 |
 −r−1 cos(α + θ) +O(r2k−1)

r−1 sin(α + θ) +O(r2k−1)
−2ark−1 cos(α + (1− k)θ) +O(rk)

〉
= O(r2k−2)

which vanishes when integrated along γ.
For the Lopez-Ros transformation, P =

∫
γ
v× dv− u× du. Here again the

only interesting terms are those in r0, requiring k = 2; let us assume that and
single out the relevant terms

v × ∂v

∂θ
=

 −r−1 sin(α + θ) +O(r3)
−r−1 cos(α + θ) +O(r3)
2ar sin(α− θ) +O(r2)

×
 −r−1 cos(α + θ) +O(r3)

r−1 sin(α + θ) +O(r3)
−2ar cos(α− θ) +O(r2)



= 2a

 cos(α + θ) cos(α− θ)− sin(α + θ) sin(α− θ)
− cos(α + θ) sin(α− θ)− sin(α + θ) cos(α− θ)

0

+ vanishing terms

= 2a

 cos 2α
− sin 2α

0

+ vanishing terms

and
∫
γ
v × dv = −4πae1. Also

u× ∂u

∂θ
=

 −r−1 cos(α + θ) +O(r3)
r−1 sin(α + θ) +O(r3)
2ar cos(α− θ) +O(r2)

×
 r−1 sin(α + θ) +O(r3)

r−1 cos(α + θ) +O(r3)
2ar sin(α− θ) +O(r2)



= 2a

 sin(α + θ) sin(α− θ)− cos(α + θ) cos(α− θ)
cos(α + θ) sin(α− θ) + sin(α + θ) cos(α− θ)

0

+ vanishing terms

2a

 − cos 2α
sin 2α

0

+ vanishing terms

So the integral yields

P = 8πa

 cos 2α
− sin 2α

0

 = 2

 −1
1

0

 T
In the general case, let ν the unit normal at the end, then

P = 2ν × T
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Proposition 4 Let M be a singly-periodic complete minimal cylinder, with
two flat ends in the quotient, and suppose M is symmetric with respect to a
vertical plane P . Then both ends are asymptotically identical.

Proof: Let T be the period and γ a generator of the homology of the
cylinder. Then both T and F(γ) belong in P the plane of symmetry. Let
γ + T be the curve γ translated by T ; then T (γ + T ) = T (γ) + T ×F(γ). So
that if Ti denotes the torque around the i-th end

T (γ + T )− T (γ) = T ×F(γ) = T1 + T2

And by symmetry, both torques Ti are perpendicular to P . Consider now the
Lopez-Ros invariant P . Since the conjugate map is not well defined (there may
be flux along γ), P is not well-defined; however P ′ = 〈P|F(γ)〉 is. Translation
in u leaves P invariant, thus P ′(γ + T ) = P ′(γ). So we must have at the ends

0 = P ′1 + P ′2 = 2ν1 × T1 + 2ν2 × T2 = 2ν1 × (T1 − T2)

where νi is the normal at then end, and belongs in P . Hence T1 = T2. Both
ends are indeed asymptotically equal. �

If there is no plane of symmetry, we can however say something. Suppose
T × F(γ) 6= 0 (can it vanish ?). Define then the plane P = Vect(T,F(γ)).
This plane is vertical. Indeed T (γ + T )− T (γ) = T × F(γ) = T1 + T2 which
is horizontal. Use the splitting R3 = P ⊕ P⊥ to write Ti = T Pi ⊕ T ⊥i . If F(γ)
is not vertical we can follow the same reasoning as above, and conclude that
T ⊥1 = T ⊥2 , and then T P1 = T P2 . What remains is P1 + P2 = 2ν1 × T P1 which
is equal to ±F(γ) × F(δ) where δ is the other generator of the torus (in the
quotient).
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5 Other symmetries

The harmonic+conformal subbundle: For simplicity reasons, we may
consider instead of the minimal surface equation, the harmonic+conformal
equation, defined by 

u11 + u22 = 0
‖u1‖2 = ‖u2‖2
〈u1|u2〉 = 0

(4)

