Associate Professor, Marine Carrasco 
  
Rachidi Kotchoni 
email: rachidi.kotchoni@gmail.com
  
  
  
  
Adaptive Realized Kernels

Keywords: Integrated Volatility, Method of Moment, Microstructure Noise, Realized Kernels. JEL Codes: C13, C14, G10

We design adaptive realized kernels to estimate the integrated volatility in a framework that combines a stochastic volatility model with leverage e¤ect for the e¢cient price and a semiparametric microstructure noise model specied at the highest frequency. Some time dependence parameters of the noise model must be estimated before adaptive realized kernels can be implemented. We study their performance by simulation and illustrate their use with twelve stocks listed in the Dow Jones Industrial. As expected, we nd that adaptive realized kernels achieves the optimal trade-o¤ between the discretization error and the microstructure noise.

assumption that the volatility of the high frequency returns are constant within a day, Ait-Sahalia, Mykland and Zhang (2005) derive a maximum likelihood estimator of the IV that is robust to both IID noise and distributional misspecication. [START_REF] Zhang | A tale of two time scale: determining integrated volatility with noisy high-frequency data[END_REF] propose another consistent estimator in the presence of IID noise which they called the two scale realized volatility. This estimator has been adapted in Ait-Sahalia, Mykland and [START_REF] Ait-Sahalia | Ultra high frequency volatility estimation with dependent microstructure noise[END_REF] to deal with dependent noise. Since then, other consistent estimators have become available among which the well-known realized kernels of Barndor¤-Nielsen et al. (2008a) and the pre-averaging estimator of [START_REF] Podolskij | Estimation of volatility functionals in the simultaneous presence of microstructure noise and jumps[END_REF]. 2 This paper presents a general framework to design adaptive and e¢cient kernel-based estimators for the integrated volatility in accordance with the properties of the noise. First, we propose a semi-parametric microstructure noise model that is tied to the frequency at which the price data are recorded. The noise is specied as the sum of an endogenous term that is correlated with the e¢cient returns and an exogenous term that is uncorrelated with the e¢cient returns. Flexible restrictions are imposed on the exogenous noise so that it admits L-dependent and AR(1) dynamics as special cases. We superimpose the overall noise model to a stochastic volatility model with leverage e¤ect for the e¢cient price.

Second, we examine the implications of the overall framework for common realized measures that are aimed at estimating the IV. The bulk of the MSE of IV estimators is dominated by the contribution of the exogenous noise. When price data are contaminated with the endogenous noise only, the bias of the standard RV is O(1) while kernel-based estimators are unbiased and consistent. Under an MA(L) exogenous noise, realized Bartlett kernels with bandwidth larger than L are unbiased for the IV. When the exogenous noise is AR [START_REF] Ait-Sahalia | How often to sample a continuous-time process in the presence of market microstructure Noise[END_REF], an unbiased estimator of IV can be obtained only upon having a rst step estimator of the noise autoregressive root in hand. If the rst order autocorrelation of the exogenous noise converges to one as the record frequency goes to innity, then a necessary condition for the realized kernels to be consistent for the IV is that its bandwidth diverge su¢ciently fast as the record frequency goes to innity. Third, we examine the trade-o¤ involved as one moves, on the one hand, from the standard RV to a bias-corrected RV, and on the other hand, from a bias-corrected RV to a consistent realized kernel. We show that unbiasedness and/or consistency are achieved by conceding more and more discretization error. Acting on this, we argue that the performance of any IV estimator at a given sampling frequency reects the balance between the discretization error and the microstructure noise at that frequency. We propose an adaptive realized kernel that achieves the optimal trade-o¤ bewteen both types of errors. As an optimal linear combination of initial estimators, the adaptive realized kernel provides us with an additional degree of freedom for tuning kernel-based estimators besides the bandwidth parameter.

Fourth, we propose two inference procedures for the microstructure noise. The rst procedure is designed for AR [START_REF] Ait-Sahalia | How often to sample a continuous-time process in the presence of market microstructure Noise[END_REF] types of noise and it is based on an overidentied generalized method of moments.

The second procedure is designed for MA(L) noises and it uses as many moment conditions as there are parameters to be estimated. The AR(1) assumption best suits for noise processes with innite dependence lag while the MA(L) assumption is reasonable if the noise has nite dependence. Our simulations show that the inference procedure designed for AR [START_REF] Ait-Sahalia | How often to sample a continuous-time process in the presence of market microstructure Noise[END_REF] noises has good size and it has power against MA(L) alternatives. Hence, our best investigation strategy in practice consists of rst testing whether the noise is AR [START_REF] Ait-Sahalia | How often to sample a continuous-time process in the presence of market microstructure Noise[END_REF] and next, applying the MA(L) inference procedure if the AR(1) specication is rejected. We apply this strategy to twelve stocks listed in the Dow Jones Industrial and nd that the AR(1) noise model cannot be rejected for six of them. For the other six stocks, we apply the MA(L) noise inference procedure and nd estimates of L that lie between 8 and 12 minutes.

The paper is organized as follows. In Section 1, we present our models for the frictionless price and for the microstructure noise. In section 2, we study the properties of common realized measures within our framework. In Section 3, we design adaptive realized kernels for the IV. Our inference procedures for microstructure noise are presented in Section 4. In Sections 5 we evaluate the performance of all estimators proposed in the paper by simulation. Section 6 presents the empirical application and Section 7 concludes. The proofs are collected in an appendix. [START_REF] Ait-Sahalia | How often to sample a continuous-time process in the presence of market microstructure Noise[END_REF] The Framework First, we present a model for the e¢cient price that allows for leverage e¤ect. Next, we present our model for the microstructure noise.

A Model for the E¢cient Price

Let p 3 s denote the latent (or e¢cient) log-price of an asset and p s its observable counterpart. Assume that p 3 s obeys the following stochastic di¤erential equation:

dp 3 s = (s; p 3 s ) ds + s d f W s ; p 3 0 = 0; (1) 
where (:; :) is a deterministic and smooth function, s is the spot volatility and f W s is a standard Brownian motion. In turn, assume that s satises:

d s = f ( s ) ds + g ( s ) dB s ; (2) 
where f (:) and g (:) are deterministic and smooth functions, B s is a Brownian motion such that f W s = B s + p 1 0 2 W s , W s is another Brownian motion that is independent of B s and 2 (0; 1)

is the leverage e¤ect parameter.

It is assumed that Equation (2) admits a continuous solution with innite lifetime. Also, the processes (s; p 3 s ), f ( s ) and g ( s ) are assumed adapted to the ltration generated by fW u ; B u ; u < sg. Throughout this paper, it is maintained that there is no jump in the e¢cient price. However, the conclusions of our analysis remain valid if a jump component that is uncorrelated with all other randomness is added to the e¢cient price. In this case, the estimators that we consider for the IV are designed for the total quadratic variation of the e¢cient price process. 3 Without loss of generality, we condition all our analysis on the volatility path f s g s0 but the conditioning is often removed from the notation for simplicity. Accordingly, all deterministic transformations of the spot volatility process are treated as constants.

We assume that there exists a twice di¤erentiable deterministic function p 3

(1) (:) that satises @p 3 (1) (s) @s = s g(s) so that the stochastic process p 3 (2);s = p 3 s 0 p 3 (1) ( s ) follows a di¤usion without leverage e¤ect 4 . Indeed, by the Itô Lemma, we have:

dp 3
(1);s = (1);s ds + (1);s dB s ; and

(3)

dp 3 (2);s = (2);s ds + (2);s dW s : (4) 
where

p 3 (1);s p 3 (1) ( s ), ( 1 
);s = s , ( 2 
);s = p 1 0 2 s , (2) 
;s = s 0 (1);s and

(1);s = s g ( s ) f ( s ) + 1 2 @ 2 p 3 (1) ( s ) @ 2 g 2 ( s ) .
By construction, p 3 s = p 3 (1);s + p 3 (2);s and p 3 (1);s and p 3 (2);s are uncorrelated. Hence,

IV t = R t t01 2 
s ds is equal to the sum of the quadratic variations of p 3

(1);s and p 3 (2);s . We consider a sampling scheme where the unit period is normalized to one day. By denition, the microstructure noise is the di¤erence between the observed log-price and the e¢cient log-price, that is, u s = p s 0 p 3 s . Thus, let r 3 t denote the latent log-return at day t and r t its observable counterpart. We have:

r t p t 0 p t01 = r 3 (1);t + r 3 (2);t + u t 0 u t01 (5) 
where r 3 (i);t = R t t01 (i);s ds + R t t01 (i);s dW s . The drifts of the di¤usions (1), ( 3) and ( 4) are irrelevant for their quadratic variations. Acting on this, we treat these di¤usions as though they had no drift ( s = (1);s = (2);s = 0).

Suppose that we observe a large number m of intradaily returns r t;1 ; r t;2 ; :::; r t;m for t = 1; :::; T days. We have:

r t;j = r 3
(1);t;j + r 3 (2);t;j + u t;j 0 u t;j01 for all t and j;

where u t;j u t01+j=m and r 3 (i);t;j R t01+j=m t01+(j01)=m (i);s dW s . It is maintained that the high frequency observations are equidistant in calendar time. The noise-contaminated (observed) and true (latent) RV computed at frequency m are:

RV (m) t = m X j=1 r 2 
t;j and RV 

as m goes to innity. In the presence of microstructure noise, the estimator RV 3(m) t is not feasible.

