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Abstract

We design adaptive realized kernels to estimate the integrated volatility in a framework that

combines a stochastic volatility model with leverage e¤ect for the e¢cient price and a semiparametric

microstructure noise model speci�ed at the highest frequency. Some time dependence parameters

of the noise model must be estimated before adaptive realized kernels can be implemented. We

study their performance by simulation and illustrate their use with twelve stocks listed in the Dow

Jones Industrial. As expected, we �nd that adaptive realized kernels achieves the optimal trade-o¤

between the discretization error and the microstructure noise.

Keywords: Integrated Volatility, Method of Moment, Microstructure Noise, Realized Kernels.

JEL Codes: C13, C14, G10

To estimate the monthly variance of a �nancial asset return, Merton (1980) proposes to use �the

sum of the squares of the daily logarithmic returns on the market for that month with appropriate

adjustments for weekends and holidays and for the no-trading e¤ect which occurs with a portfolio

of stocks�. Unfortunately, the daily data available to Merton does not span a long enough period

for the purpose of his study. He circumvents this di¢culty by using a moving average of monthly

squared logarithmic return. In the same vein, French, Schwert and Stambaugh (1987) estimate the

monthly variances by the sum of squared returns plus twice the sum of product of adjacent returns

to correct for the �rst order autocorrelation bias. Andersen and Bollerslev (1998) are the �rst to

support the empirical use of the realized volatility (RV) as an estimator of integrated volatility

(IV) by a rigorous consistency argument taken from Karatzas and Shreve (1988). Since then, many

authors including Jacod and Protter (1998) and Barndor¤-Nielsen and Shephard (2002) have well

established the consistency of the RV for the IV when prices are observed without error.

However, it is commonly admitted that recorded stock prices are contaminated with market mi-

crostructure noise. As pointed out by Andersen and Bollerslev (1998), �... because of discontinuities

in the price process and a plethora of market microstructure e¤ects, we do not obtain a continu-

ous reading from a di¤usion process...�. Barndor¤-Nielsen and Shephard (2002) show that in the

presence of jumps that cause the price to exhibit discontinuities, the RV is consistent for the total

quadratic variation of the price process. But the presence of noise in measured prices causes the RV

computed with high frequency data to be a biased estimator of the object of interest. The sources

of noise are discussed in Stoll (1989) and Hasbrouck (1993). In the words of Hasbrouck (1993), the

�pricing errors� are mainly due to �... discreteness, inventory control, the non-information based

component of the bid-ask spread, the transient component of the price response to a block trade,

etc.�.

Many approaches have been proposed in the literature to deal with the noise. One of them

consists of sampling sparsely the high frequency returns so as to mitigate the impact of the noise

su¢ciently1. Zhou (1996) and Hansen and Lunde (2006) propose a bias correction approach while

Bollen and Inder (2002) and Andreou and Ghysels (2002) advocate �ltering techniques. Under the
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assumption that the volatility of the high frequency returns are constant within a day, Ait-Sahalia,

Mykland and Zhang (2005) derive a maximum likelihood estimator of the IV that is robust to both

IID noise and distributional misspeci�cation. Zhang, Mykland, and Ait-Sahalia (2005) propose

another consistent estimator in the presence of IID noise which they called the two scale realized

volatility. This estimator has been adapted in Ait-Sahalia, Mykland and Zhang (2011) to deal with

dependent noise. Since then, other consistent estimators have become available among which the

well-known realized kernels of Barndor¤-Nielsen et al. (2008a) and the pre-averaging estimator of

Podolskij and Vetter (2009).2

This paper presents a general framework to design adaptive and e¢cient kernel-based estimators

for the integrated volatility in accordance with the properties of the noise. First, we propose a

semi-parametric microstructure noise model that is tied to the frequency at which the price data

are recorded. The noise is speci�ed as the sum of an endogenous term that is correlated with the

e¢cient returns and an exogenous term that is uncorrelated with the e¢cient returns. Flexible

restrictions are imposed on the exogenous noise so that it admits L-dependent and AR(1) dynamics

as special cases. We superimpose the overall noise model to a stochastic volatility model with

leverage e¤ect for the e¢cient price.

Second, we examine the implications of the overall framework for common realized measures

that are aimed at estimating the IV. The bulk of the MSE of IV estimators is dominated by

the contribution of the exogenous noise. When price data are contaminated with the endogenous

noise only, the bias of the standard RV is O(1) while kernel-based estimators are unbiased and

consistent. Under an MA(L) exogenous noise, realized Bartlett kernels with bandwidth larger than

L are unbiased for the IV. When the exogenous noise is AR(1), an unbiased estimator of IV can

be obtained only upon having a �rst step estimator of the noise autoregressive root in hand. If the

�rst order autocorrelation of the exogenous noise converges to one as the record frequency goes to

in�nity, then a necessary condition for the realized kernels to be consistent for the IV is that its

bandwidth diverge su¢ciently fast as the record frequency goes to in�nity.

Third, we examine the trade-o¤ involved as one moves, on the one hand, from the standard RV

to a bias-corrected RV, and on the other hand, from a bias-corrected RV to a consistent realized

kernel. We show that unbiasedness and/or consistency are achieved by conceding more and more

discretization error. Acting on this, we argue that the performance of any IV estimator at a given

sampling frequency re�ects the balance between the discretization error and the microstructure

noise at that frequency. We propose an adaptive realized kernel that achieves the optimal trade-o¤

bewteen both types of errors. As an optimal linear combination of initial estimators, the adaptive

realized kernel provides us with an additional degree of freedom for tuning kernel-based estimators

besides the bandwidth parameter.

Fourth, we propose two inference procedures for the microstructure noise. The �rst procedure is

designed for AR(1) types of noise and it is based on an overidenti�ed generalized method of moments.

The second procedure is designed for MA(L) noises and it uses as many moment conditions as there

are parameters to be estimated. The AR(1) assumption best suits for noise processes with in�nite
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dependence lag while the MA(L) assumption is reasonable if the noise has �nite dependence. Our

simulations show that the inference procedure designed for AR(1) noises has good size and it has

power against MA(L) alternatives. Hence, our best investigation strategy in practice consists of

�rst testing whether the noise is AR(1) and next, applying the MA(L) inference procedure if the

AR(1) speci�cation is rejected. We apply this strategy to twelve stocks listed in the Dow Jones

Industrial and �nd that the AR(1) noise model cannot be rejected for six of them. For the other

six stocks, we apply the MA(L) noise inference procedure and �nd estimates of L that lie between

8 and 12 minutes.

The paper is organized as follows. In Section 1, we present our models for the frictionless

price and for the microstructure noise. In section 2, we study the properties of common realized

measures within our framework. In Section 3, we design adaptive realized kernels for the IV. Our

inference procedures for microstructure noise are presented in Section 4. In Sections 5 we evaluate

the performance of all estimators proposed in the paper by simulation. Section 6 presents the

empirical application and Section 7 concludes. The proofs are collected in an appendix.

1 The Framework

First, we present a model for the e¢cient price that allows for leverage e¤ect. Next, we present our

model for the microstructure noise.

1.1 A Model for the E¢cient Price

Let p�s denote the latent (or e¢cient) log-price of an asset and ps its observable counterpart. Assume

that p�s obeys the following stochastic di¤erential equation:

dp�s = � (s; p
�
s) ds+ �sdfWs; p

�
0 = 0; (1)

where � (:; :) is a deterministic and smooth function, �s is the spot volatility and fWs is a standard

Brownian motion. In turn, assume that �s satis�es:

d�s = f (�s) ds+ g (�s) dBs; (2)

where f (:) and g (:) are deterministic and smooth functions, Bs is a Brownian motion such that

fWs = �Bs +
p
1� �2Ws, Ws is another Brownian motion that is independent of Bs and � 2 (0; 1)

is the leverage e¤ect parameter.

It is assumed that Equation (2) admits a continuous solution with in�nite lifetime. Also, the

processes � (s; p�s), f (�s) and g (�s) are assumed adapted to the �ltration generated by fWu; Bu; u < sg.
Throughout this paper, it is maintained that there is no jump in the e¢cient price. However, the

conclusions of our analysis remain valid if a jump component that is uncorrelated with all other

randomness is added to the e¢cient price. In this case, the estimators that we consider for the

IV are designed for the total quadratic variation of the e¢cient price process.3 Without loss of

4



generality, we condition all our analysis on the volatility path f�sgs�0 but the conditioning is often
removed from the notation for simplicity. Accordingly, all deterministic transformations of the spot

volatility process are treated as constants.

We assume that there exists a twice di¤erentiable deterministic function p�(1) (:) that satis�es
@p�

(1)
(�s)

@�s
= ��s

g(�s)
so that the stochastic process p�(2);s = p�s � p�(1) (�s) follows a di¤usion without

leverage e¤ect4. Indeed, by the Itô Lemma, we have:

dp�(1);s = �(1);sds+ �(1);sdBs; and (3)

dp�(2);s = �(2);sds+ �(2);sdWs: (4)

where p�(1);s � p�(1) (�s), �(1);s = ��s, �(2);s =
p
1� �2�s, �(2);s = �s � �(1);s and

�(1);s =
��s
g (�s)

f (�s) +
1

2

@2p�(1) (�s)

@�2
g2 (�s) .

By construction, p�s = p
�
(1);s + p

�
(2);s and p

�
(1);s and p

�
(2);s are uncorrelated. Hence, IVt =

R t
t�1 �

2
sds is

equal to the sum of the quadratic variations of p�(1);s and p
�
(2);s.

We consider a sampling scheme where the unit period is normalized to one day. By de�nition,

the microstructure noise is the di¤erence between the observed log-price and the e¢cient log-price,

that is, us = ps � p�s. Thus, let r�t denote the latent log-return at day t and rt its observable
counterpart. We have:

rt � pt � pt�1 = r�(1);t + r�(2);t + ut � ut�1 (5)

where r�(i);t =
R t
t�1 �(i);sds+

R t
t�1 �(i);sdWs. The drifts of the di¤usions (1), (3) and (4) are irrelevant

for their quadratic variations. Acting on this, we treat these di¤usions as though they had no drift

(�s = �(1);s = �(2);s = 0).