The corresponding subbundle H ⊂ N2 is obtained through (4) and its deriva-
tives, up to order 2. This adds in theory 4 equations

〈u11|u1〉 = 〈u12|u2〉
〈u12|u1〉 = 〈u22|u2〉
〈u11|u2〉+ 〈u12|u1〉 = 0
〈u12|u2〉+ 〈u22|u1〉 = 0

(5)

Using the condition u11 + u22 = 0, we see that two of the previous conditions
are redondant, hence we get a rank 7 system

u11 + u22 = 0
‖u1‖2 = ‖u2‖2
〈u1|u2〉 = 0
〈u11|u1〉 = 〈u12|u2〉
〈u12|u1〉 = 〈u11|u2〉

(6)

Hence H is a dimension 13 subbundle of N2.

5.1 Harmonic conformal analysis

Let us now consider only minimal immersions f which are conformal (hence
harmonic). The equation reduces to two (non-variational) PDEs, namely the
Cauchy-Riemann equations for φ = ∂1s− i∂2s

F (φ) = ∂1φ+ i∂2φ = 0

and the conformality condition G(φ) = 〈φ|φ〉 =
∑

α(φα)2 = 0. Notice that
by using this formulation one avoids the problem of choosing an integration
constant; two solutions differing by a translation are identified. Also first-
order symmetries in u become zero-order in φ (as will be illustrated below).
However it must be remembered that φ does not actually define the minimal
immersion, only φ dz does.

Using complex notations as a shortcut, let Z = X + iY be an infinitesimal
symmetry acting on the prolonged φ-space. Then Z preserves F iff Z is
holomorphic in its variables:

(D1 + iD2)Z(φ) = 0
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for any prolonged solution φ; and the condition for keeping conformality is
simply 〈Z|φ〉 = 0. The simplest possibility is for linear and zero-order vector
fields: Z(φ) = Aφ for constant matrix A. Then conformality imposes that
A belong in CI3 ⊕ so(3,C). These are the already known transformations:
I3 is the dilation, iI3 is the conjugation, so(3,R) corresponds to rotations,
and i so(3,R) to the 3-dimensional family of imaginary rotations (Lopez-Ros
transformations).

How to get the corresponding real field: Let Z be a infinitesimal
symmetry. The corresponding variational symmetry Ẑ is simply Ẑ(u) =
Re
∫ x
x0
Z(φ) dx; of course it is defined up to translation, and is by construction

well defined locally (there may be period problems). The symmetry Ẑ may
be a divergence symmetry, indeed

(prẐ)L(u) = 〈D1Ẑ|u1〉+ 〈D2Ẑ|u2〉 = 〈X|u1〉 − 〈Y |u2〉
= D1〈X|u〉 − 〈D1X|u〉 − D2〈Y |u〉+ 〈D2Y |u〉
= D1P1 + D2P2 + 〈u|D2Y − D1X〉 = DivP

with P1 = 〈X|u〉, P2 = −〈Y |u〉, since holomorphicity implies D2Y = D1X.
On the other hand

(prẐ)L(u) = 〈Re [Z(φ)]|Re [φ]〉+〈Im [Z(φ)]|Im [φ]〉 = Re 〈Z(φ)|φ̄〉 =
1

2
Z.〈φ|φ̄〉

Hence Ẑ is a (non-divergence) variational symmetry iff Z keeps the metric;
that is obvious: indeed for conformal maps, fixing the metric is equivalent to
fixing the area. If Z fixes the metric and depends only on φ, then it falls under
the classification in [4]. It is clear that a metric-preserving vector field in C[3]
has to be linear (??). The dilation and the imaginary rotations however are
truly divergence symmetries.