A Semiparametric Model for the Microstructure Noise

To model the microstructure noise, we posit that the frequency at which the price data are recorded determines the time series properties of the microstructure noise. This idea is acknowledge by Barndor¤-Nielsen et al. (2008a, Section 5.4 ) who considered a situation where the serial dependence is tied to the sampling frequency [...], as opposed to calendar time. Here, we follow a semiparametric approach that consists of specifying how the correlation structure of the noise changes as the record frequency increases.

To motivate this approach, let us consider an MA(1) process " t;j at the highest frequency with E(" 2 t;j ) = ! 0 and E(" t;j " t;j01 ) = ! 1 . The time elapsed between " t;j and " t;j0h is h m when the record frequency is m. By letting ! 0 h m ; m 1 denote the h th order autocovariance of " t;j , we have:

! (0; m) = ! 0 ; ! 1 m ; m = ! 1 and ! h m ; m = 0; h 2: (8) 
If we posit that " t;j remains an MA(1) with constant parameters whatever the record frequency, then we can assert that:

! (0; km) = ! 0 ; ! 1 km ; km = ! 1 and ! h km ; km = 0; h 2, (9) 
as k ! 1 and m is xed. However, if we assume that " t;j obeys an MA(1) model at the record frequency m but its rst order autocorrelation is not invariant with respect to m, then (8) cannot be used to infer [START_REF] Barndor¤-Nielsen | Realised kernels in practice: trades and quotes[END_REF]. By contrast, the autocorrelation structure of the sparsely sampled noise process can always be inferred from the properties of the noise at the highest frequency.

With this in mind, we postulate the following microstructure noise model at the record frequency:

u t;j = a t;j r 3 (2) 
;t;j + " t;j ; j = 1; 2; :::; m, for all t; [START_REF] Barndor¤-Nielsen | Estimating quadratic variation using realized variance[END_REF] where a t;j is a time varying coe¢cient that depends on the spot volatility process and " t;j is independent of the e¢cient returns. In the words of [START_REF] Hasbrouck | Assessing the quality of a security market: a new approach to transaction cost measurement[END_REF], " t;j is the information uncorrelated or exogenous pricing error while a t;j r 3 (2);t;j is the information correlated or endogenous pricing error. We assume that time dependence in the noise process is only due to its information uncorrelated part. The following assumptions are further made:

Assumption E0. a t;j = C 0 + C 1 F m 3 t;j
, where C 0 and C 1 are constants and: 

32 t;j Z t01+j=m t01+(j01)=m
! m;h 0! m;h+1 ! 0 = O(m 0B
) for some B 0, h = 0; :::; m 0 1.

Assumption E3.

For xed m, we have: E3(a) E ju t;j u t;j0h j 4+F < 1, for some F > 0, for all h.

E3(b) V ar n 01=2 m 01=2 P t +n t=t +1
P m j=1 r t;j r t;j0h ! q h , uniformly in any t , as n ! 1.

Assumption E0 is a convenient way to depart from the constant coe¢cient case (a t;j = C 0 ) and it implies that the variance of the endogenous part of the noise goes to zero at rate m:

V ar a t;j r 3

(2);t;j = 0 1 0 2 1 0 @ C 0 32 t;j + 2C 0 C 1 s 32 t;j m + C 2 1 m 1 A :
Assumption E1 is quite standard in the literature. Assumption E2 stipulates general restrictions on the autocovariance structure of " t;j rather a parametric distribution.

Assumption E2(a) imposes that " t;j be autocorrelated across j within the same day t, but not across days. This approximation is reasonable if the market closes at 4:30pm and re-opens the next day at 9:00am. Assumption E2(b) relates the behavior of the noise correlogram to the sampling frequency and is consistent with several parametric models. A correlation structure which does not depend on m is described by B = 0 while B 2 (0; 1) allows the correlogram to depend on m to some extent. For instance, an L-dependent model with xed lag L corresponds to B = 0 and ! m;h = 0 for all h > L. This includes the IID and uncorrelated noise as special cases. One may also think of an MA(L) noise such that L = Cm E for some constants C > 0 and E 0. The case E = B = 0 brings us back to the MA(L) model with constant lag L whilst E 2 (0; 1) describes a situation where a higher market activity generates a noise with longer dependence lag. 5 For the latter type, we have:

! 0 0 ! m;1 ! 0 = O(m 0B ) ) lim m ! m;1 ! 0 = 1:
Assumption E2(b) also accommodates an AR(1) models. Indeed, assume that " t;j satises !

m;h = ! 0 ( m ) h ; h 0 and m = ! m;1 ! 0 . This model ts into E2(b) if: ! m;h 0 ! m;h+1 = ! 0 ( m ) h (1 0 m ) = O(m 0B );
for all h > 1. Hence, B = 0 accommodates an AR(1) with constant autoregressive root whilst B 2 (0; 1) implies that m converges either to zero or to one as m ! 1. 6 Finally, Assumption E3 replicates Assumption (1c) and Assumption 2 of Ubukata and Oya (2009) and it is needed for the central limit theorem of [START_REF] Politis | Subsampling for heteroskedastic time series[END_REF] to hold.

This assumption is satised if the squared return process r 2 t;j is stationary and strong-mixing.

Properties of Common Realized Measures

In this section, we study the traditional realized variance, the kernel-based estimator of [START_REF] Hansen | Realized variance and market microstructure noise[END_REF] with m q = m q ; q 1 and e r t;k = P qk j=qk0q+1 r t;j being the sum of q consecutive returns. 7 Note that Equation [START_REF] Andrews | An improved heteroskedasticity and autocorrelation consistent covariance matrix estimator[END_REF] 

= 1 + C 0 + C 1 p m 3 t;qk ! r 3 (2);t;qk + qk01 X j=qk0q+1 r 3 
(2);t;j

0 C 0 + C 1 p m 3 t;qk0q ! r 3
(2);t;qk0q + (" t;qk 0 " t;qk0q ) ;

with the convention that P qk01 j=qk0q+1 r 3 (2);t;j = 0 when q = 1. The next theorem gives the bias and variance of RV (mq) t . Theorem 1 Assume that the noise process evolves according to equation [START_REF] Barndor¤-Nielsen | Estimating quadratic variation using realized variance[END_REF]. Then we have:

E RV (mq) t = IV t + 2m q (! 0 0 ! m;q ) | {z } bias due to exogenous noise +2 0 1 0 2 1 C 2 1 q + C 1 (2C 0 + 1) p m mq X k=1 3 t;qk + C 0 (C 0 + 1) mq X k=1 32 t;qk ! | {z }
bias due to endogenous noise

+ 0 1 0 2 1 C 2 0 0 32 t;0 0 32 t;m 1 + 2C 0 C 1 p m 0 3 t;0 0 3 t;m 1 | {z } end e¤ects
; and

V ar RV

(mq) t = O(m q ):
The bias of RV (mq) is comprised of three terms. The dominant term, 2m q (! 0 0 ! m;q ), is due to the exogenous noise. According to Assumption E2(b), this term is O(m 10B ). The second term of the bias is due to the endogenous noise and it is O(1). The latter term does not diverge as m ! 1

and hence, a volatility signature plot may not be able to detect its presence. The third term of the bias is O(m 01 ) and it is due to end e¤ects. 

where m is the autoregressive root of the noise. 8 In order to gain some insights on the properties of the estimators above, we specialize the exogenous noise to the IID case and derive the mean and variance of RV (AC;m;1) t .

Theorem 2 Assume that the noise process evolves according to Equation [START_REF] Barndor¤-Nielsen | Estimating quadratic variation using realized variance[END_REF]. If " t;j is IID, then we have: where the higher order covariance terms are weighted by a kernel function. Hence, this estimator is also robust to endogenous noise and leverage e¤ect. Acting on this, we study the realized kernel below by assuming that C 0 = C 1 = = 0.

E RV (AC;m;1) t = IV t + 0 1 0 2 1 h 0 C 2 0 + 2C 0 1 0 32 t;m 0 32 t;0 1 0 2C 1 (1+C 0 ) F m 0 3 

The Realized Kernels

Barndor¤-Nielsen et al. (2008a) proposed the following estimator for IV t which they named realized kernel :

K BN HLS t = D t;0 (r) + H X h=1 k h 0 1 H 0 D t;h (r) + D t;0h (r) 1 ; (14) 
for a positive kernel function k (:) such that k (0) = 1 and k (1) = 0, where D t;h (x) = P m j=1 x t;j x t;j0h for any variable x. Equation ( 14) is reminiscent of the long run variance estimators of [START_REF] Newey | A simple positive denite, heteroskedasticity and autocorrelation consistent covariance matrix[END_REF] and [START_REF] Andrews | An improved heteroskedasticity and autocorrelation consistent covariance matrix estimator[END_REF].

Barndor¤-Nielsen et al. (2008a, Proposition 3 ) show that K BN HLS t is consistent for IV t for some choices of bandwidth if the covariance between " t;h and " t;h0j vanishes for any h and j as m ! 1.