Suppose that we observe a large number m of intradaily returns rt;1; rt;2; :::; rt;m for t = 1; :::; T

days. We have:

rt;j = r
�
(1);t;j + r

�
(2);t;j + ut;j � ut;j�1 for all t and j; (6)

where ut;j � ut�1+j=m and r�(i);t;j �
R t�1+j=m
t�1+(j�1)=m �(i);sdWs. It is maintained that the high frequency

observations are equidistant in calendar time. The noise-contaminated (observed) and true (latent)

RV computed at frequency m are:

RV
(m)
t =

mX

j=1

r2t;j and RV
�(m)
t =

mX

j=1

r�2t;j :

Barndor¤-Nielsen and Shephard (2002) show that RV
�(m)
t converges to IVt and derived the asymp-

totic distribution:
RV

�(m)
t � IVtq
2
3

Pm
j=1 r

�4
t;j

! N (0; 1) ; (7)
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as m goes to in�nity. In the presence of microstructure noise, the estimator RV
�(m)
t is not feasible.

1.2 A Semiparametric Model for the Microstructure Noise

To model the microstructure noise, we posit that the frequency at which the price data are recorded

determines the time series properties of the microstructure noise. This idea is acknowledge by

Barndor¤-Nielsen et al. (2008a, Section 5.4 ) who considered �a situation where the serial de-

pendence is tied to the sampling frequency [...], as opposed to calendar time�. Here, we follow

a semiparametric approach that consists of specifying how the correlation structure of the noise

changes as the record frequency increases.

To motivate this approach, let us consider an MA(1) process "t;j at the highest frequency with

E("2t;j) = !0 and E("t;j"t;j�1) = !1. The time elapsed between "t;j and "t;j�h is
h
m when the record

frequency is m. By letting !
�
h
m ;m

�
denote the hth order autocovariance of "t;j , we have:

! (0;m) = !0; !

�
1

m
;m

�
= !1 and !

�
h

m
;m

�
= 0; h � 2: (8)

If we posit that "t;j remains an MA(1) with constant parameters whatever the record frequency,

then we can assert that:

! (0; km) = !0; !

�
1

km
; km

�
= !1 and !

�
h

km
; km

�
= 0; h � 2, (9)

as k ! 1 and m is �xed. However, if we assume that "t;j obeys an MA(1) model at the record

frequency m but its �rst order autocorrelation is not invariant with respect to m, then (8) cannot be

used to infer (9). By contrast, the autocorrelation structure of the sparsely sampled noise process

can always be inferred from the properties of the noise at the highest frequency.

With this in mind, we postulate the following microstructure noise model at the record frequency:

ut;j = at;jr
�
(2);t;j + "t;j ; j = 1; 2; :::;m, for all t; (10)

where at;j is a time varying coe¢cient that depends on the spot volatility process and "t;j is indepen-

dent of the e¢cient returns. In the words of Hasbrouck (1993), "t;j is the information uncorrelated

or exogenous pricing error while at;jr
�
(2);t;j is the information correlated or endogenous pricing error.

We assume that time dependence in the noise process is only due to its information uncorrelated

part. The following assumptions are further made:

Assumption E0. at;j = C0 +
C1p
m��t;j

, where C0 and C1 are constants and:

��2t;j �
Z t�1+j=m

t�1+(j�1)=m
�2sds:

Assumption E1. For �xed m, "t;j is a zero mean, discrete time and stationary process that is

independent of f�sg and r�t;j .
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Assumption E2.

E2(a) E("t;j"t;j�h) � !
�
h
m ;m

�
= !m;h, 0 � h

m � 1 and !m;h = 0 for all h > m, where

!
�
h
m ;m

�
is bounded.

E2(b) ! (0;m) = !0 for all m, and
!m;h�!m;h+1

!0
= O(m�B) for some B � 0, h = 0; :::;m� 1.

Assumption E3. For �xed m, we have:

E3(a) E jut;jut;j�hj4+F <1, for some F > 0, for all h.
E3(b) V ar

�
n�1=2m�1=2Pt0+n

t=t0+1

Pm
j=1 rt;jrt;j�h

�
! qh, uniformly in any t

0, as n!1.
Assumption E0 is a convenient way to depart from the constant coe¢cient case (at;j = C0) and

it implies that the variance of the endogenous part of the noise goes to zero at rate m:

V ar
�
at;jr

�
(2);t;j

�
=
�
1� �2

�
0
@C0��2t;j + 2C0C1

s
��2t;j
m

+
C21
m

1
A :

Assumption E1 is quite standard in the literature. Assumption E2 stipulates general restrictions

on the autocovariance structure of "t;j rather a parametric distribution.

Assumption E2(a) imposes that "t;j be autocorrelated across j within the same day t, but not

across days. This approximation is reasonable if the market closes at 4:30pm and re-opens the next

day at 9:00am. Assumption E2(b) relates the behavior of the noise correlogram to the sampling

frequency and is consistent with several parametric models. A correlation structure which does not

depend on m is described by B = 0 while B 2 (0; 1) allows the correlogram to depend on m to some

extent. For instance, an L-dependent model with �xed lag L corresponds to B = 0 and !m;h = 0 for

all h > L. This includes the IID and uncorrelated noise as special cases. One may also think of an

MA(L) noise such that L = CmE for some constants C > 0 and E � 0. The case E = B = 0 brings
us back to the MA(L) model with constant lag L whilst E 2 (0; 1) describes a situation where a
higher market activity generates a noise with longer dependence lag.5 For the latter type, we have:

!0 � !m;1
!0

= O(m�B)) lim
m!1

!m;1
!0

= 1:

Assumption E2(b) also accommodates an AR(1) models. Indeed, assume that "t;j satis�es !m;h =

!0 (�m)
h ; h � 0 and �m =

!m;1
!0
. This model �ts into E2(b) if:

!m;h � !m;h+1 = !0 (�m)h (1� �m) = O(m�B);

for all h > 1. Hence, B = 0 accommodates an AR(1) with constant autoregressive root whilst

B 2 (0; 1) implies that �m converges either to zero or to one as m!1.6
Finally, Assumption E3 replicates Assumption (1c) and Assumption 2 of Ubukata and Oya

(2009) and it is needed for the central limit theorem of Politis, Romano and Wolf (1997) to hold.

This assumption is satis�ed if the squared return process r2t;j is stationary and strong-mixing.
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2 Properties of Common Realized Measures

In this section, we study the traditional realized variance, the kernel-based estimator of Hansen and

Lunde (2006) and the realized kernels of Barndor¤-Nielsen et al. (2008a) under our microstructure

noise model.

2.1 The Realized Volatility

Under an IID noise, RV
(m)
t is biased and inconsistent for IVt and its bias and variance increase

linearly in m, see e.g. Hansen and Lunde (2006). Here, we consider the sparsely sampled realized

variance given by:

RV
(mq)
t =

mqX

k=1

er2t;k; k = 1; :::;mq;

with mq =
m
q ; q � 1 and ert;k =

Pqk
j=qk�q+1 rt;j being the sum of q consecutive returns.7 Note that

Equation (6) implies that ert;k = er(1);t;k + er(2);t;k where er(1);t;k =
Pqk
j=qk�q+1 r

�
(1);t;j and:

er(2);t;k =

 
1 + C0 +

C1p
m��t;qk

!
r�(2);t;qk +

qk�1X

j=qk�q+1

r�(2);t;j

�
 
C0 +

C1p
m��t;qk�q

!
r�(2);t;qk�q + ("t;qk � "t;qk�q) ;

with the convention that
Pqk�1
j=qk�q+1 r

�
(2);t;j = 0 when q = 1. The next theorem gives the bias and

variance of RV
(mq)
t .

Theorem 1 Assume that the noise process evolves according to equation (10). Then we have:

E
�
RV

(mq)
t

�
= IVt + 2mq (!0 � !m;q)| {z }

bias due to exogenous noise

+2
�
1� �2

�
 
C21
q
+
C1 (2C0 + 1)p

m

mqX

k=1

��t;qk + C0 (C0 + 1)

mqX

k=1

��2t;qk

!

| {z }
bias due to endogenous noise

+
�
1� �2

��
C20
�
��2t;0 � ��2t;m

�
+
2C0C1p
m

�
��t;0 � ��t;m

��

| {z }
end e¤ects

; and

V ar
�
RV

(mq)
t

�
= O(mq):

The bias of RV (mq) is comprised of three terms. The dominant term, 2mq (!0 � !m;q), is due to
the exogenous noise. According to Assumption E2(b), this term is O(m1�B). The second term of

the bias is due to the endogenous noise and it is O(1). The latter term does not diverge as m!1
and hence, a volatility signature plot may not be able to detect its presence. The third term of the

bias is O(m�1) and it is due to end e¤ects.
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Gloter and Jacod (2001) considered an exogenous noise whose variance depends on the sampling

frequency and they show that this noise is irrelevant if m times the noise variance is bounded for

all m. Our endogenous noise satis�es this condition as it is Op(m
�1=2). However, because it is

endogenous, it causes a bias term of magnitude O(1).

2.2 The Estimator of Hansen and Lunde

Hansen and Lunde (2006) proposed the following �at kernel estimator:

RV
(AC;m;L+1)
t =

mX

j=1

r2t;j +
L+1X

h=1

mX

j=1

rt;j (rt;j+h + rt;j�h) ; (11)

where L is the dependence lag of the noise. When L = 0 so that "t;j is IID, RV
(AC;m;L+1)
t coincides

with the estimator of French and al. (1987) and Zhou (1996):

RV
(AC;m;1)
t =

mX

j=1

r2t;j + 2
mX

j=1

rt;jrt;j�1 + (rt;m+1rt;m � rt;1rt;0)| {z }
end e¤ects

: (12)

The estimator RV
(AC;m;L+1)
t is unbiased for IVt under a general MA(L) noise. However, it is

biased if the exogenous noise is AR(1). An unbiased estimator under AR(1) exogenous noise is

given by:

RV
(AC;m;1)
t =

mX

j=1

r2t;j +
mX

j=1

rt;j (rt;j+1 + rt;j�1) +
1

1� �m

mX

j=1

rt;j (rt;j+2 + rt;j�2) (13)

where �m is the autoregressive root of the noise.
8 In order to gain some insights on the properties

of the estimators above, we specialize the exogenous noise to the IID case and derive the mean and

variance of RV
(AC;m;1)
t .