The Nœther 1-form can be written as

ω = −(〈Ẑ|u2〉+ 〈Y |u〉)dx1 + (〈Ẑ|u1〉 − 〈X|u〉)dx2

However in this definition there may integration constants. So the conserved
quantity is not always well-defined. If Ẑ −→ Ẑ + c then ω −→ ω − 〈c|u2〉dx1 +
〈c|u1〉dx2 so ∫

γ

ω −→
∫
γ

ω + 〈c|F(γ)〉

If u −→ u+ c then ω −→ ω + 〈D2Ẑ|c〉dx1 − 〈D1Ẑ|c〉dx2 so∫
γ

ω −→
∫
γ

ω + 〈c|
∫
γ

D2Ẑ dx
1 − D1Ẑ dx

2〉
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We may write ω in terms of the complex variable z. Fixing an arbitrary
integration starting point, and denoting W =

∫
Z and Φ =

∫
φ

ω = −
(
〈Re

∫
Z| − Imφ〉+ 〈−ImZ|Re

∫
φ〉
)dz + dz̄

2

+
(
〈Re

∫
Z|Reφ〉 − 〈ReZ|Re

∫
φ〉
)dz − dz̄

2i

=
1

8i

(
〈W + W̄ |φ− φ̄〉+ 〈Z − Z̄|Φ + Φ̄〉

)
(dz + dz̄)

+
1

8i

(
〈W + W̄ |φ+ φ̄〉 − 〈Z + Z̄|Φ + Φ̄〉

)
(dz − dz̄)

=
1

4i

(
〈W + W̄ |φ〉 − 〈Z̄|Φ + Φ̄〉

)
dz +

1

4i

(
− 〈W + W̄ |φ̄〉+ 〈Z|Φ + Φ̄〉

)
dz̄

So ω = 1
2
Imα with α = (〈W + W̄ |φ〉 − 〈Z̄|Φ + Φ̄〉)dz. Since

∫
ω is a homo-

logical invariant, we may integrate along a curve |z| = r = cte in the z-plane,
and the result has to be independent from r.

Examples of non linear fields: Z(φ) = hφ for any C-valued holomorphic
map h (for instance h = φα). More interesting: for any non zero integer k
the generalized field Z = Dkφ × φ = φk.1 × φ. Clearly 〈φk.1 × φ|φ〉 = 0. For
instance k = 1 and

(prẐ)L = 〈u11 × u1 − u12 × u2|u1〉+ 〈u11 × u2 + u12 × u1|u2〉 = 2〈u12|u1 × u2〉

which does not vanish in general, so area is not fixed by Ẑ. Let us analyse
this case in detail. For instance for a catenoidal end at z = 0 let φ = (1 −
g2, i(1 + g2), 2g)f and{

g(z) = z(a+ bz + cz2 +O(z3))
f(z) = z−2(α + γz2 +O(z3))

So g2 = z2(a2 + 2abz + (b2 + 2ac)z2 +O(z3)). Then

φ = z−2

 α + (γ − a2)z2 +O(z3)
i(α + (γ + a2)z2 +O(z3))

2z(aα + αbz + (aγ + αc)z2 +O(z3))



φ′ =

 −2αz−3 +O(1)
−2iαz−3 +O(1)

−2aαz−2 + 2(γ + αc) +O(z)


Φ =

 −αz−1 + (γ − a2)z +O(z2)
−iαz−1 + i(γ + a2)z +O(z2)

2aα log z + 2αbz + (aγ + αc)z2 +O(z3)
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Z = φ′ × φ = αz−2

 2iaαz−2 + 4ibαz−1 + 2i(aγ + 3αc− a3 + γ) +O(z)
−2aαz−2 − 4bαz−1 − 2(aγ + 3αc+ a3 + γ) +O(z)

4ia2z−1 +O(1)


W = α

 −2i
3
aαz−3 − 2ibαz−2 − 2i(aγ + 3αc− a3 + γ)z−1 +O(log z)

2
3
aαz−3 + 2bαz−2 + 2(aγ + 3αc+ a3 + γ)z−1 +O(log z)