This condition is satised for an AR(1) noise with m ! 0 as m ! 1 or for an MA(L) noise with constant lag L. It is not satised for an AR(1) noise with m ! 1 as m ! 1 nor for an MA(L) noise with L = Cm E and E > 0. For the latter MA(L) noise, Assumption E2(b) implies that:

! m;j 0 ! 0 = 0 j01 X h=0 (! m;h 0 ! m;h+1 ) = O(jm 0B ): Hence, ! m;j 0 ! 0 = O(m 0B ) and lim m ! m;j ! 0 = 1 for any xed j. Further, Barndor¤-Nielsen et al. (2008a, Proposition 4 ) show that K BN HLS t is consistent for
IV t when " t;j is AR(1) with constant autoregressive root. Below, we study the estimator given by:

K BN HLS t;Lead = D t;0 (r) + 2 H X h=1 k h 0 1 H D s;h (r) ; (15) 
when the rst order autocorrelation of the noise converges to one as m ! 1 and we use the results

to infer some properties of K BN HLS t . Note that K BN HLS t;Lead can be decomposed as:

K BN HLS t;Lead = K t (r 3 ) + K t (r 3 ; 1u) + K t (1u; r 3 ) + K t (1u) ;
where

K t (x) = D t;0 (x) + 2 H X h=1 k h 0 1 H D t;h (x) ; K t (x; y) = D t;0 (x; y) + 2 H X h=1 k h 0 1 H D t;h (x; y) ;
and D t;h (x; y) = P m j=1 x t;j y t;j0h . We have the following consistency result under IID exogenous noise.

Theorem 3 Assume that C 0 = C 1 = = 0, k (x) = 1 0 x (the Bartlett kernel) and " t;j is IID.
Then, we have:

K BN HLS t;Lead 0 IV t = 0" 2 t;0 + " 2 t;m + O p (m 01=6 ): as m ! 1 and H is proportional to m 2=3 .
Barndor¤-Nielsen et al. (2008a, Theorem 4) gives the same rate of convergence for K BN HLS t under the conditions of Theorem 3. They also show that the end e¤ects 0" 2 t;0 + " 2 t;m can be asymptotically neglected by applying an appropriate jittering scheme. Here, Theorem 3 focuses on K BN HLS t;Lead . In this theorem and subsequently, we insists on the Bartlett kernel in order to control the bias rather than to achieve the optimal rate of convergence, i. is the twin estimator given by:

K BN HLS t;Lag = D t;0 (r) + 2 H X h=1 k h 0 1 H D s;0h (r)
Hence, V ar K BN HLS t;Lead is always larger than V ar 0 K BN HLS t 1 although both estimators enjoy the same rate of convergence. When the noise is not IID but remains purely exogenous, K BN HLS t and K BN HLS t;Lead have the same expectation as K t (1u). We further have the following results.

Theorem 4 Assume that C 0 = C 1 = = 0, k (x) = 1 0
x (the Bartlett kernel) and " t;j and that Assumptions E1 and E2 hold.

(i) If the noise is AR(1) with autoregressive root m , then we have:

E (K t (1u)) = 02mH 01 ( m ) H (2 + m ) ! 0 :
If further m ' 1 0 Dm 0B (B 0) so that m ! 1 as m ! 1 and H = Cm D (D 2 (0; 1)) then we have:

jE (K t (1u))j ' 2 (2 + m ) ! 0 Cm 10D exp 0 0CDm D0B 1 (ii) If the noise is MA(L), E (K t (1u)) = 0 as long as H L + 1.
The rst result of Theorem 4 stipulates that under an AR(1) exogenous noise with m ! 1 as

m ! 1, E (K t (1u)) converges to zero if and only if H = Cm D with D > B.
Otherwise, the bias diverges to innity. Hence, a necessary condition for the MSE of K BN HLS t to be nite is that H diverges to innity su¢ciently fast as m ! 1. Under MA(L) noise, E (K t (1u)) = 0 if H is greater than the dependence lag of the noise. Again, if L = Cm E as assumed, a su¢cient condition for

K BN HLS t
to be unbiased is that H diverges to innity faster than L as m ! 1.

Adaptive Realized Kernels

The results of a simulation study performed by [START_REF] Gatheral | Zero-intelligence realized variance estimation[END_REF] . The rst situation is the one in which the variance of the microstructure noise is so small that it contributes very little to the MSE. The second situation may happen because the bandwidth H is not optimally selected for K BN HLS t . The third situation corresponds to the case where the sampling frequency is not large enough to make the asymptotic results

for K BN HLS t useful. All three situations are related to the fact that the performance of an IV estimator at a given sampling frequency reects the trade-o¤ between the discretization error and the microstructure noise at that frequency. Indeed, RV (AC;m;1) t is exempted of the bias of its ancestor

RV (m) t
at the expense of a higher discretization error (i.e. the MSE in the absence of noise). Also, K BN HLS t brings consistency upon conceding a higher discretization error than RV (AC;m;1) t

. Given that the discretization error K BN HLS t increases with the bandwidth H, the optimal selection of H involves a trade-o¤ between the MSE due to discretization and the MSE due to the microstructure noise. Below, we propose an adaptive estimator that is aimed at achieving this optimal trade-o¤.

Consider N kernel-based estimators of IV t given by: c IV

(i) t = D t;0 (r) + H X h=1 k i h 0 1 H 0 D t;h (r) + D t;0h (r) 1 
, i = 1; :::; N and t = 1; :::; T

where t is a daily index, T is the number of days for inference about microstructure noise and k i (:) ; i = 1; :::; N are distinct kernel functions. Alternatively, one may consider using the same kernel function but di¤erent bandwidths, as in the following example:

c IV (i) t = D t;0 (r) + H i X h=1 k h 0 1 H i 0 D t;h (r) + D t;0h (r) 1 
; i = 1; 2; :::; N:

By letting H = max 1iN H 1 , the latter equation may be re-written as [START_REF] Gloter | Di¤usions with Measurement Errors I, Local Asymptotic Normality[END_REF] with

k i (x) k H H i x ; 0
x 1 and k i (x) = 0 otherwise.

We consider selecting the estimator with smallest MSE within the class dened by:

K $ t = N X i=1 $ i c IV (i) t subject to N X i=1 $ i = 1;
where $ = ($ 1 ; :::; $ N ) is a vector of weights. Note that K $ t is also a realized kernel, as we have:

K $ t = D t;0 (r) + H X h=1 k $ h 0 1 H 0 D t;h (r) + D t;0h (r) 1 ; (17) 
with k $ (x) = P N i=1 $ i k i (x).
To illustrate the idea, suppose that the exogenous noise is L-dependent. Then, we may dene:

K $ t = (1 0 $) c IV (1) t + $ c IV (2) 
t ;

where c IV

(1) t is K BN HLS t at bandwidth L and c IV (2) t
is the same estimator at bandwidth H. We have:

K $ t = D t;0 (r) + L+1 X h=1 k h 0 1 H 0 D t;h (r) + D t;0h (r) 1 + $ H X h=L+2 k h 0 1 H 0 D t;h (r) + D t;0h (r) 1 
We see that K $ t exploits the L-dependence of the noise by discounting the kernel windows assigned to the covariance terms beyond lag L + 1. The optimal weight $ 3 that minimizes the MSE of K $ t mitigates the impact of the discretization error induces by the higher order covariance terms while guaranteeing that K $ 3 t inherits the consistency of K BN HLS t . The standard realized kernel includes the covariance terms of higher displacements in order to control the variance, but it does not exploit the life of a dependent noise. A theoretical importance of the estimator K $ 3 t resides in that it introduces an extra degree of freedom ($) besides the bandwidth parameter (H) and hence, it provides an adaptive approach for tuning realized kernel. Subsequently, we refer to K $ 3 t as the adaptive realized kernels. Note that K $ 3 t has the avor of a model averaging estimator (see [START_REF] Hansen | Least squares model averaging[END_REF] and it shares some similarities with the estimator proposed in Ghysels, Mykland and Renault (2008).

Let b V t = c IV (1) 
t ; :::; c

IV (N ) t so that K $ t = $ b V t with $ = 1,
where is a vector of ones. The

unconditional MSE of K $ t is E (K $ t 0 IV t ) 2 = $ A$, where A = E b V t 0 IV t b V t 0 IV t is
the MSE matrix of the vector b V t . The optimal vector of weights is given by:

$ 3 = 0 A 01 1 01 A 01 (18) 
A feasible vector of weights is obtained by plugging an empirical counterpart of A into (18), as illustrated in Section 5.2.

By construction, the MSE of K $ 3 t is necessarily smaller than the MSE of each of the initial estimators c IV (i)

t ; i = 1; :::; N . However, the rate of convergence enjoyed by K $ 3 t is the same as that of the most e¢cient estimator among the c IV (i) t s. Hence, our method is essentially an attempt to improve the nite-sample properties of the class of realized kernels under consideration.

Inference on the Microstructure Noise Parameters

In order to implement the realized kernels e¢ciently, one needs to know whether the noise has nite dependence lag or innite dependence lag. In this section, we consider estimating the correlogram of the noise by assuming that the noise is either AR [START_REF] Ait-Sahalia | How often to sample a continuous-time process in the presence of market microstructure Noise[END_REF] or MA(L) at a given record frequency m. 9 The AR(1) assumption targets noises with innite dependence lag while the MA(L) assumption provides a reasonable approximation if the noise has nite dependence.