Theorem 2 Assume that the noise process evolves according to Equation (10). If "t;j is IID, then

we have:

E
�
RV

(AC;m;1)
t

�
= IVt +

�
1� �2

� h�
C20 + 2C0

� �
��2t;m � ��2t;0

�
� 2C1(1+C0)p

m

�
��t;m � ��t;0

�i
; and

V ar
�
RV

(AC;m;1)
t

�
= O (m) :

When the endogenous noise is absent and the exogenous noise is IID, Theorem 2 yields a well-

known result derived by Hansen and Lunde (2006, Lemma 3). In this particular case, RV
(AC;m;1)
t

is unbiased for IVt while its variance increases linearly in m and consequently, RV
(AC;m;L+1)
t and

RV
(AC;m;1)
t are not consistent for IVt.

When the exogenous noise is absent so that the noise is purely endogenous, it can be shown that

the bias and variance of RV
(AC;m;1)
t are both O

�
m�1�. This result is obtained by specializing the

formulas derived in the proof of Theorem 2 to the "no leverage and no exogenous noise" case. Hence,

RV
(AC;m;1)
t is consistent for IVt in the presence of the endogenous noise. This property extends
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to RV
(AC;m;L+1)
t since RV

(AC;m;L+1)
t � RV (AC;m;1)t converges to zero in the absence of exogenous

noise. The same can be said for RV
(AC;m;1)
t as long as a consistent estimator of �m that converges

su¢ciently fast is available.

The realized kernel considered in the next section is a version of RV
(AC;m;L+1)
t where the higher

order covariance terms are weighted by a kernel function. Hence, this estimator is also robust to

endogenous noise and leverage e¤ect. Acting on this, we study the realized kernel below by assuming

that C0 = C1 = � = 0.

2.3 The Realized Kernels

Barndor¤-Nielsen et al. (2008a) proposed the following estimator for IVt which they named �realized

kernel�:

KBNHLS
t = Dt;0 (r) +

HX

h=1

k

�
h� 1
H

��
Dt;h (r) + Dt;�h (r)

�
; (14)

for a positive kernel function k (:) such that k (0) = 1 and k (1) = 0, where Dt;h (x) =
Pm
j=1 xt;jxt;j�h

for any variable x. Equation (14) is reminiscent of the long run variance estimators of Newey and

West (1987) and Andrews and Monahan (1992).

Barndor¤-Nielsen et al. (2008a, Proposition 3 ) show that KBNHLS
t is consistent for IVt for some

choices of bandwidth if the covariance between "t;h and "t;h�j vanishes for any h and j as m!1.
This condition is satis�ed for an AR(1) noise with �m ! 0 as m!1 or for an MA(L) noise with

constant lag L. It is not satis�ed for an AR(1) noise with �m ! 1 as m ! 1 nor for an MA(L)

noise with L = CmE and E > 0. For the latter MA(L) noise, Assumption E2(b) implies that:

!m;j � !0 = �
j�1X

h=0

(!m;h � !m;h+1) = O(jm�B):

Hence, !m;j � !0 = O(m�B) and lim
m!1

!m;j
!0

= 1 for any �xed j.

Further, Barndor¤-Nielsen et al. (2008a, Proposition 4 ) show that KBNHLS
t is consistent for

IVt when "t;j is AR(1) with constant autoregressive root. Below, we study the estimator given by:

KBNHLS
t;Lead = Dt;0 (r) + 2

HX

h=1

k

�
h� 1
H

�
Ds;h (r) ; (15)

when the �rst order autocorrelation of the noise converges to one as m!1 and we use the results

to infer some properties of KBNHLS
t . Note that KBNHLS

t;Lead can be decomposed as:

KBNHLS
t;Lead = Kt (r

�) +Kt (r
�;�u) +Kt (�u; r

�) +Kt (�u) ;

10



where

Kt (x) = Dt;0 (x) + 2
HX

h=1

k

�
h� 1
H

�
Dt;h (x) ;

Kt (x; y) = Dt;0 (x; y) + 2

HX

h=1

k

�
h� 1
H

�
Dt;h (x; y) ;

and Dt;h (x; y) =
Pm
j=1 xt;jyt;j�h. We have the following consistency result under IID exogenous

noise.

Theorem 3 Assume that C0 = C1 = � = 0, k (x) = 1 � x (the Bartlett kernel) and "t;j is IID.
Then, we have:

KBNHLS
t;Lead � IVt = �"2t;0 + "2t;m +Op(m�1=6):

as m!1 and H is proportional to m2=3.

Barndor¤-Nielsen et al. (2008a, Theorem 4) gives the same rate of convergence for KBNHLS
t

under the conditions of Theorem 3. They also show that the end e¤ects ��"2t;0 + "2t;m� can be
asymptotically neglected by applying an appropriate jittering scheme. Here, Theorem 3 focuses on

KBNHLS
t;Lead . In this theorem and subsequently, we insists on the Bartlett kernel in order to control

the bias rather than to achieve the optimal rate of convergence, i.e. the parametric rate Op(m
�1=4)

attained by the Multiple Scale Realized Volatility (see Ait-Sahalia et al., 2011, Section 6.3) and by

the e¢cient realized kernels (see Barndor¤-Nielsen et al., 2008, Section 4.3).

Note that KBNHLS
t = 1

2

�
KBNHLS
t;Lead +KBNHLS

t;Lag

�
where KBNHLS

t;Lag is the twin estimator given by:

KBNHLS
t;Lag = Dt;0 (r) + 2

HX

h=1

k

�
h� 1
H

�
Ds;�h (r)

Hence, V ar
�
KBNHLS
t;Lead

�
is always larger than V ar

�
KBNHLS
t

�
although both estimators enjoy the

same rate of convergence. When the noise is not IID but remains purely exogenous, KBNHLS
t and

KBNHLS
t;Lead have the same expectation as Kt (�u). We further have the following results.

Theorem 4 Assume that C0 = C1 = � = 0, k (x) = 1 � x (the Bartlett kernel) and "t;j and that
Assumptions E1 and E2 hold.

(i) If the noise is AR(1) with autoregressive root �m, then we have:

E (Kt (�u)) = �2mH�1 (�m)
H (2 + �m)!0:

If further �m ' 1�Dm�B (B � 0) so that �m ! 1 as m!1 and H = CmD (D 2 (0; 1)) then we
have:

jE (Kt (�u))j ' 2 (2 + �m)!0Cm1�D exp
�
�CDmD�B�

(ii) If the noise is MA(L), E (Kt (�u)) = 0 as long as H � L+ 1.

11



The �rst result of Theorem 4 stipulates that under an AR(1) exogenous noise with �m ! 1 as

m ! 1, E (Kt (�u)) converges to zero if and only if H = CmD with D > B. Otherwise, the bias

diverges to in�nity. Hence, a necessary condition for the MSE of KBNHLS
t to be �nite is that H

diverges to in�nity su¢ciently fast as m!1. Under MA(L) noise, E (Kt (�u)) = 0 if H is greater

than the dependence lag of the noise. Again, if L = CmE as assumed, a su¢cient condition for

KBNHLS
t to be unbiased is that H diverges to in�nity faster than L as m!1.

3 Adaptive Realized Kernels

The results of a simulation study performed by Gatheral and Oomen (2007) suggests that incon-

sistent estimators like RV
(AC;m;1)
t often outperform some theoretically consistent estimators like

KBNHLS
t at record frequencies commonly encountered in practice (e.g. one to �ve minutes). From

a theoretical point of view, one can think of at least three situations where the MSE of RV
(AC;m;1)
t

can be lower than that of KBNHLS
t . The �rst situation is the one in which the variance of the mi-

crostructure noise is so small that it contributes very little to the MSE. The second situation may

happen because the bandwidth H is not optimally selected for KBNHLS
t . The third situation corre-

sponds to the case where the sampling frequency is not large enough to make the asymptotic results

for KBNHLS
t useful. All three situations are related to the fact that the performance of an IV esti-

mator at a given sampling frequency re�ects the trade-o¤ between the discretization error and the

microstructure noise at that frequency. Indeed, RV
(AC;m;1)
t is exempted of the bias of its ancestor

RV
(m)
t at the expense of a higher discretization error (i.e. the MSE in the absence of noise). Also,

KBNHLS
t brings consistency upon conceding a higher discretization error than RV

(AC;m;1)
t . Given

that the discretization error KBNHLS
t increases with the bandwidth H, the optimal selection of H

involves a trade-o¤ between the MSE due to discretization and the MSE due to the microstructure

noise. Below, we propose an adaptive estimator that is aimed at achieving this optimal trade-o¤.

Consider N kernel-based estimators of IVt given by:

cIV (i)t = Dt;0 (r) +

HX

h=1

ki

�
h� 1
H

��
Dt;h (r) + Dt;�h (r)

�
, i = 1; :::; N and t = 1; :::; T (16)

where t is a daily index, T is the number of days for inference about microstructure noise and

ki (:) ; i = 1; :::; N are distinct kernel functions. Alternatively, one may consider using the same

kernel function but di¤erent bandwidths, as in the following example:

cIV (i)t = Dt;0 (r) +

HiX

h=1

k

�
h� 1
Hi

��
Dt;h (r) + Dt;�h (r)

�
; i = 1; 2; :::; N:

By letting H = max
1�i�N

H1, the latter equation may be re-written as (16) with ki (x) � k
�
H
Hi
x
�
; 0 �

x � 1 and ki (x) = 0 otherwise.

12



We consider selecting the estimator with smallest MSE within the class de�ned by:

K$
t =

NX

i=1

$icIV
(i)

t subject to

NX

i=1

$i = 1;

where $ = ($1; :::; $N )
0 is a vector of weights. Note that K$

t is also a realized kernel, as we have:

K$
t = Dt;0 (r) +

HX

h=1

k$

�
h� 1
H

��
Dt;h (r) + Dt;�h (r)

�
; (17)

with k$ (x) =
PN
i=1$iki (x).