−2ia2z−2 +O(z−1)


et

〈W |φ〉 =

6 Élucubrations

La définition d’Olver pour les symétries variationnelles (divergente ou non)
réclame que l’équation soit vraie pour tout u, et pas seulement pour les pro-
longations des solutions. Ce n’est pas le cas par contre des symétries des
EDP, qui doivent simplement annuler l’expression pour toute solution ! Il
semble cependant que pour appliquer Nœther, il suffise d’avoir une symétrie
divergente restreinte aux solutions (soit prX(L) + LDiv ξ = DivP seulement
sur les solutions d’Euler-Lagrange) !! Alors la dilatation serait bien génératrice
d’une loi de conservation (quoique triviale).

7 Lie brackets (unfinished)

The Lie bracket between generalized vertical symmetries is defined by (see [5])

[[X, Y ]] = prX(Y )− prY (X) =
∑
I

∑
α,β

(
(DIX

β)
∂Y α

∂uβI
− (DIY

β)
∂Xα

∂uβI

)
∂

∂uα

In vector notations

[[X, Y ]] =
∑
I

(duIY DIX − duIX DIY )

For classical vector fields, [[X, Y ]] = [X, Y ].

8 Finding the conformal parametrization

8.1 The space of diffeomorphisms

Let ∆ be the unit disk and D (resp C) be the groups of orientation preserv-
ing (conformal) diffeomorphisms. Notice that C is a 3-dimensional Lie group
consisting in maps

z 7→ λz + α

ᾱz + λ̄
|λ| = 1, |α| < 1
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where (α, λ) are defined up to sign. For any f : ∆ −→ R3 there exists φ ∈ D
such that f ◦ φ is conformal; φ is unique up to left composition by C; if ones
imposes the 3-dim following conditions

φ(0) = 0 ∂1φ
2(0) = 0

then φ is unique. We call D+ the group of such diffeomorphisms.

8.2 First order approximation

Let u(ε) = u + εv be a local deformation (dropping here and afterwards all
higher order terms); there exists diffeomorphisms φ(ε) (unique if chosen in
D+) such that u(ε) ◦ φ(ε) is conformal. Let Y = d

dε
φ(ε)|ε=0

u(ε) ◦ φ(ε) = (u+ εv) ◦ (φ+ εY ) = u ◦ φ+ ε(v ◦ φ+Du ◦ φ.Y )

∂1(u(ε) ◦ φ(ε)) = (u ◦ φ)1 + ε{(v ◦ φ)1 + (Du ◦ φ)1.Y +Du ◦ φ.Y1}

∂2(u(ε) ◦ φ(ε)) = (u ◦ φ)2 + ε{(v ◦ φ)2 + (Du ◦ φ)2.Y +Du ◦ φ.Y2}

First conformality condition

1

2ε
(‖∂1(u(ε)◦φ(ε))‖2−‖∂2(u(ε)◦φ(ε))‖2) = 〈(u◦φ)1|(v◦φ)1+(Du◦φ)1.Y+Du◦φ.Y1〉

−〈(u ◦ φ)2|(v ◦ φ)2 + (Du ◦ φ)2.Y +Du ◦ φ.Y2〉 = 0

Second conformality condition

ε−1〈∂1(u(ε)◦φ(ε))|∂2(u(ε)◦φ(ε))〉 = 〈(u◦φ)1|(v◦φ)2+(Du◦φ)2.Y +Du◦φ.Y2〉

+〈(u ◦ φ)2|(v ◦ φ)1 + (Du ◦ φ)1.Y +Du ◦ φ.Y1〉 = 0

which tells us that the basis ((v◦φ+Du◦φ.Y )1, (v◦φ+Du◦φ.Y )2) is (almost)
conformal (and direct):

‖(v ◦ φ+Du ◦ φ.Y )1‖2 − ‖(v ◦ φ+Du ◦ φ.Y )2‖2 = 0

〈(v ◦ φ+Du ◦ φ.Y )1|(v ◦ φ+Du ◦ φ.Y )2〉 = 0

+ directness !
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