From Theorem 4, we can infer that:

E 2 D t;1 3 = 0 0 1 0 2 1 m X j=1 C 0 + C 1 p m 3 t;j01 ! 1 + C 0 + C 1 p m 3 t;j01 ! 32 t;j01 +m (0! 0 + 2! m;1 0 ! m;2 ) ; where D t;h is used as shorthand for D t;h (r). Let b (m) t = E h RV (m) t 0 IV t i
denote the bias of the realized volatility computed at the record frequency. When q = 1, it follows from Lemma 5 in appendix that:

b (m) t = 2 0 1 0 2 1 m X j=1 C 0 + C 1 p m 3 t;j01 ! 1 + C 0 + C 1 p m 3 t;j01 ! 32 t;j01 +2m (! 0 0 ! m;1 ) + 0 1 0 2 1 C 2 0 0 32 t;0 0 32 t;m 1 + 2C 0 C 1 p m 0 3 t;0 0 3 t;m 1 :
Hence, the following unconditional moment conditions hold:

E RV (m) t = IV t + b (m) t ; (19) 
E 0 D t;1 + D t;01 1 = 0b (m) t + 2m (! m;1 0 ! m;2 ) and (20) 
E 0 D t;h+1 + D t;0h01 1 = 02m (! m;h 0 2! m;h+1 + ! m;h+2 ) ; h 1; (21) 
Below, we consider the AR(1) and MA(L) cases separately. 10 

Inference with an AR(1) Microstructure Noise

Under an AR(1) model, the noise autocovariances satisfy ! m;h = ! 0 ( m ) h and thus, Equation [START_REF] Hill | A simple general approach to inference about the tail of a distribution[END_REF] implies that E (b g h (! 0 ; m )) = 0 with:

b g h (! 0 ; m ) = 1 2mT T X t=1 0 D t;h+1 + D t;0h01 1 + ! 0 (1 0 m ) 2 ( m ) h , h 1 (22) 
Let b g = (b g 1 ; :::; b g n ) be a vector of n selected moments conditions, with b g h b g h (! 0 ; m ). The GMM estimators of (! 0 ; m ) are given by:

b ! 0 b m = arg min b g b S 01 b g;
where b S is a consistent rst step estimator of the long run covariance matrix of the moment condi-

tions, that is, b S = lim T V ar p T b g .
After estimation, the overidentication test of Hansen (1982) may be used to check whether the AR(1) model ts the data reasonably well. This test is based on the following asymptotic distribution under the null hypothesis that the AR(1) model is true:

J = T b g b S 01 b g ! 2 (N 0 2) as T ! 1; (23) 
After performing this test, and if the null hypothesis is not rejected, we may then perform a standard t-test for the signicance of the parameters (! 0 ; m ). The distribution of the estimators under the null hypothesis is:

p T b ! 0 0 ! 0 b m 0 m ! N 0 0 ; G b S 01 G 01 : ( 24 
)
where G is the (n 2 2) Jacobian matrix of the moment conditions. The h th row of G is given by:

G h = @b g h @! 0 ; @b g h @ m = (1 0 m ) 2 ( m ) h ; 0 2! 0 (1 0 m ) ( m ) h + h! 0 (1 0 m ) 2 ( m ) h01
Note that G is a deterministic matrix.

Inference with an MA(L) Microstructure Noise

Under the MA(L) model, the noise autocovariances satisfy ! m;h = 0 for h > L. Thus, Equations 

m;h = 0 1 2T m T X s=1 L0h+1 X l=1 l 0 D s;h+l + D s;0h0l 1 ; h = 1; :::L; (25) b b (m) t = 0D t;1 0 D t;01 0 1 T T X s=1 L+1 X l=2 0 D s;l + D s;0l 1 and (26) 
RV

(AC;m;L+1) t = RV (m) t 0 b b (m) t (27) 
= D t;0 + D t;1 + D t;01 + 1 T T X s=1 L+1 X l=2 0 D s;l + D s;0l 1 :
Hence, RV (AC;m;L+1) t is an unbiased method-of-moment estimator of IV t . Note that RV (AC;m;L+1) t specializes to the estimator of Hansen and Lunde when T = 1.

To estimate the noise variance ! 0 , we use the expression of the bias of the RV sampled at the highest frequency. We have:

b ! 0 = 1 2mT T X t=1 b b (m) t + b ! m;1 (28) 
All the noise autocovariance estimates can be written as:

b ! m;h = 1 mT T X t=1 m X j=1 b ! t;j;h ; h = 0; 1; :::; L (29) 
where b ! t;j;h , h = 0; :::; L are dened as follows: with D t;j;h = 1 2 r t;j (r t;j0h + r t;j+h ) for all t and h, P being the L2L matrix with elements: P i;i = 01, P i;i+1 = 2, P i;i+2 = 01; P i;j = 0 otherwise 1 i; j L, and P 01 D t;(2;L+1)

b ! t;j;0 = 0 1 2 L+1 X h=1 0 
1
being the rst element of the vector P 01 D t;(2;L+1) .

Based on Equation ( 29), we consider the subsampled variance b Q h given by:

b Q h = m T T X t=1 0 @ 1 m m X j=1 b ! t;j;h 0 b ! m;h 1 A 2 : (30) 
Under Assumptions E1, E2 and E3, we have:

(mT ) 1=2 (b ! m;h 0 ! m;h ) q b Q h ! N (0; 1) (31) 
as T goes to innity and m is xed. See [START_REF] Ubukata | Estimation and testing for dependence in market microstructure noise[END_REF] for the proof. 11 The knowledge of L is required to estimate the correlogram of the microstructure noise. A simple way to estimate L is to perform signicance tests for ! m;h by using autocovariance estimates that rely on an initial guess L max . 12 Under the null hypothesis that ! m;h = 0, we have:

b h = (mT ) 1=2 b ! m;h q b Q h ! N (0; 1) (32) 
The statistics b h diverges under the alternative. The estimator b L is the maximum lag at which the null is rejected. Provided that the initial guess L max exceeds the true value of L, the estimator L will not underestimate the true L asymptotically.

Monte Carlo Simulations

The simulation study is organized as follows. First, we apply the AR(1) noise inference procedure to a correctly specied model. Second, we verify the power of this procedure by applying it to an MA(3) noise. Third, we study the performance of the MA(L) noise inference procedure when the model is correctly specied. Finally, we assess the quality of the IV estimators under either type of noise.

The Data Generating Processes

We assumed that the e¢cient log-price process evolves according to the model of Heston (1993):

dp 3 s = s dW 1;s and (33) 
d 2 s = 0 B 0 2 s 1 ds + D s dW 1;s + p 1 0 2 dW 2;s ; (34) 
where W 1;s and W 2;s are independent Brownian motions and the parameter captures the leverage e¤ect. Following [START_REF] Zhang | A tale of two time scale: determining integrated volatility with noisy high-frequency data[END_REF], we set the annualized parameters values as follows:

= 5; B = 0:04; D = 0:5; 2 f0; 00:5g ;

Using the Poisson-Mixing-Gamma characterization of [START_REF] Devroye | Non-Uniform Random Variate Generation[END_REF] for the spot volatility process (34), we simulate the e¢cient price data at ve seconds 13 but we assume that the record frequency is one minute.

To start with, we simulate once and for all a sample of T = 500 days of e¢cient price data. Next, we contaminate iteratively this sample with a microstructure noise that is simulated according to:

u t;j = C 0 + C 1 p m 3 t;j ! r 3 
t;j + " t;j , j = 1; :::; m;

where C 0 = 0:5; C 1 = 0:5 and the exogenous noise " t;j is either an AR(1) or an MA(3). For the AR(1) exogenous noise, we use " t;j = m " t;j01 + v t;j , with v t;j IID N (0; B 0 ); m 2 f00:9; 0; 0:9g and B 0 varying so as to match ! 0 = B 0 10( m ) 2 with the following values: 14 For the MA(1) exogenous noise, we use " t;j = v t;j + B 1 v t;j01 + B 2 v t;j02 + B 3 v t;j03 , with v t;j IID N (0; B 0 ), B 1 = 0:5, B 2 = 0:2 and B 3 = 0:05. This implies:

! 0 2 8 
! 0 E 0 " 2 t;j 1 = B 0 0 1 + B 2 1 + B 2 2 + B 2 3 1 = 1:2925B 0 ; ! m;1 E (" t;j " t;j01 ) = B 0 (B 1 + B 1 B 2 + B 2 B 3 ) = 0:61B 0 ; ! m;2 E (" t;j " t;j02 ) = B 0 (B 2 + B 1 B 3 ) = 0:225B 0 ;
! m;3 E (" t;j " t;j02 ) = B 0 B 3 = 0:05B 0 and ! m;h E (" t;j " t;j0h ) = 0 for all h 4;

where B 0 varies so as to match the variances in (35).

Simulation Results

Table 1 presents the estimation results for a correctly specied AR(1) noise model. The simulations are performed with and without the leverage e¤ect. We see that the estimators b ! 0 and b m are slightly biased downward. The bias is more pronounced in the presence of leverage e¤ect and it is more visible for b ! 0 . 15 The standard deviation (std. dev.) of the empirical distribution of the estimates is quite close to the mean of the standard deviations (mean std. dev.) implied by the analytical formula [START_REF] Merton | On estimating the expected return on the market: an exploratory investigation[END_REF]. The last row of the table gives the rate of rejection of the null hypothesis that the true model is AR(1) by the overidentication test at nominal level 5%. Overall, the results suggest that the overidentication test has good size.

In order to assess the power of the previous test, we t an AR(1) model to an MA(3) microstructure noise. Table 2 presents the results of the simulation. The rst order autocorrelation of the MA(3) noise gives us a pseudo-true value for m . In all the scenarios, the noise variance is overestimated while the rst order autocorrelation is underestimated. The model rejection rate is nearly 100%, which indicates that the overidentication test has power against MA(L) alternatives.