To illustrate the idea, suppose that the exogenous noise is L-dependent. Then, we may de�ne:

K$
t = (1�$) cIV

(1)

t +$cIV (2)t ;

where cIV (1)t is KBNHLS
t at bandwidth L and cIV (2)t is the same estimator at bandwidth H. We

have:

K$
t = Dt;0 (r) +

L+1X

h=1

k

�
h� 1
H

��
Dt;h (r) + Dt;�h (r)

�
+$

HX

h=L+2

k

�
h� 1
H

��
Dt;h (r) + Dt;�h (r)

�

We see that K$
t exploits the L-dependence of the noise by discounting the kernel windows assigned

to the covariance terms beyond lag L + 1. The optimal weight $� that minimizes the MSE of

K$
t mitigates the impact of the discretization error induces by the higher order covariance terms

while guaranteeing that K$�

t inherits the consistency of KBNHLS
t . The standard realized kernel

includes the covariance terms of higher displacements in order to control the variance, but it does

not exploit the life of a dependent noise. A theoretical importance of the estimator K$�

t resides

in that it introduces an extra degree of freedom ($) besides the bandwidth parameter (H) and

hence, it provides an adaptive approach for tuning realized kernel. Subsequently, we refer to K$�

t

as the �adaptive realized kernels�. Note that K$�

t has the �avor of a model averaging estimator

(see Hansen, 2007) and it shares some similarities with the estimator proposed in Ghysels, Mykland

and Renault (2008).

Let bVt =
�
cIV (1)t ; :::; cIV

(N)

t

�0
so that K$

t = $
0 bVt with $0� = 1, where � is a vector of ones. The

unconditional MSE of K$
t is E (K$

t � IVt)2 = $0A$, where A = E
��
bVt � IVt�

��
bVt � IVt�

�0�
is

the MSE matrix of the vector bVt. The optimal vector of weights is given by:

$� =
�
�0A�1�

��1
A�1� (18)

A feasible vector of weights is obtained by plugging an empirical counterpart of A into (18), as

illustrated in Section 5.2.
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By construction, the MSE of K$�

t is necessarily smaller than the MSE of each of the initial

estimators cIV (i)t ; i = 1; :::; N . However, the rate of convergence enjoyed by K$�

t is the same as that

of the most e¢cient estimator among the cIV (i)t s. Hence, our method is essentially an attempt to
improve the �nite-sample properties of the class of realized kernels under consideration.

4 Inference on the Microstructure Noise Parameters

In order to implement the realized kernels e¢ciently, one needs to know whether the noise has �nite

dependence lag or in�nite dependence lag. In this section, we consider estimating the correlogram

of the noise by assuming that the noise is either AR(1) or MA(L) at a given record frequency m.9

The AR(1) assumption targets noises with in�nite dependence lag while the MA(L) assumption

provides a reasonable approximation if the noise has �nite dependence.

From Theorem 4, we can infer that:

E
�
Dt;1
�
= �

�
1� �2

� mX

j=1

 
C0 +

C1p
m��t;j�1

! 
1 + C0 +

C1p
m��t;j�1

!
��2t;j�1

+m (�!0 + 2!m;1 � !m;2) ;

where Dt;h is used as shorthand for Dt;h (r). Let b
(m)
t = E

h
RV

(m)
t � IVt

i
denote the bias of the

realized volatility computed at the record frequency. When q = 1, it follows from Lemma 5 in

appendix that:

b
(m)
t = 2

�
1� �2

� mX

j=1

 
C0 +

C1p
m��t;j�1

! 
1 + C0 +

C1p
m��t;j�1

!
��2t;j�1

+2m (!0 � !m;1) +
�
1� �2

��
C20
�
��2t;0 � ��2t;m

�
+
2C0C1p
m

�
��t;0 � ��t;m

��
:

Hence, the following unconditional moment conditions hold:

E
�
RV

(m)
t

�
= IVt + b

(m)
t ; (19)

E
�
Dt;1 + Dt;�1

�
= �b(m)t + 2m (!m;1 � !m;2) and (20)

E
�
Dt;h+1 + Dt;�h�1

�
= �2m (!m;h � 2!m;h+1 + !m;h+2) ; h � 1; (21)

Below, we consider the AR(1) and MA(L) cases separately.10
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4.1 Inference with an AR(1) Microstructure Noise

Under an AR(1) model, the noise autocovariances satisfy !m;h = !0 (�m)
h and thus, Equation (21)

implies that E (bgh (!0; �m)) = 0 with:

bgh (!0; �m) =
1

2mT

TX

t=1

�
Dt;h+1 + Dt;�h�1

�
+ !0 (1� �m)2 (�m)h , h � 1 (22)

Let bg = (bg1; :::; bgn) be a vector of n selected moments conditions, with bgh � bgh (!0; �m). The GMM
estimators of (!0; �m) are given by:

�b!0
b�m

�
= argmin bg0 bS�1bg;

where bS is a consistent �rst step estimator of the long run covariance matrix of the moment condi-
tions, that is, bS = lim

T!1
V ar

�p
Tbg
�
.

After estimation, the overidenti�cation test of Hansen (1982) may be used to check whether

the AR(1) model �ts the data reasonably well. This test is based on the following asymptotic

distribution under the null hypothesis that the AR(1) model is true:

J = Tbg0 bS�1bg ! �2 (N � 2) as T !1; (23)

After performing this test, and if the null hypothesis is not rejected, we may then perform a standard

t-test for the signi�cance of the parameters (!0; �m). The distribution of the estimators under the

null hypothesis is:
p
T

� b!0 � !0
b�m � �m

�
! N

��
0

0

�
;
�
G0 bS�1G

��1�
: (24)

where G is the (n� 2) Jacobian matrix of the moment conditions. The hth row of G is given by:

Gh =

�
@bgh
@!0

;
@bgh
@�m

�

=
�
(1� �m)2 (�m)h ; � 2!0 (1� �m) (�m)h + h!0 (1� �m)2 (�m)h�1

�

Note that G is a deterministic matrix.

4.2 Inference with an MA(L) Microstructure Noise

Under the MA(L) model, the noise autocovariances satisfy !m;h = 0 for h > L. Thus, Equations

(19)-(21) provide L + 2T moment conditions that can be used to estimate L + 2T parameters,

namely
n
b
(m)
t ; IVt

oT
t=1

and f!m;hgLh=1. Estimating these parameters by the method of moments is
straightforward. First solving for !m;L and then proceeding by backward substitution into (21) to
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(19) yields the following unbiased estimators for !m;h, b
(m)
t and IVt respectively:

b!m;h = � 1

2Tm

TX

s=1

L�h+1X

l=1

l
�
Ds;h+l + Ds;�h�l

�
; h = 1; :::L; (25)

bb(m)t = �Dt;1 � Dt;�1 �
1

T

TX

s=1

L+1X

l=2

�
Ds;l + Ds;�l

�
and (26)

RV
(AC;m;L+1)
t = RV

(m)
t �bb(m)t (27)

= Dt;0 + Dt;1 + Dt;�1 +
1

T

TX

s=1

L+1X

l=2

�
Ds;l + Ds;�l

�
:

Hence, RV
(AC;m;L+1)
t is an unbiased method-of-moment estimator of IVt. Note that RV

(AC;m;L+1)
t

specializes to the estimator of Hansen and Lunde when T = 1.

To estimate the noise variance !0, we use the expression of the bias of the RV sampled at the

highest frequency. We have:

b!0 =
1

2mT

TX

t=1

bb(m)t + b!m;1 (28)

All the noise autocovariance estimates can be written as:

b!m;h =
1

mT

TX

t=1

mX

j=1

b!t;j;h; h = 0; 1; :::; L (29)

where b!t;j;h, h = 0; :::; L are de�ned as follows:

b!t;j;0 = �1
2

L+1X

h=1

�
Dt;j;h + Dt;j;�h

�
+
�
P�1Dt;j;(2;L+1)

�
1
,

(b!t;j;1; :::; b!t;j;L)0 = P�1Dt;j;(2;L+1) and

Dt;j;(2;L+1) =
�
Dt;j;2; :::; Dt;j;L+1

�0
:

with Dt;j;h =
1
2rt;j (rt;j�h + rt;j+h) for all t and h, P being the L�L matrix with elements: Pi;i = �1,

Pi;i+1 = 2, Pi;i+2 = �1; Pi;j = 0 otherwise 1 � i; j � L, and
�
P�1Dt;(2;L+1)

�
1
being the �rst element

of the vector P�1Dt;(2;L+1).

Based on Equation (29), we consider the subsampled variance bQh given by:

bQh =
m

T

TX

t=1

0
@ 1

m

mX

j=1

b!t;j;h � b!m;h

1
A
2

: (30)
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Under Assumptions E1, E2 and E3, we have:

(mT )1=2 (b!m;h � !m;h)q
bQh

! N (0; 1) (31)

as T goes to in�nity and m is �xed. See Ubukata and Oya (2009) for the proof.11

The knowledge of L is required to estimate the correlogram of the microstructure noise. A

simple way to estimate L is to perform signi�cance tests for !m;h by using autocovariance estimates

that rely on an initial guess Lmax.
12 Under the null hypothesis that !m;h = 0, we have:

b�h =
(mT )1=2 b!m;hq

bQh
! N (0; 1) (32)

The statistics b�h diverges under the alternative. The estimator bL is the maximum lag at which the

null is rejected. Provided that the initial guess Lmax exceeds the true value of L, the estimator L̂

will not underestimate the true L asymptotically.

5 Monte Carlo Simulations

The simulation study is organized as follows. First, we apply the AR(1) noise inference procedure

to a correctly speci�ed model. Second, we verify the power of this procedure by applying it to an

MA(3) noise. Third, we study the performance of the MA(L) noise inference procedure when the

model is correctly speci�ed. Finally, we assess the quality of the IV estimators under either type of

noise.

5.1 The Data Generating Processes

We assumed that the e¢cient log-price process evolves according to the model of Heston (1993):

dp�s = �sdW1;s and (33)

d�2s = �
�
B� �2s

�
ds+ D�s

�
�dW1;s +

p
1� �2dW2;s

�
; (34)

where W1;s and W2;s are independent Brownian motions and the parameter � captures the leverage

e¤ect. Following Zhang and al. (2005), we set the annualized parameters values as follows:

� = 5; B = 0:04; D = 0:5; � 2 f0;�0:5g ;

Using the Poisson-Mixing-Gamma characterization of Devroye (1986) for the spot volatility process

(34), we simulate the e¢cient price data at �ve seconds13 but we assume that the record frequency

is one minute.