Acting on these results, our preferred strategy for the empirical investigation will consist of rst testing the null hypothesis that the noise is AR(1) and next, estimating an MA(L) noise if the AR(1) assumption is rejected. We now study the performance of the inference procedure outlined previously for an MA(L)

! 0 0 210 06 1 m ! m;1 ! 0 ! 0 m ! 0 m ! 0 m
noise. The rst step consists of guessing an initial value L max that is larger that the true dependence lag L. We use an heuristic based on the following empirical MSE: is decreasing in l as l increases to L and it is equal to zero for l L+1.

1(l) = 1 T T X t=1 K T t 0
Also, the variance of K T t 0 RV (AC;m;l) t is increasing in l. As a result, the curve of 1(l) is L-shaped or convex. An initial estimate e L of L is given by the point where the curve (l; 1(l)) is bent the most or by the minimum of that curve. Figure 1 shows an L-shapped example with an MA(3) noise.

Table 3 shows the simulation results for the estimation of L. The medians of e L and b L coincide with the true value L = 3. The corresponding means are slightly biased downward, but this is repaired by rounding up the estimates to the next unit. Below, we use L max = e L + 3 for the estimation of the correlogram of the noise. Table 4 presents the results. Note that the estimator of ! 0 is expected to be biased upward because it reect the size of the total noise contaminating the e¢cient price. Indeed, we have:

E (b ! 0 ) 0 ! 0 = 0 1 0 2 1 C 2 1 m + C 1 (2C 0 + 1) p m E 2 3 t;qk 3 + C 0 (C 0 + 1) E 2 32 
t;qk

:

The results suggest that the autocovariances f! l g 4 l=1 are estimated without bias. The mean standard deviation (mean std. dev.) is the average of the standard deviations implied by the analytical formula [START_REF] Zhang | A tale of two time scale: determining integrated volatility with noisy high-frequency data[END_REF]. Interestingly, the average of the standard deviations obtained by the analytical formula is close to the empirical standard deviation of the simulated estimates. The last column gives the rate of rejection of the null hypothesis that ! h = 0. It appears that a standard t-test for the null hypothesis ! 4 = 0 has a good size at 5% nominal level. Also, the separate tests for the null hypotheses ! h = 0 have power against the alternatives ! h 6 = 0; h = 1; 2; 3. 

and V ar b V t is the covariance matrix of b V t . Note that the expression of the bias is deduced from Theorem 4. When the noise is MA(3), the bias vector is B = (0; 0; 0; 0) and the MSE reduces

to A = V ar b V t .
In order to simplify the steps of the Monte Carlo simulation, we assume the ideal situation where ! 0 , m and L are known (in the empirical application, these parameters are replaced by their estimates). We estimate A by replacing V ar b V t by its sample counterpart:

d V ar b V t = 1 T T X t=1 b V t 0 1 T T X l=1 IV l ! b V t 0 1 T T X l=1 IV l ! : (38) 
The MSE of each IV estimator reported in the tables is computed as:

M SE( c IV (i) t ) = 1 T T X t=1 c IV (i) t 0 IV t 2 , i = 1; :::; 4
where IV t is inferred from the simulated volatility path at one second frequency.

Table 5 shows the simulation results under IID noise, with and without leverage e¤ect. We see that the MSE of all IV estimators are slightly smaller in the presence of leverage e¤ect compared to when there is no leverage. Otherwise, the simulation results are qualitatively similar. When the noise variance is small (! 0 = 25 2 10 08 ), the estimator with smallest bandwidth (K BN HLS t;15

) has the smallest MSE and it is assigned the largest weight in the design of the adaptive estimator K $ 3 t . By contrast, when the noise variance is large (! 0 = 2500 2 10 08 ), K BN HLS t;35 is the most e¢cient estimator and it receives the largest or the second largest weight. In either case, the estimator with largest bandwidth (K BN HLS t;45

) is not e¢cient because it does not optimally balance the discretization error against the microstructure noise. As expected, the adaptive realized kernel is more e¢cient than all other estimators taken individually. ) is the most e¢cient when the noise variance is large (! 0 = 2500 2 10 08 ). Intuitively, a serially correlated noise causes more harm to IV estimators compared to an IID noise with same variance. The adaptive realized kernel is more e¢cient than all the individual estimators in the small and large noise variance scenario. The results are nuanced when the noise variance is moderate (! 0 = 225 2 10 08 ). This suggests that controlling for the noise variance, the more persistent the noise is, the larger the MSE of IV estimators are. This explains why larger bandwidths are needed when the dependence of the noise increases (cf. Theorem 4).

In summary, our empirical investigation strategy is successful in capturing the nature of the dependence of the microstructure noise and thus, it permits to design the adaptive realized kernel in accordance with the properties of the noise. 

Empirical Application

For this application, we use data on twelve stocks listed in the Dow Jones Industrial (see the rst column of Table 8). The prices are observed every one minute from January 1 st , 2002 to December 31 th , 2007 (1510 trading days). In a typical trading day, the market opens from 9:30 am to 4:00 pm and this results in m = 390 intradaily observations. 16 There are a few missing observations (less than 5 missing data per day) which we lled in using the previous tick method. Also, the time series of prices contain a few outlying observations that seem to be due to recording errors. To deal with such outliers in quote data, Barndor¤-Nielsen and al. (2008b) suggest to delete entries for which the spread is more that 50 times the median spread on that day. Here, we proceed similarly by applying the following cleaning rule: Real Vol for American Express: Cleaned data Figure 3 shows examples of volatility signature plots. Except for the General Motor index, the average RV decreases as one samples more and more sparsely. The shape of the graph for General Motors is not typical in the literature and it suggests that the bias of the RV is negative at the highest frequency. Table 8 shows the output of the GMM estimation of an AR(1) noise model. Of the twelve stocks considered, the AR(1) model is not rejected for six stocks. The overidentication test statistics for Intel Corp and Microsoft are only slightly above the rejection threshold. The autoregressive root m is estimated to be positive in all cases and it is signicantly di¤erent from zero in cases where the AR(1) noise model is not rejected. For the AIG stock, b m is very close to unity while it is degenerate (i.e. equal to one) for General Motors. This suggests that the noises contaminating AIG and General Motors obey more sophisticated unit root models. We apply the MA(L) noise model to the stocks for which the AR(1) specication is rejected.

r N EW t;j = r OLD t;j if C C Cr OLD t;j C C C 50 2 r OLD sign r OLD t;j 2 
Table 9 shows the estimates of the dependence lag of the noise. e L is obtained by minimizing the 1(l) criterion (cf. Equation (36) and Figure 4) while b L is deduced from the signicance tests (32).

The estimated dependence lags lies between 8 and 12 minutes. Hewlett-Packard (HPQ) 9 8 Microsoft (MSFT) [START_REF] Barndor¤-Nielsen | Estimating quadratic variation using realized variance[END_REF] 10

Figure 4 shows the plots of 1(l) against L (left) and the estimated noise autocovariances (right).

To the exception of General Motors, all estimated noise correlograms are positive. This explains the shape of the volatility signature plot of the General Motors index, and it supports that the estimate b m = 1 found previously in Table 8 is spurious. The nal step of the empirical study concerns the estimation of the daily integrated volatility.

For all assets, we set: ; and minimize the variance of K $ t with respect to $ = ($ 1 ; $ 2 ; $ 3 ; $ 4 ). We implement the adaptive realized kernel as explained in the previous section. The MSEs of all IV estimators are obtained by combining their bias and their variance (see Equations ( 37) and ( 38)). The minimum bandwidth H = 15 implies that K BN HLS t;H is unbiased under the MA(L) noises identied in Table 9.

K $ t = $ 1 K
Table 10 shows the results. In eight cases out of twelve, the MSE of K BN HLS t;H is minimized for either H = 25 or H = 35. The MSE in increasing in H in three cases (3M Co, General Motors, IBM) and it is decreasing in one case (AIG). In the latter case for example, the initial estimators (K BN HLS t;H

) have very similar variances and the di¤erences seen in their MSEs are due to the squared bias term. In all other cases, the variance term dominates the squared bias term in the MSE. More often than not, the initial estimator with smallest MSE receives the largest positive weight when the noise is MA(L). As expected, the adaptive realized kernel K $ 3 t outperforms the most e¢cient of the initial estimators. Arguably, the design of K $ Figure 5 shows the estimated daily IV processes for all twelve stocks. Although many of the estimated weights in Table 10 are negative, we have found negative IV estimates for one stock only (the AIG index), and this happens for 5 days only out of 1510. An examination of the correlation matrix of the vector of the initial estimators for AIG shows that they are highly correlated. The minimum correlation is 0:9687 and it occurs between K BN HLS t;15 and K BN HLS t;45 . In fact, the noise contaminating the AIG stock price is highly persistence ( b m = 0:998), and this causes the MSE matrix of the initial estimators to be nearly singular. For this particular stock, a bias corrected version of K BN HLS t;15 is more reliable than K $ 3 t .

Conclusion

We design adaptive realized kernels to estimate the integrated volatility in a framework that combines, on the one hand, a Brownian stochastic volatility model with leverage e¤ect for the frictionless price, and on the other hand, a semi-parametric model for the microstructure noise. The proposed noise model is tied to the frequency at which the price data are recorded and it species the noise as the sum of an endogenous term (correlated with the e¢cient returns) and an exogenous term (uncorrelated with the e¢cient returns). Our specication for the exogenous noise nests IID, Ldependent as well as AR(1) models. The simulation results show that the adaptive realized kernels achieve the optimal trade-o¤ between the discretization error and the microstructure noise. Two inference procedures are proposed for the noise parameters. The rst procedure is based on an overidentied generalized method of moments and it is designed for AR(1) types of noise. The The following Lemma will be used in the proof of Theorem 1.