To start with, we simulate once and for all a sample of T = 500 days of e¢cient price data. Next,
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we contaminate iteratively this sample with a microstructure noise that is simulated according to:

ut;j =

 
C0 +

C1p
m��t;j

!
r�t;j + "t;j , j = 1; :::;m;

where C0 = 0:5; C1 = 0:5 and the exogenous noise "t;j is either an AR(1) or an MA(3). For the

AR(1) exogenous noise, we use "t;j = �m"t;j�1 + vt;j , with vt;j
IID� N(0; B0); �m 2 f�0:9; 0; 0:9g

and B0 varying so as to match !0 =
B0

1�(�m)
2 with the following values:

14

!0 2
�
2:5� 10�7; 2:25� 10�6; 2:5� 10�5

	
: (35)

The variance !0 = 2:5 � 10�7 has been used in Zhang and al. (2005) at �ve minute sampling
frequency while !0 = 2:25 � 10�6 has served in Ait-Sahalia and al. (2005) at frequencies ranging
from one to thirty minutes.

For the MA(1) exogenous noise, we use "t;j = vt;j + B1vt;j�1 + B2vt;j�2 + B3vt;j�3, with vt;j
IID�

N(0; B0), B1 = 0:5, B2 = 0:2 and B3 = 0:05. This implies:

!0 � E
�
"2t;j
�
= B0

�
1 + B21 + B

2
2 + B

2
3

�
= 1:2925B0;

!m;1 � E ("t;j"t;j�1) = B0 (B1 + B1B2 + B2B3) = 0:61B0;

!m;2 � E ("t;j"t;j�2) = B0 (B2 + B1B3) = 0:225B0;

!m;3 � E ("t;j"t;j�2) = B0B3 = 0:05B0 and

!m;h � E ("t;j"t;j�h) = 0 for all h � 4;

where B0 varies so as to match the variances in (35).

5.2 Simulation Results

Table 1 presents the estimation results for a correctly speci�ed AR(1) noise model. The simulations

are performed with and without the leverage e¤ect. We see that the estimators b!0 and b�m are

slightly biased downward. The bias is more pronounced in the presence of leverage e¤ect and it

is more visible for b!0.15 The standard deviation (std. dev.) of the empirical distribution of the

estimates is quite close to the mean of the standard deviations (mean std. dev.) implied by the

analytical formula (24). The last row of the table gives the rate of rejection of the null hypothesis

that the true model is AR(1) by the overidenti�cation test at nominal level 5%. Overall, the results

suggest that the overidenti�cation test has good size.

In order to assess the power of the previous test, we �t an AR(1) model to an MA(3) mi-

crostructure noise. Table 2 presents the results of the simulation. The �rst order autocorrelation

of the MA(3) noise gives us a pseudo-true value for �m. In all the scenarios, the noise variance is

overestimated while the �rst order autocorrelation is underestimated. The model rejection rate is

nearly 100%, which indicates that the overidenti�cation test has power against MA(L) alternatives.

Acting on these results, our preferred strategy for the empirical investigation will consist of �rst
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testing the null hypothesis that the noise is AR(1) and next, estimating an MA(L) noise if the

AR(1) assumption is rejected.

Table 1: Estimation of a well-speci�ed AR(1) noise model by GMM

�m = 0:9, m = 390, 1000 replications

no leverage e¤ect with leverage e¤ect

T=250 T=500 T=250 T=500

b!0
�
�10�6

� b�m b!0 b�m b!0 b�m b!0 b�m
true 2:25 0:900 2:25 0:900 2:25 0:900 2:25 0:900

mean 2:20 0:894 2:15 0:895 2:03 0:887 1:85 0:883

median 2:14 0:894 2:13 0:895 1:98 0:887 1:83 0:883

std. dev. 0:43 0:014 0:28 0:009 0:36 0:014 0:21 0:009

mean std. dev. 0:48 0:016 0:33 0:011 0:40 0:015 0:25 0:011

rejection rate 2:70% 4:00% 1:30% 4:00%

Table 2: Estimation of a misspeci�ed AR(1) noise model

True model is MA(3), m = 390, 1000 replications

no leverage with leverage

T=250 T=500 T=250 T=500

!0
�
�10�6

�
�m �

!m;1
!0

!0 �m !0 �m !0 �m

true 2:25 0:472 2:25 0:472 2:25 0:472 2:25 0:472

mean 2:79 0:425 2:78 0:425 2:81 0:421 2:79 0:420

median 2:79 0:425 2:78 0:422 2:80 0:421 2:79 0:421

std. dev. 0:05 0:011 0:03 0:007 0:05 0:011 0:03 0:008

mean std. dev. 0:05 0:012 0:03 0:008 0:05 0:012 0:03 0:009

rejection rate 99:7% 100% 98:8% 100%

We now study the performance of the inference procedure outlined previously for an MA(L)

noise. The �rst step consists of guessing an initial value Lmax that is larger that the true dependence

lag L. We use an heuristic based on the following empirical MSE:

�(l) =
1

T

TX

t=1

�
KT
t �RV

(AC;m;l)
t

�2
; l = 1; :::; b2H=3c (36)

where RV
(AC;m;l+1)
t is de�ned as in (27), KT

t = RV
(AC;m;1)
t + 1

T

PT
s=1

PH
h=2

�
1� h�1

H

� �
Ds;h + Ds;�h

�

and it is implicitly assumed that H is large enough to ensure that L � b2H=3c. On the one hand,
RV

(AC;m;l)
t is obtained by truncating the formula of RV

(AC;m;L+1)
t to l autocovariance terms and

thus, it is thus unbiased for IVt when l � L+ 1. On the other hand, KT
t is a smoothed version of

RV
(AC;m;H)
t and it is also unbiased for IVt if the bandwidth H is selected su¢ciently large. Hence

the mean of KT
t �RV

(AC;m;l)
t is decreasing in l as l increases to L and it is equal to zero for l � L+1.

Also, the variance of KT
t �RV

(AC;m;l)
t is increasing in l. As a result, the curve of �(l) is L-shaped
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or convex. An initial estimate eL of L is given by the point where the curve (l;�(l)) is bent the
most or by the minimum of that curve. Figure 1 shows an L-shapped example with an MA(3) noise.

Table 3 shows the simulation results for the estimation of L. The medians of eL and bL coincide with
the true value L = 3. The corresponding means are slightly biased downward, but this is repaired

by rounding up the estimates to the next unit.

Figure 1: Plots of �(l) against l. An example with an MA(3) noise.
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Table 3: Estimation of the dependence lag L

True model is MA(3), m = 390, T = 250, 1000 replications

!0 = 2:25� 10�6 !0 = 2:5� 10�5

no leverage with leverage no leverage with leverage

min 2:00 2:00 2:00 2:00

eL mean 2:97 2:91 2:99 2:99

median 3:00 3:00 3:00 3:00

max 3:00 3:00 3:00 3:00

min 2:00 2:00 2:00 2:00

bL mean 2:61 2:63 2:90 2:91

median 3:00 3:00 3:00 3:00

max 3:00 3:00 3:00 3:00

Below, we use Lmax = eL+3 for the estimation of the correlogram of the noise. Table 4 presents

the results. Note that the estimator of !0 is expected to be biased upward because it re�ect the

size of the total noise contaminating the e¢cient price. Indeed, we have:

E (b!0)� !0 =
�
1� �2

��C21
m
+
C1 (2C0 + 1)p

m
E
�
��t;qk

�
+ C0 (C0 + 1)E

�
��2t;qk

��
:

The results suggest that the autocovariances f!lg4l=1 are estimated without bias. The mean standard
deviation (mean std. dev.) is the average of the standard deviations implied by the analytical formula

(30). Interestingly, the average of the standard deviations obtained by the analytical formula is close

to the empirical standard deviation of the simulated estimates. The last column gives the rate of

rejection of the null hypothesis that !h = 0. It appears that a standard t-test for the null hypothesis

!4 = 0 has a good size at 5% nominal level. Also, the separate tests for the null hypotheses !h = 0

have power against the alternatives !h 6= 0; h = 1; 2; 3.
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Table 4: Estimation of the Correlogram of the noise

m = 390, T = 250, 1000 replications

true mean std. dev. mean std. dev. Prob(t>1.96)�
�10�6

� �
�10�6

� �
�10�6

� �
�10�6

�
(%)

no leverage

b!0 2:250 2:573 0:050 0:051 100

b!m;1 1:062 1:069 0:040 0:042 100

b!m;2 0:392 0:399 0:031 0:032 100

b!m;3 0:087 0:093 0:021 0:021 98:5

b!m;4 0 0:004 0:011 0:011 6:9

with leverage

b!0 2:250 2:566 0:048 0:052 100

b!m;1 1:062 1:063 0:039 0:042 100

b!m;2 0:392 0:391 0:030 0:032 100

b!m;3 0:087 0:090 0:020 0:022 99:5

b!m;4 0 0:001 0:010 0:012 3:2

As a �nal step of this simulation study, we evaluate the performance of the adaptive realized

kernels K$�

t by simulations. Under either type of noise, we set K$
t =

P4
i=1$i

cIV (i)t , with cIV
(1)

t =

KBNHLS
t;15 , cIV (2)t = KBNHLS

t;25 , cIV (3)t = KBNHLS
t;35 and cIV (4)t = KBNHLS

t;45 , where KBNHLS
t;H is the

realized Bartlett kernels with bandwidth H. Let bVt =
�
cIV (1)t ; cIV

(2)

t ; cIV
(3)

t ; cIV
(4)

t

�0
. Under AR(1)

noise, the MSE matrix of bVt is A = V ar
�
bVt
�
+BB0, where B is the 4x1 vector of biases given by:

B = �2m!0 (2 + �m)
 
(�m)

15

15
;
(�m)

25

25
;
(�m)

35

35
;
(�m)

45

45

!0
(37)

and V ar
�
bVt
�
is the covariance matrix of bVt. Note that the expression of the bias is deduced from

Theorem 4. When the noise is MA(3), the bias vector is B = (0; 0; 0; 0)0 and the MSE reduces

to A = V ar
�
bVt
�
. In order to simplify the steps of the Monte Carlo simulation, we assume the

ideal situation where !0, �m and L are known (in the empirical application, these parameters are

replaced by their estimates). We estimate A by replacing V ar
�
bVt
�
by its sample counterpart:

dV ar
�
bVt
�
=
1

T

TX

t=1

 
bVt �

1

T

TX

l=1

IVl�

! 
bVt �

1

T

TX

l=1

IVl�

!0
: (38)

The MSE of each IV estimator reported in the tables is computed as:

MSE(cIV (i)t ) =
1

T

TX

t=1

�
cIV (i)t � IVt

�2
, i = 1; :::; 4
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where IVt is inferred from the simulated volatility path at one second frequency.

Table 5 shows the simulation results under IID noise, with and without leverage e¤ect. We see

that the MSE of all IV estimators are slightly smaller in the presence of leverage e¤ect compared

to when there is no leverage. Otherwise, the simulation results are qualitatively similar. When the

noise variance is small (!0 = 25 � 10�8), the estimator with smallest bandwidth (KBNHLS
t;15 ) has

the smallest MSE and it is assigned the largest weight in the design of the adaptive estimator K$�

t .

By contrast, when the noise variance is large (!0 = 2500 � 10�8), KBNHLS
t;35 is the most e¢cient

estimator and it receives the largest or the second largest weight. In either case, the estimator with

largest bandwidth (KBNHLS
t;45 ) is not e¢cient because it does not optimally balance the discretization

error against the microstructure noise. As expected, the adaptive realized kernel is more e¢cient

than all other estimators taken individually.

Table 5. Assessing the Performance of the Adaptive Realized Kernel by Simulation under IID

microstructure noise. m = 390, T = 250, 1000 Monte Carlo replications.

MSE (10�8) Weights

!0 25� 10�8 225� 10�8 2500� 10�8 25 225 2500

no leverage KBNHLS
t;15 0:1726 0:2044 1:8115 1:6628 1:1249 0:0689

KBNHLS
t;25 0:2504 0:2713 1:2546 �0:8205 �0:0220 0:2413

KBNHLS
t;35 0:3269 0:3463 1:1713 0:3098 0:0021 0:3265

KBNHLS
t;45 0:4059 0:4263 1:2011 �0:1521 �0:1049 0:3632

K$�

t 0:1568 0:1999 1:1006 - - -

with leverage KBNHLS
t;15 0:1540 0:1858 1:7933 1:5813 1:1387 0:0878

KBNHLS
t;25 0:2372 0:2593 1:2538 �0:3598 0:1338 0:2753

KBNHLS
t;35 0:3246 0:3455 1:1865 �0:3278 �0:2442 0:3293

KBNHLS
t;45 0:4167 0:4384 1:2274 0:1063 �0:0284 0:3076

K$�

t 0:1383 0:1805 1:1081 - - -

Table 6 shows the simulation results under AR(1) microstructure noise and leverage e¤ect. The

upper part of the table presents the results for a noise with positive autoregressive root (�m = 0:9)

while the lower part of the table presents the results for a noise with negative autoregressive root

(�m = �0:9). The results are qualitatively the same under either type of AR noise. As in the IID
noise scenario, the estimator with smallest bandwidth (KBNHLS

t;15 ) has the smallest MSE and it is

assigned the largest weight when the noise variance is small (!0 = 25� 10�8). Contrary to the IID
noise case, the estimator with largest bandwidth (KBNHLS

t;45 ) is the most e¢cient when the noise

variance is large (!0 = 2500 � 10�8). Intuitively, a serially correlated noise causes more harm to

IV estimators compared to an IID noise with same variance. The adaptive realized kernel is more

e¢cient than all the individual estimators in the small and large noise variance scenario. The results

are nuanced when the noise variance is moderate (!0 = 225� 10�8).
Table 7 shows the simulation results for the MA(3) microstructure noise case. The upper part

of the table presents the results for the scenario without leverage e¤ect while the lower part of
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the table presents the results for the scenario with leverage e¤ect. Qualitatively, the results are

similar to what we have seen for the AR(1) noise scenario. Quantitatively, the MSEs of the IV

estimators are larger than the MSE under IID noise but smaller than the MSE under AR(1) noise.

This suggests that controlling for the noise variance, the more persistent the noise is, the larger the

MSE of IV estimators are. This explains why larger bandwidths are needed when the dependence

of the noise increases (cf. Theorem 4).

In summary, our empirical investigation strategy is successful in capturing the nature of the

dependence of the microstructure noise and thus, it permits to design the adaptive realized kernel

in accordance with the properties of the noise.

Table 6. Assessing the Performance of the Adaptive Realized Kernel by Simulation under AR(1)

microstructure noise and Leverage E¤ect. m = 390, T = 250, 1000 Monte Carlo replications.

MSE (10�8) Weights

!0 25� 10�8 225� 10�8 2500� 10�8 25 225 2500

�m = 0:9 KBNHLS
t;15 0:1697 0:9767 92:1028 1:3314 �0:0397 �0:0188

KBNHLS
t;25 0:2497 0:7023 47:4598 �0:1182 1:0885 0:1082

KBNHLS
t;35 0:3355 0:6356 28:2403 �0:2539 �0:1691 �0:3075

KBNHLS
t;45 0:4256 0:6428 18:7576 0:0407 0:1203 1:2181

K$�

t 0:1589 0:6878 17:7389 - - -

�m = �0:9 KBNHLS
t;15 0:1782 1:8566 204:7480 1:5368 �0:0035 �0:1446

KBNHLS
t;25 0:2436 0:7142 56:6989 �0:3094 1:1856 0:1024

KBNHLS
t;35 0:3263 0:5368 25:7243 �0:3184 0:1353 �0:1343

KBNHLS
t;45 0:4169 0:5384 14:8193 0:0909 �0:3174 1:1765

K$�

t 0:1784 0:8086 6:9812 - - -

Table 7. Assessing the Performance of the Adaptive Realized Kernel by Simulation under MA(3)

microstructure noise. m = 390, T = 250, 1000 Monte Carlo replications.

MSE (10�8) Weights

!0 25� 10�8 225� 10�8 2500� 10�8 25 225 2500

no leverage KBNHLS
t;15 0:1770 0:5595 45:7119 1:5982 0:9222 �0:0180

KBNHLS
t;25 0:2520 0:4110 18:5139 �0:7221 0:1207 0:1475

KBNHLS
t;35 0:3281 0:4276 10:7674 0:2706 0:0621 0:2997

KBNHLS
t;45 0:4072 0:4832 7:5090 �0:1466 �0:1050 0:5708

K$�

t 0:1644 0:5465 9:2932 - - -

with leverage KBNHLS
t;15 0:1584 0:5404 45:7441 1:5288 0:9370 �0:0017

KBNHLS
t;25 0:2392 0:4026 18:5765 �0:2982 0:2474 0:1654

KBNHLS
t;35 0:3264 0:4306 10:8433 �0:3240 �0:1137 0:3155

KBNHLS
t;45 0:4182 0:4960 7:5582 0:0934 �0:0707 0:5208

K$�

t 0:1450 0:5438 9:9502 - - -
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6 Empirical Application

For this application, we use data on twelve stocks listed in the Dow Jones Industrial (see the �rst

column of Table 8). The prices are observed every one minute from January 1st, 2002 to December

31th, 2007 (1510 trading days). In a typical trading day, the market opens from 9:30 am to 4:00

pm and this results in m = 390 intradaily observations.16 There are a few missing observations

(less than 5 missing data per day) which we �lled in using the previous tick method. Also, the time

series of prices contain a few outlying observations that seem to be due to recording errors. To deal

with such outliers in quote data, Barndor¤-Nielsen and al. (2008b) suggest to delete entries for

which the spread is more that 50 times the median spread on that day. Here, we proceed similarly

by applying the following cleaning rule:

rNEWt;j =

� rOLDt;j if
CCCrOLDt;j

CCC � 50� rOLD

sign
�
rOLDt;j

�
� 50� rOLD otherwise

;

where rOLDt;j is the initial data and rOLD is the empirical median of
CCCrOLDt;j

CCC across t and j. As shown
by Figure 2, this cleaning rule a¤ects very few observations and it does not remove jumps from the

data.

Figure 2: Impact of the cleaning rule on the data. Left: realized volatility for rOLDt;j . Right: realized

volatility for rNEWt;j .
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Figure 3 shows examples of volatility signature plots. Except for the General Motor index, the

average RV decreases as one samples more and more sparsely. The shape of the graph for General

Motors is not typical in the literature and it suggests that the bias of the RV is negative at the

highest frequency.

Figure 3: Volatility signature plots for selected stocks.
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Table 8 shows the output of the GMM estimation of an AR(1) noise model. Of the twelve stocks

considered, the AR(1) model is not rejected for six stocks. The overidenti�cation test statistics for

Intel Corp and Microsoft are only slightly above the rejection threshold. The autoregressive root

�m is estimated to be positive in all cases and it is signi�cantly di¤erent from zero in cases where

the AR(1) noise model is not rejected. For the AIG stock, b�m is very close to unity while it is

degenerate (i.e. equal to one) for General Motors. This suggests that the noises contaminating AIG

and General Motors obey more sophisticated unit root models.