Lemma 5 Assume that r t;j = r 3 (1);t;j + (1 + a t;j ) r 3 (2);t;j 0 a t;j01 r 3 (2);t;j01 + (" t;j 0 " t;j01 ) for some deterministic sequence fa t;j g ; j = 1; :::; m. Let e r t;k be the series of non-overlapping sums of q consecutive observations of r t;j , that is, e r t;k = e r for k = 1; :::; m q and some positive integer q 1 such that m q = bm=qc. Then we have: 4) + ( 5) + ( 6) + ( 7) + ( 8) + ( 9)

E h RV ( 
where 

RV (mq) 3 = O(m q )4
The following Lemma will be used in the proof of Theorem 3.

Lemma 6 Under the assumptions of Theorem E[(" t;j+k 0 " t;j+k01 ) 2 (" t;j 0 " t;j01 ) (" t;j01 0 " t;j02 )] = 02! 2 0 8 k 1 E[(" t;j 0 " t;j01 ) 3 (" t;j01 0 " t;j02 )] = 0E[" 4 t;j ] 0 3! 2 0 (for k = j) E[(" t;j 0 " t;j01 ) (" t;j01 0 " t;j02 ) 3 ] = 0E[" 4 t;j ] 0 3! 2 0 (for k = j 0 1) E[(" t;j 0 " t;j01 ) (" t;j01 0 " t;j02 ) (" t;j0k01 0 " t;j0k02 ) 2 ] = 02! 

= 0 2Cov ((IV ); (V III)) = 2Cov ((IV ); (IX)) = 0 V ar((V )) = 8! 0 P m j=1 (1 + a t;j ) 2 32 (2);t;j 2Cov ((V ); (V I)) = 2Cov ((V ); (V II)) = 2Cov((V ); (V III)) = 2Cov((V ); (IX)) = 0 V ar((V I)) = 8! 0 P m j=1 32 ( 
= 2m! 0 Thus Cov ((V III); (IX)) = (02m + 1)E[" 4 t;j ] + (02m 2 0 2m + 1)! 2 0 + 2m 2 ! 2 0 = 0(2m 0 1) E[" 4 t;j ] + ! 2 0 V ar((IX)) = 4mE h " 4 t;j i + 2 ! 2 0 0 E h " 4 
t;j i

The sum of all these terms gives: s . 5 This situation may apply either to a single asset with a market activity that varies across days (time series dimension) or to several assets with di¤erent liquidity level (cross-sectional dimension). 6 For instance, m Dm 0B or m 1 0 Dm 0B as m ; D > 0.

V ar h RV (AC;m;1) t 0 e r ( 
7 For instance, if r 3 t;j is a series of one minute returns, then A r t;k would be a q minutes return. 8 The dependence lag L must be estimated before RV (AC;m;L+1) t can be feasible. Likewise, an estimate of m must be available before RV (AC;m;) t can be implemented. 9 The noise parameters C 0 , C 1 , , B and E are not empirically relevant for the realized kernels and thus, they are not estimated.

1 0 Note that O(m 01 ) end e¤ects are neglected so that Equation ( 20) is an asymptotic moment condition. 1 1 Note that the noise parameters are not necessarily constant across m in the current framework. Hence, it is important to read the central limit result [START_REF] Zhou | High frequency data and volatility in foreign-exchange rates[END_REF] for a xed m. 1 2 A heuristic for chosing Lmax is proposed in the next section. 1 3 We assume that the market opens from 9:30 am to 4:00 pm, which implies 4680 discretization points within each day. 1 4 Note that m = 0 features an IID exogenous noise. 1 5 One should expect the sign of the bias of > !0 to depend on the sign of the correlation between the endogenous noise and the spot volatility. It may also depends on the sample size because the volatility path is xed throughout the Monte Carlo replications. 1 6 The data we use in this paper have been purchased from a private provider who has ensured its accuracy by comparison with three other independent nancial data providers.

  e. the parametric rate O p (m 01=4 ) attained by the Multiple Scale Realized Volatility (see Ait-Sahalia et al., 2011, Section 6.3) and by the e¢cient realized kernels (see Barndor¤-Nielsen et al., 2008, Section 4.3). Note that K BN HLS t

2 : 5 2

 25 10 07 ; 2:25 2 10 06 ; 2:5 2 10 05 9 : (35) The variance ! 0 = 2:5 2 10 07 has been used in Zhang and al. (2005) at ve minute sampling frequency while ! 0 = 2:25 2 10 06 has served in Ait-Sahalia and al. (2005) at frequencies ranging from one to thirty minutes.

Figure 1 :

 1 Figure 1: Plots of 1 (l) against l. An example with an MA(3) noise.

  50 2 r OLD otherwise ; where r OLD t;j is the initial data and r OLD is the empirical median of t and j. As shown by Figure2, this cleaning rule a¤ects very few observations and it does not remove jumps from the data.

Figure 2 :

 2 Figure 2: Impact of the cleaning rule on the data. Left: realized volatility for r OLD t;j . Right: realized

Figure 3 :

 3 Figure 3: Volatility signature plots for selected stocks.

Figure 4 :

 4 Figure 4: Estimation of MA(L) noise. Left: plot of 1(l) against l. The minimum of 1(l) is used as the rst guess of L. Right: The correlogram of the noise (top) and the associated Student-t (bottom). The line crossing the student-t stats indicates the signicance threshold, one-sided, 5%.
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  can be improved by combining other estimators based on di¤erent kernel functions (Parzen, Tuckey-Hanning, Quadratic spectral). The extra cost for such an improvement resides in the derivation of the biases of such estimators.

Figure 5 :

 5 Figure 5: Estimated daily integrated volatility by adaptive realized kernels K $ 3 t .

2 s 2 . 3 ( 1 )

 2231 induced by K t (1u) is equal toE (K t (1u)) = 0mH 01 (4! m;H + 2! m;H+1 ) = 02mH 01 ( m ) H (2 + m ) ! 0 :Let H = Cm D for strictly positive constants C and D. Then, the absolute bias is:jE (K t (1u))j = 2 (2 + m ) ! 0 C exp ((1 0 D) log m + Cm D ln j m j) ;Notes 1 See Andersen, Bollerslev, Diebold and Labys (2003); Bandi and Russell (2008). 2 See also Jacod, Li, Mykland, Podolskij and Vetter (2009).3 BNHLS (2008a, Section 5.6) show that the contribution of jumps may not disturb the asymptotic orders.4 A popular model often postulated for the spot variance is the square-root di¤usion d 2 dBs. Under this model, the spot volatility follows the di¤usion ds = f (s) ds + g (s) dBs, where f (s) = In this case, the function p

  [START_REF] Gloter | Di¤usions with Measurement Errors I, Local Asymptotic Normality[END_REF] considered an exogenous noise whose variance depends on the sampling frequency and they show that this noise is irrelevant if m times the noise variance is bounded for all m. Our endogenous noise satises this condition as it is O p (m 01=2 ). However, because it is endogenous, it causes a bias term of magnitude O(1).

	2.2 The Estimator of Hansen and Lunde
	Hansen and Lunde (2006) proposed the following at kernel estimator:
		RV t (AC;m;L+1)	=	m X	r 2 t;j +	L+1 X	m X	r t;j (r t;j+h + r t;j0h ) ;	(11)
										j=1	h=1	j=1
	where L is the dependence lag of the noise. When L = 0 so that " t;j is IID, RV t (AC;m;L+1)	coincides
	with the estimator of French and al. (1987) and Zhou (1996):
	RV t (AC;m;1)	=	m X j=1	r 2 t;j + 2	m X j=1	end e¤ects r t;j r t;j01 + (r t;m+1 r t;m 0 r t;1 r t;0 ) | {z } :	(12)
	The estimator RV t (AC;m;L+1)	is unbiased for IV t under a general MA(L) noise. However, it is
	biased if the exogenous noise is AR(1). An unbiased estimator under AR(1) exogenous noise is
	given by:								
	RV t (AC;m;)	=	m X j=1	r 2 t;j +	m X j=1	r t;j (r t;j+1 + r t;j01 ) +	1 1 0 m	j=1 m X	r t;j (r t;j+2 + r t;j02 )

  -[START_REF] Hill | A simple general approach to inference about the tail of a distribution[END_REF] provide L + 2T moment conditions that can be used to estimate L + 2T parameters, Estimating these parameters by the method of moments is straightforward. First solving for ! m;L and then proceeding by backward substitution into[START_REF] Hill | A simple general approach to inference about the tail of a distribution[END_REF] to[START_REF] Hasbrouck | Assessing the quality of a security market: a new approach to transaction cost measurement[END_REF] yields the following unbiased estimators for ! m;h , b

	namely	n b	(m) t ; IV t	o T t=1	and f! m;h g L h=1 . (m) t b !	and IV t respectively:

Table 1 :

 1 Estimation of a well-specied AR(1) noise model by GMM

Table 2 :

 2 Estimation of a misspecied AR(1) noise model

	True model is MA(3), m = 390, 1000 replications	
	no leverage		with leverage
	T=250	T=500	T=250	T=500

  RV

	(AC;m;l) t	2	; l = 1; :::; b2H=3c	(36)
	where RV and it is implicitly assumed that H is large enough to ensure that L b2H=3c. On the one hand, (AC;m;l+1) t is dened as in (27), K T t = RV (AC;m;1) t + 1 T P T s=1 P H h=2 0 H 1 0 D s;h + D s;0h 1 1 0 h01 RV (AC;m;l) t is obtained by truncating the formula of RV (AC;m;L+1) t to l autocovariance terms and
	thus, it is thus unbiased for IV t when l L + 1. On the other hand, K T t is a smoothed version of
	RV			

(AC;m;H) t and it is also unbiased for IV t if the bandwidth H is selected su¢ciently large. Hence the mean of K T t 0RV

(AC;m;l) t

Table 3 :

 3 Estimation of the dependence lag L

	True model is MA(3), m = 390, T = 250, 1000 replications
		! 0 = 2:25 2 10 06 no leverage with leverage no leverage with leverage ! 0 = 2:5 2 10 05
	min	2:00	2:00	2:00	2:00
	e L mean	2:97	2:91	2:99	2:99
	median	3:00	3:00	3:00	3:00
	max	3:00	3:00	3:00	3:00
	min	2:00	2:00	2:00	2:00
	b L mean	2:61	2:63	2:90	2:91
	median	3:00	3:00	3:00	3:00
	max	3:00	3:00	3:00	3:00

Table 4 :

 4 Estimation of the Correlogram of the noise

			m = 390, T = 250, 1000 replications
		true 0 210 06 1 0 mean 210 06 1 0 std. dev. mean std. dev. Prob(t>1.96) 210 06 1 0 (%) 210 06 1 no leverage
	b ! 0	2:250	2:573		0:050				0:051	100
	b ! m;1	1:062	1:069		0:040				0:042	100
	b ! m;2	0:392	0:399		0:031				0:032	100
	b ! m;3	0:087	0:093		0:021				0:021	98:5
	b ! m;4	0	0:004		0:011				0:011	6:9
				with leverage		
	b ! 0	2:250	2:566		0:048				0:052	100
	b ! m;1	1:062	1:063		0:039				0:042	100
	b ! m;2	0:392	0:391		0:030				0:032	100
	b ! m;3	0:087	0:090		0:020				0:022	99:5
	b ! m;4	0	0:001		0:010				0:012	3:2
	As a nal step of this simulation study, we evaluate the performance of the adaptive realized kernels K $ 3 t by simulations. Under either type of noise, we set K $ t = P 4 i=1 $ i c IV (i) t , with c IV (1) t = K BN HLS t;15 , c IV (2) t = K BN HLS t;25 , c IV (3) t = K BN HLS t;35 and c IV (4) t = K BN HLS t;45 , where K BN HLS t;H is the
	realized Bartlett kernels with bandwidth H. Let b V t =	c IV	(1) t ; c IV	(2) t ; c IV	(3) t ; c IV	(4) t	. Under AR(1)
	noise, the MSE matrix of b V t is A = V ar	b V t	+ BB , where B is the 4x1 vector of biases given by:
		B = 02m! 0 (2 + m )	( m ) 15 15	;	( m ) 25 25	;	( m ) 35 35	;	45 ( m ) 45	!

Table 5 .

 5 Assessing the Performance of the Adaptive Realized Kernel by Simulation under IID microstructure noise. m = 390, T = 250, 1000 Monte Carlo replications.

				MSE (10 08 )			Weights
	no leverage	! 0 K BN HLS t;15	25 2 10 08 225 2 10 08 2500 2 10 08 0:1726 0:2044 1:8115	25 1:6628	225 1:1249 0:0689 2500
		K BN HLS t;25 K BN HLS t;35	0:2504 0:3269	0:2713 0:3463	1:2546 1:1713	00:8205 00:0220 0:2413 0:3098 0:0021 0:3265
		K BN HLS t;45 K $ 3 t	0:4059 0:1568	0:4263 0:1999	1:2011 1:1006	00:1521 00:1049 0:3632 ---
	with leverage K BN HLS t;15	0:1540	0:1858	1:7933	1:5813	1:1387 0:0878
		K BN HLS t;25 K BN HLS t;35 K BN HLS t;45 K $ 3 t	0:2372 0:3246 0:4167 0:1383	0:2593 0:3455 0:4384 0:1805	1:2538 1:1865 1:2274 1:1081	00:3598 0:1338 0:2753 00:3278 00:2442 0:3293 0:1063 00:0284 0:3076 ---

Table 6

 6 shows the simulation results under AR(1) microstructure noise and leverage e¤ect. The upper part of the table presents the results for a noise with positive autoregressive root ( m = 0:9) while the lower part of the table presents the results for a noise with negative autoregressive root ( m = 00:9). The results are qualitatively the same under either type of AR noise. As in the IID

	noise scenario, the estimator with smallest bandwidth (K BN HLS t;15	) has the smallest MSE and it is
	assigned the largest weight when the noise variance is small (! 0 = 25 2 10 08 ). Contrary to the IID noise case, the estimator with largest bandwidth (K BN HLS t;45

Table 7

 7 shows the simulation results for the MA(3) microstructure noise case. The upper part of the table presents the results for the scenario without leverage e¤ect while the lower part of the table presents the results for the scenario with leverage e¤ect. Qualitatively, the results are similar to what we have seen for the AR(1) noise scenario. Quantitatively, the MSEs of the IV estimators are larger than the MSE under IID noise but smaller than the MSE under AR(1) noise.

Table 6 .

 6 Assessing the Performance of the Adaptive Realized Kernel by Simulation under AR(1) microstructure noise and Leverage E¤ect. m = 390, T = 250, 1000 Monte Carlo replications.

				MSE (10 08 )			Weights
	m = 0:9	! 0 K BN HLS t;15 K BN HLS t;25 K BN HLS t;35 K BN HLS t;45	25 2 10 08 225 2 10 08 2500 2 10 08 0:1697 0:9767 92:1028 0:2497 0:7023 47:4598 0:3355 0:6356 28:2403 0:4256 0:6428 18:7576	25 1:3314 00:0397 00:0188 225 2500 0:1082 00:1182 1:0885 00:2539 00:1691 00:3075 0:0407 0:1203 1:2181
		K $ 3 t	0:1589	0:6878	17:7389	-	-	-
	m = 00:9 K BN HLS t;15 K BN HLS t;25 K BN HLS t;35 K BN HLS t;45 K $ 3 t	0:1782 0:2436 0:3263 0:4169 0:1784	1:8566 0:7142 0:5368 0:5384 0:8086	204:7480 56:6989 25:7243 14:8193 6:9812	1:5368 00:0035 00:1446 0:1024 00:3094 1:1856 00:3184 0:1353 00:1343 0:0909 00:3174 1:1765 ---

Table 7 .

 7 Assessing the Performance of the Adaptive Realized Kernel by Simulation under MA[START_REF] Andersen | Answering the skeptics: Yes, standard volatility model do provide accurate forecast[END_REF] 

		microstructure noise. m = 390, T = 250, 1000 Monte Carlo replications.
				MSE (10 08 )		Weights
	no leverage	! 0 K BN HLS t;15 K BN HLS t;25 K BN HLS t;35	25 2 10 08 225 2 10 08 2500 2 10 08 0:1770 0:5595 45:7119 0:2520 0:4110 18:5139 0:3281 0:4276 10:7674	25 1:5982 00:7221 0:1207 225 0:9222 00:0180 2500 0:1475 0:2706 0:0621 0:2997
		K BN HLS t;45 K $ 3 t	0:4072 0:1644	0:4832 0:5465	7:5090 9:2932	00:1466 00:1050 0:5708 ---
	with leverage K BN HLS t;15 K BN HLS t;25 K BN HLS t;35 K BN HLS t;45 K $ 3 t	0:1584 0:2392 0:3264 0:4182 0:1450	0:5404 0:4026 0:4306 0:4960 0:5438	45:7441 18:5765 10:8433 7:5582 9:9502	1:5288 00:2982 0:2474 0:9370 00:0017 0:1654 00:3240 00:1137 0:3155 0:0934 00:0707 0:5208 ---

Table 8 :

 8 Estimating the AR(1) noise model by GMM based on 15 moments conditions

	At level 5%, the AR(1) model is rejected if J-stat>22.362
	b ! 0	b	m	J-stat Rejection
	3M Co. Alcoa Inc. AIG American Express Dupont and Dupont 3:3 2 10 07 (1:0 2 10 07 ) 0:846 (0:033) 1:2 2 10 07 (2:1 2 10 08 ) 0:675 (0:049) 11:44 1:3 2 10 06 (1:1 2 10 06 ) 0:931 (0:035) 31:92 9:40 3:8 2 10 04 (2:9 2 10 02 ) 0:998 (0:074) 14:7 8:4 2 10 08 (2:1 2 10 08 ) 0:552 (0:110) 20:2 Walt Disney 21:8 4:4 2 10 07 (5:5 2 10 08 ) 0:727 (0:029) General Electric 12:2 3:8 2 10 07 (1:4 2 10 07 ) 0:868 (0:035) General Motors 1:000 (00) 29:2 1:7 2 10 06 (0 0 00) IBM 31:1 9:9 2 10 08 (2:1 2 10 08 ) 0:667 (0:065) Intel Corp.	No Yes No No No No No Yes Yes

4:4 2 10 07 (7:8 2 10 08

Table 9 :