Table 8: Estimating the AR(1) noise model by GMM based on 15 moments conditions

At level 5%, the AR(1) model is rejected if J-stat>22.362

b!0 b�m J-stat Rejection

3M Co. 1:2� 10�7 (2:1� 10�8) 0:675 (0:049) 11:44 No

Alcoa Inc. 1:3� 10�6 (1:1� 10�6) 0:931 (0:035) 31:92 Yes

AIG 3:8� 10�4 (2:9� 10�2) 0:998 (0:074) 9:40 No

American Express 8:4� 10�8 (2:1� 10�8) 0:552 (0:110) 14:7 No

Dupont and Dupont 3:3� 10�7 (1:0� 10�7) 0:846 (0:033) 20:2 No

Walt Disney 4:4� 10�7 (5:5� 10�8) 0:727 (0:029) 21:8 No

General Electric 3:8� 10�7 (1:4� 10�7) 0:868 (0:035) 12:2 No

General Motors 1:7� 10�6 (����) 1:000 (��) 29:2 Yes

IBM 9:9� 10�8 (2:1� 10�8) 0:667 (0:065) 31:1 Yes

Intel Corp. 4:4� 10�7 (7:8� 10�8) 0:766 (0:032) 22:5 Yes

Hewlett Packard 7:9� 10�7 (3:6� 10�8) 0:881 (0:039) 28:3 Yes

Microsoft 4:0� 10�7 (7:7� 10�8) 0:833 (0:025) 23:5 Yes

We apply the MA(L) noise model to the stocks for which the AR(1) speci�cation is rejected.

Table 9 shows the estimates of the dependence lag of the noise. eL is obtained by minimizing the
�(l) criterion (cf. Equation (36) and Figure 4) while bL is deduced from the signi�cance tests (32).

The estimated dependence lags lies between 8 and 12 minutes.

Table 9: Estimated noise dependence lag
eL bL

Alcoa Inc (AA) 12 12

General Motors (GM) 8 3

IBM 11 11

Intel Corp. (INTC) 10 9

Hewlett-Packard (HPQ) 9 8

Microsoft (MSFT) 10 10

Figure 4 shows the plots of �(l) against L (left) and the estimated noise autocovariances (right).

To the exception of General Motors, all estimated noise correlograms are positive. This explains the

shape of the volatility signature plot of the General Motors index, and it supports that the estimate
b�m = 1 found previously in Table 8 is spurious.
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Figure 4: Estimation of MA(L) noise. Left: plot of �(l) against l. The minimum of �(l) is used as the

�rst guess of L. Right: The correlogram of the noise (top) and the associated Student-t (bottom). The line

crossing the student-t stats indicates the signi�cance threshold, one-sided, 5%.
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The �nal step of the empirical study concerns the estimation of the daily integrated volatility.

For all assets, we set:

K$
t = $1K

BNHLS
t;15 +$2K

BNHLS
t;25 +$3K

BNHLS
t;35 +$4K

BNHLS
t;45 ;

and minimize the variance ofK$
t with respect to $ = ($1; $2; $3; $4). We implement the adaptive

realized kernel as explained in the previous section. The MSEs of all IV estimators are obtained by

combining their bias and their variance (see Equations (37) and (38)). The minimum bandwidth

H = 15 implies that KBNHLS
t;H is unbiased under the MA(L) noises identi�ed in Table 9.

Table 10 shows the results. In eight cases out of twelve, the MSE of KBNHLS
t;H is minimized for

either H = 25 or H = 35. The MSE in increasing in H in three cases (3M Co, General Motors,

IBM) and it is decreasing in one case (AIG). In the latter case for example, the initial estimators

(KBNHLS
t;H ) have very similar variances and the di¤erences seen in their MSEs are due to the squared

bias term. In all other cases, the variance term dominates the squared bias term in the MSE. More

often than not, the initial estimator with smallest MSE receives the largest positive weight when

the noise is MA(L). As expected, the adaptive realized kernel K$�

t outperforms the most e¢cient of

the initial estimators. Arguably, the design of K$�

t can be improved by combining other estimators

based on di¤erent kernel functions (Parzen, Tuckey-Hanning, Quadratic spectral). The extra cost

for such an improvement resides in the derivation of the biases of such estimators.

Figure 5 shows the estimated daily IV processes for all twelve stocks. Although many of the

estimated weights in Table 10 are negative, we have found negative IV estimates for one stock only

(the AIG index), and this happens for 5 days only out of 1510. An examination of the correlation

matrix of the vector of the initial estimators for AIG shows that they are highly correlated. The

minimum correlation is 0:9687 and it occurs between KBNHLS
t;15 and KBNHLS

t;45 . In fact, the noise

contaminating the AIG stock price is highly persistence (b�m = 0:998), and this causes the MSE

matrix of the initial estimators to be nearly singular. For this particular stock, a bias corrected

version of KBNHLS
t;15 is more reliable than K$�

t .

7 Conclusion

We design adaptive realized kernels to estimate the integrated volatility in a framework that com-

bines, on the one hand, a Brownian stochastic volatility model with leverage e¤ect for the frictionless

price, and on the other hand, a semi-parametric model for the microstructure noise. The proposed

noise model is tied to the frequency at which the price data are recorded and it speci�es the noise

as the sum of an endogenous term (correlated with the e¢cient returns) and an exogenous term

(uncorrelated with the e¢cient returns). Our speci�cation for the exogenous noise nests IID, L-

dependent as well as AR(1) models. The simulation results show that the adaptive realized kernels

achieve the optimal trade-o¤ between the discretization error and the microstructure noise. Two

inference procedures are proposed for the noise parameters. The �rst procedure is based on an

overidenti�ed generalized method of moments and it is designed for AR(1) types of noise. The
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second procedure is designed for MA(L) noises and it uses as many moment conditions as there

are parameters to be estimated. The simulations show that the AR(1) inference procedure has

power against MA(L) alternatives. Hence, our best investigation strategy in practice consists of

�rst testing whether the noise is AR(1) and next, applying the MA(L) inference procedure if the

AR(1) speci�cation is rejected. We apply this strategy to twelve stocks listed in the Dow Jones

Industrial and �nd that the AR(1) noise model cannot be rejected for six stocks. For the other

stocks, we apply the MA(L) noise inference procedure and �nd estimates of L that lie between 8

and 12 minutes.

Table 10: Optimal weights for the adaptive realized kernel.

KBNHLS
t;15 KBNHLS

t;25 KBNHLS
t;35 KBNHLS

t;45 K$�

t

AR(1) microstructure noise

3M Co weight 2:9153 �5:1125 5:4933 �2:2960 �
MSE (10�7) 0:2486 0:2693 0:2840 0:3037 0:2324

AIG weight �2:8496 10:5768 �12:8812 6:1540 �
MSE (10�3) 3:2523 1:1273 0:5538 0:3226 0:0002

American Express weight �0:2996 1:5967 �0:4983 0:2012 �
MSE (10�6) 0:1260 0:1217 0:1234 0:1258 0:1215

Dupont and Dupont weight �0:9431 1:8963 2:7955 �2:7487 �
MSE (10�7) 0:4662 0:4364 0:4547 0:4936 0:3973

Walt Disney weight �0:6308 3:0773 �0:6188 �0:8277 �
MSE (10�6) 0:1126 0:1100 0:1153 0:1213 0:1060

General Electric weight �0:6004 �0:0484 4:7721 �3:1233 �
MSE (10�7) 0:8050 0:7628 0:7658 0:8059 0:7172

MA(L) microstructure noise

Alcoa Inc. weight �0:6769 3:3121 �1:5601 �0:0752 �
MSE (10�6) 0:1205 0:1180 0:1268 0:1354 0:1135

General Motors weight 2:7928 0:0368 �4:0519 2:2223 �
MSE (10�6) 0:2382 0:2838 0:3091 0:3173 0:1915

IBM weight 0:7628 0:0022 1:4136 �1:1786 �
MSE (10�7) 0:4057 0:4122 0:4286 0:4485 0:4019

Intel Corp. weight �0:3987 1:7360 0:5748 �0:9121 �
variance (10�6) 0:1869 0:1815 0:1867 0:1946 0:1794

Hewlett Packard weight �0:4438 0:7396 2:4871 �1:7829 �
MSE (10�6) 0:2310 0:2217 0:2245 0:2344 0:2174

Microsoft weight 0:2129 �0:8753 2:4685 �0:8061 �
MSE (10�7) 0:6450 0:6241 0:6155 0:6254 0:6133
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Figure 5: Estimated daily integrated volatility by adaptive realized kernels K$�
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Appendix: Proofs

The following Lemma will be used in the proof of Theorem 1.

Lemma 5 Assume that rt;j = r�(1);t;j + (1 + at;j) r
�
(2);t;j � at;j�1r�(2);t;j�1 + ("t;j � "t;j�1) for some

deterministic sequence fat;jg ; j = 1; :::;m. Let ert;k be the series of non-overlapping sums of q
consecutive observations of rt;j, that is, ert;k = er(1);t;k + er(2);t;k with er(1);t;k =

Pqk
j=qk�q+1 r

�
(1);t;j and:

er(2);t;k =

qkX

j=qk�q+1

r�(1);t;j + (1 + at;qk) r
�
(2);t;qk +

qk�1X

j=qk�q+1

r�(2);t;j

�at;qk�qr�(2);t;qk�q + ("t;qk � "t;qk�q)

for k = 1; :::;mq and some positive integer q � 1 such that mq = bm=qc. Then we have:

E
h
RV

(mq)
t

i
= IVt+2

Pmq

k=1

�
at;qk + a

2
t;qk

�
��2(2);t;qk+a

2
t;0�

�2
(2);t;0�a2t;qmq

��2(2);t;qmq
+2mq (!0 � !m;q) ;

V ar
h
RV

(mq)
t

i
= O(mq):

Proof of Lemma 5: We have: RV (mq) =
Pmq

k=1 er2(1);t;k + 2
Pmq

k=1 er(1);t;ker(2);t;k +
Pmq

k=1 er2(2);t;k,
with:

mqX

k=1

er2(2);t;k = (1) + (2) + (3) + (4) + (5) + (6) + (7) + (8) + (9)

where

(1) =
Pmq

k=1

h
(1 + at;qk)

2 + a2t;qk

i
r�2(2);t;qk + a

2
t;0r

�2
(2);t;0 � a2t;qmq

r�2(2);t;qmq
:

(2) =
Pmq

k=1

�Pqk�1
j=qk�q+1 r

�
(2);t;j

�2
:

(3) =
Pmq

k=1 ("t;qk � "t;qk�q)
2 :

(4) = 2
Pmq

k=1

Pqk�1
j=qk�q+1 (1 + at;qk) r

�
(2);t;jr

�
(2);t;qk:

(5) = 2
Pmq

k=1 (1 + at;qk) at;qk�qr
�
(2);t;qk�qr

�
(2);t;qk:

(6) = 2
Pmq

k=1 (1 + at;qk) ("t;qk � "t;qk�q) r�(2);t;qk:
(7) = �2

Pmq

k=1

Pqk�1
j=qk�q+1 at;qk�qr

�
(2);t;jr

�
(2);t;qk�q:

(8) = 2
Pmq

k=1

Pqk�1
j=qk�q+1 ("t;qk � "t;qk�q) r�(2);t;j :

(9) = �2
Pmq

k=1 at;qk�q ("t;qk � "t;qk�q) r�(2);t;qk�q:
Only squared terms have nonzero expectation:

E
h
RV (mq)

i
=
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k=1
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:
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where !m;q = E ["t;j"t;j�q] is independent of t and j. Also, all the terms involved in the expression

of
Pmq

k=1 er2(2);t;k are uncorrelated. Thus:

V ar
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k=1

er2(2);t;k

#
= V ar((1)) + V ar((2)) + V ar((3)) + V ar((4))
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The presence of the term V ar
hPmq

k=1 ("t;qk � "t;qk�q)
2
i
in the expression of the variance of

Pmq

k=1 er2(2);t;k shows that V ar
�
RV (mq)

�
= O(mq)�

The following Lemma will be used in the proof of Theorem 3.

Lemma 6 Under the assumptions of Theorem 3, we have:

E
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Proof of Lemma 6: Let rt;j = r
�
(1);t;j+er(2);t;j ; where er(2);t;j = (1 + at;j) r�(2);t;j�at;j�1r�(2);t;j�1+
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We �rst note that:
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2at;m + a

2
t;m

�
��4(2);t;m+4a

2
t;�1a

2
t;0�

�2
(2);t;�1�

�2
(2);t;0

�8at;m�1at;m (1 + at;m + at;mat;m�1)��2(2);t;m�1��2(2);t;m
+4a2t;m�1a

2
t;m�

�2
(2);t;m�1�

�2
(2);t;m + 8!0

�
��2(2);t;m�1 � ��2(2);t;0

�
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+8!0

�
a2t;�1�

�2
(2);t;�1 + 2a

2
t;0�

�2
(2);t;0 + at;m�

�2
(2);t;m

�

�8!0
�
at;m�1�

�2
(2);t;m�1 + a

2
t;m�1�

�2
(2);t;m�1

�
:

The presence of the term 8m!20 in the expression of this variance shows that V ar
h
RV

(AC;m;1)
t

i
=

O(m)�

Proof of Theorem 1: Substituting for at;j = C0+
C1p
m��t;j

in Lemma 5, we get the expectation:

E
h
RV

(mq)
t

i
= IVt +

�
1� �2

�
"
2C21
q
+
2 (2C0 + 1)C1p

m

mqX

k=1

��t;qk + 2C0 (C0 + 1)

mqX

k=1

��2t;qk

#

+2mq (!0 � !m;q) +
�
1� �2

� �
C20
�
��2t;0 � ��2t;m

�
+
2C0C1p
m

�
��t;0 � ��t;m

��
:

We do not calculate the exact variance of RV
(mq)
t because all we need to know is that it is O(m),

as shown in Lemma 5�

Proof of Theorem 2: Substituting for at;j = C0 +
C1p
m�t;j

in Lemma 6, yield:

E
h
RV

(AC;m;1)
t

i
= IVt +

�
1� �2

� ��
C20 + 2C0

� �
��2t;m � ��2t;0

�
� 2C1 (1 + C0)p

m

�
��t;m � ��t;0

��
:

We do not calculate the exact variance of RV
(AC;m;1)
t because all we need to know is that it is O(m),

as shown in Lemma 6�

Lemma 7 Assume that C0 = C1 = � = 0 and k (x) = 1� x (the Bartlett kernel). Under Assump-
tions E1 and E2, we have:

Kt (r
�)� IVt = Op(H

1=2m�1=2);

Kt (�u) = �"2t;0 + "2t;m �
4

H

mX

j=1

"t;j"t;j�H �
2

H

mX

j=1

"t;j"t;j�H�1

� 2
H

H�1X

h=2

("t;0"t;�h � "t;m"t;m�h) +
2

H
("t;0"t;�H � "t;m"t;m�H) ;

as m!1 and H = DmD for D 2 (0; 1).

Proof of Lemma 7: The result for Kt (r
�) follows from Theorem 1 of Barndor¤-Nielsen and

al (2008a). We now examine the term Kt (�"). We have:

Kt (�") =

mX

j=1

("t;j � "t;j�1)2 + 2
HX

h=1

k

�
h� 1
H

� mX

j=1

("s;j � "s;j�1) ("s;j�h � "s;j�h�1) ;

= V
(AC;m;1)
t + 2

HX

h=2

k

�
h� 1
H

� mX

j=1

("s;j � "s;j�1) ("s;j�h � "s;j�h�1) ;

34



with V
(AC;m;1)
t = 2

Pm
j=1 "t;j ("t;j�1 � "t;j�2)� "2t;0 + "2t;m +2 ("t;0"t;�1 � "t;m"t;m�1) ; and for h � 2:

mX

j=1

("t;j � "t;j�1) ("t;j�h � "t;j�h�1) = �
mX

j=1

"t;j"t;j�h+1 + 2
mX

j=1

"t;j"t;j�h �
mX

j=1

"t;j"t;j�h�1

� ("t;0"t;�h+1 � "t;m"t;m�h+1) + ("t;0"t;�h � "t;m"t;m�h)

Summing over H yields:

2

HX

h=2

k

�
h� 1
H

� mX

j=1

("t;j � "t;j�1) ("t;j�h � "t;j�h�1)

= �2
mX

j=1

"t;j ("t;j�1 � "t;j�2)�
4

H

mX

j=1

"t;j"t;j�H �
2

H

mX

j=1

"t;j"t;j�H�1

� 2
H

H�1X

h=2

("t;0"t;�h � "t;m"t;m�h)� 2 ("t;0"t;�1 � "t;m"t;m�1) +
2

H
("t;0"t;�H � "t;m"t;m�H)

Finally, we have:

Kt (�") = �"2t;0 + "2t;m �
4

H

mX

j=1

"t;j"t;j�H �
2

H

mX

j=1

"t;j"t;j�H�1

� 2
H

H�1X

h=2

("t;0"t;�h � "t;m"t;m�h) +
2

H
("t;0"t;�H � "t;m"t;m�H)

�

Proof of Theorem 3: When "t;j is IID, all autocovariances of order h � 1 are equal to zero
and Lemma 7 implies: Kt (r

�) � IVt = Op(H
1=2m�1=2), Kt (r

�;�u) = Op(H
�1=2) and Kt (�u) =

�"2t;0 + "2t;m +Op(H�1m1=2). By setting H proportional to m2=3, we obtain:

KBNHLS
t;Lead = Kt (r

�) +Kt (r
�;�u) +Kt (�u; r

�) +Kt (�u)

= Op(m
�1=6) +Op(m

�1=3) +Op(m
�1=3)� "2t;0 + "2t;m +Op(m�1=6)

= �"2t;0 + "2t;m +Op(m�1=6)

�

Proof of Theorem 4: Under AR(1) noise with autoregressive root �m, we see from Lemma 7

that the bias of KBNHLS
t;Lead induced by Kt (�u) is equal to

E (Kt (�u)) = �mH�1 (4!m;H + 2!m;H+1) = �2mH�1 (�m)
H (2 + �m)!0:

Let H = CmD for strictly positive constants C and D. Then, the absolute bias is:

jE (Kt (�u))j = 2 (2 + �m)!0C exp ((1� D) logm+ CmD ln j�mj) ;
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which converges to zero fast if �m 2 (�1; 1). If �m = 1�Dm�B, then:

jE (Kt (�u))j ' 2 (2 + �m)!0C exp
�
(1� D) logm� CDmD�B� ;

with the convention that ln j�mj = D if B = 0. This yields the �rst result.

For the second result, E (Kt (�u)) = �mH�1 (4!m;H + 2!m;H+1) while !m;H = 0 for H � L+1
under an MA(L) noise�
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Notes

1See Andersen, Bollerslev, Diebold and Labys (2003); Bandi and Russell (2008).
2See also Jacod, Li, Mykland, Podolskij and Vetter (2009).
3BNHLS (2008a, Section 5.6) show that the contribution of jumps may not disturb the asymptotic orders.
4A popular model often postulated for the spot variance is the square-root di¤usion d�2s = �

�
� � �2s

�
ds +

E
p
�2sdBs. Under this model, the spot volatility follows the di¤usion d�s = f (�s) ds + g (�s) dBs, where f (�s) =

1
2�s

h
�� � E2

4
� ��2s

i
and g (�s) =

E
2
. In this case, the function p�(1) (�) solves

@p�(1)(�)

@�
= ��

E

2

, which yields p�(1) (�s) =�
�

E

�
�2s.
5This situation may apply either to a single asset with a market activity that varies across days (time series

dimension) or to several assets with di¤erent liquidity level (cross-sectional dimension).
6For instance, �m ' Dm�B or �m ' 1�Dm�B as m!1; D > 0.
7For instance, if r�t;j is a series of one minute returns, then ert;k would be a q minutes return.
8The dependence lag L must be estimated before RV

(AC;m;L+1)
t can be feasible. Likewise, an estimate of �m must

be available before RV
(AC;m;1)
t can be implemented.

9The noise parameters C0, C1, �, B and E are not empirically relevant for the realized kernels and thus, they are

not estimated.
10Note that O(m�1) end e¤ects are neglected so that Equation (20) is an asymptotic moment condition.
11Note that the noise parameters are not necessarily constant across m in the current framework. Hence, it is

important to read the central limit result (31) for a �xed m.
12A heuristic for chosing Lmax is proposed in the next section.
13We assume that the market opens from 9:30 am to 4:00 pm, which implies 4680 discretization points within each

day.
14Note that �m = 0 features an IID exogenous noise.
15One should expect the sign of the bias of b!0 to depend on the sign of the correlation between the endogenous

noise and the spot volatility. It may also depends on the sample size because the volatility path is �xed throughout

the Monte Carlo replications.
16The data we use in this paper have been purchased from a private provider who has ensured its accuracy by

comparison with three other independent �nancial data providers.
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