 9 Estimated noise dependence lag

		e L	b L
	Alcoa Inc (AA)	12 12
	General Motors (GM)	8	3
	IBM	11 11
	Intel Corp. (INTC)	10	9

  where ! m;q = E [" t;j " t;j0q ] is independent of t and j. Also, all the terms involved in the expression

	of	P mq k=1 e r 2 (2);t;k are uncorrelated. Thus:						
			V ar	" mq X	e r 2 (2);t;k	#	= V ar((1)) + V ar((2)) + V ar((3)) + V ar((4))
					k=1										
										+V ar((5)) + V ar((6)) + V ar((7)) + V ar((8)) + V ar((9));
	1) = (2) = (3) = (4) = 2 P mq k=1 P mq k=1 P mq k=1 (" t;qk 0 " t;qk0q ) 2 : h (1 + a t;qk ) 2 + a 2 t;qk P qk01 j=qk0q+1 r 3 (2);t;j P mq k=1 P qk01 j=qk0q+1 (1 + a t;qk ) r 3 i r 32 (2);t;qk + a 2 t;0 r 32 (2);t;0 0 a 2 t;qmq r 32 (2);t;qmq : 2 : (2);t;j r 3 (2);t;qk : (5) = 2 P mq k=1 (1 + a t;qk ) a t;qk0q r 3 (2);t;qk0q r 3 (2);t;qk : (6) = 2 P mq k=1 (1 + a t;qk ) (" t;qk 0 " t;qk0q ) r 3 (2);t;qk : (7) = 02 P mq k=1 P qk01 j=qk0q+1 a t;qk0q r 3 (2);t;j r 3 (2);t;qk0q : (8) = 2 P mq k=1 P qk01 j=qk0q+1 (" t;qk 0 " t;qk0q ) r 3 (2);t;j : (9) = 02 P mq k=1 a t;qk0q (" t;qk 0 " t;qk0q ) r 3 (2);t;qk0q : Only squared terms have nonzero expectation: where V ar((1)) = 2 P mq k=1 h (1 + a t;qk ) 2 + a 2 t;qk i 2 34 (2);t;qk + 2a 4 t;0 34 (2);t;0 02a 4 t;qmq 34 (2);t;qmq 0 4a 2 t;qmq 0 1 + a t;qmq 1 2 34 (2);t;qmq : V ar((2)) = 2 P mq k=1 P qk01 l=qk0q+1 P qk01 j=qk0q+1 32 (2);t;j 32 (2);t;l : V ar((4)) = 4 P mq k=1 P qk01 j=qk0q+1 (1 + a t;qk ) 2 32 (2);t;j 32 (2);t;qk : V ar((5)) = 4 P mq k=1 (1 + a t;qk ) 2 a 2 t;qk0q 32 (2);t;qk0q 32 (2);t;qk : V ar((6)) = 4 P mq k=1 (1 + a t;qk ) 2 V ar (" t;qk 0 " t;qk0q ) V ar r 3 (2);t;qk = 8 (! 0 0 ! m;q ) P m k=1 (1 + a t;qk ) 2 32 (2);t;qk : V ar((7)) = 4 P mq k=1 P qk01 j=qk0q+1 a 2 t;qk0q 32 (2);t;j 32 (2);t;qk0q : V ar((8)) = 8 (! 0 0 ! m;q ) P mq k=1 P qk01 j=qk0q+1 32 (2);t;j : P mq k=1 a 2 t;qk0q 32 (2);t;qk0q : V ar((9)) = 8 (! 0 0 ! m;q ) Hence: V ar h P mq k=1 e r 2 (2);t;k i = 2 P mq k=1 h (1 + a t;qk ) 2 + a 2 t;qk i 2 34 (2);t;qk +2 P mq k=1 P qk01 l=qk0q+1 P qk01 j=qk0q+1 32 (2);t;j 32 (2);t;l +V ar h P mq k=1 (" t;qk 0 " t;qk0q ) 2 i + 4 P mq k=1 P qk01 j=qk0q+1 (1 + a t;qk ) 2 32 (2);t;j 32 (2);t;qk +4 P mq k=1 (1 + a t;qk ) 2 a 2 t;qk0q 32 (2);t;qk0q 32 (2);t;qk +4 P mq k=1 P qk01 j=qk0q+1 a 2 t;qk0q 32 (2);t;j 32 (2);t;qk +8 (! 0 0 ! m;q ) P mq k=1 (1 + a t;qk ) 2 32 (2);t;qk + 8 (! 0 0 ! m;q ) P mq k=1 P qk01 j=qk0q+1 32 (2);t;j +8 (! 0 0 ! m;q ) P mq k=1 a 2 t;qk0q 32 (2);t;qk0q + 2a 4 t;0 34 (2);t;0 0 2a 4 t;qmq 34 (2);t;qmq 04a 2 t;qmq 0 1 + a t;qmq 1 2 34 (2);t;qmq : The presence of the term V ar h P mq i k=1 (" t;qk 0 " t;qk0q ) 2 in the expression of the variance of P mq k=1 e r 2 (2);t;k shows that V ar 2
	E	h	RV (mq)	i	=	mq X	qk X	32 (1);t;j +	mq X	qk01 X	32 (2);t;j +	mq X	h	(1 + a t;qk ) 2 + a 2 t;qk	i	32 (2);t;qk
					k=1 +m q E j=qk0q+1 h (" t;qk 0 " t;qk0q ) 2 k=1 i = IV t + 2 mq X k=1 0 a t;qk + a 2 t;qk 1	j=qk0q+1 + a 2 t;0 32 (2);t;0 0 a 2 t;qmq 32 k=1 (2);t;qmq 32 (2);t;qk + 2m q (! 0 0 ! m;q ) + a 2 t;0 32 (2);t;0 0 a 2 t;qmq 32 (2);t;qmq :

  The presence of the term 8m! 2 0 in the expression of this variance shows that V ar Proof of Theorem 1: Substituting for a t;j = C 0 + C 1 We do not calculate the exact variance of RV (mq) t because all we need to know is that it is O(m), as shown in Lemma 54 Proof of Theorem 2: Substituting for a t;j= C 0 + C 1We do not calculate the exact variance of RV Assume that C 0 = C 1 = = 0 and k (x) = 1 0 x (the Bartlett kernel). Under Assumptions E1 and E2, we have:K t (r 3 ) 0 IV t = O p (H 1=2 m 01=2 );Proof of Lemma 7: The result for K t (r 3 ) follows from Theorem 1 of Barndor¤-Nielsen and al (2008a). We now examine the term K t (1"). We have: (" t;j01 0 " t;j02 ) 0 " 2 t;0 + " 2 t;m + 2 (" t;0 " t;01 0 " t;m " t;m01 ) ; and for h 2: ;j 0 " t;j01 ) (" t;j0h 0 " t;j0h01 ) = 0 ;j " t;j0h01 0 (" t;0 " t;0h+1 0 " t;m " t;m0h+1 ) + (" t;0 " t;0h 0 " t;m " t;m0h ) " t;0h 0 " t;m " t;m0h ) 0 2 (" t;0 " t;01 0 " t;m " t;m01 ) + 2 H (" t;0 " t;0H 0 " t;m " t;m0H ) Proof of Theorem 3: When " t;j is IID, all autocovariances of order h 1 are equal to zero and Lemma 7 implies:K t (r 3 ) 0 IV t = O p (H 1=2 m 01=2 ), K t (r 3 ; 1u) = O p (H 01=2 ) and K t (1u) = 0" 2 t;0 + " 2 t;m + O p (H 01 m 1=2 ). By setting H proportional to m 2=3 , we obtain: 01=6 ) + O p (m 01=3 ) + O p (m 01=3 ) 0 " 2 t;0 + " 2 t;m + O p (m 01=6 ) = 0" 2 t;0 + " 2 t;m + O p (m 01=6 ) 4 Proof of Theorem 4: Under AR(1) noise with autoregressive root m , we see from Lemma 7

	+8! 0 08! 0 = IV t + P m j=1 " t;j Summing over H yields: O(m)4 E h RV (mq) t i with V (AC;m;1) t = 2 +2m q (! 0 0 ! m;q ) + a 2 t;01 32 (2);t;01 + 2a 2 t;0 32 (2);t;0 + a t;m 32 (2);t;m a t;m01 32 (2);t;m01 + a 2 t;m01 32 (2);t;m01 : F m 3 t;j in Lemma 5, we get the expectation: h RV (AC;m;1) t i = 0 1 0 2 1 " 2C 2 1 q + 2 (2C 0 + 1) C 1 p m mq X k=1 3 t;qk + 2C 0 (C 0 + 1) mq # X k=1 32 t;qk 0 1 0 2 1 C 2 0 0 32 t;0 0 32 t;m 1 + 2C 0 C 1 p m 0 3 t;0 0 3 t;m 1 2 H X h=2 k h 0 1 H m X (" t;j 0 " t;j01 ) (" t;j0h 0 " t;j0h01 ) j=1 : = 02 m X j=1 " t;j (" t;j01 0 " t;j02 ) 0 4 H m X j=1 " t;j " t;j0H 0 2 j=1 H m X " t;j " t;j0H01
	0	H 2	H01 X					F m t;j	in Lemma 6, yield:
	E Finally, we have: h RV (AC;m;1) t K t (1") = 0" 2 i = IV t + t;0 + " 2 0 1 0 2 1 t;m 0 0 H C 2 0 + 2C 0 4	1 0	32 t;m 0 32 t;0	1	0	2C 1 (1 + C 0 ) p m	0	3 t;m 0 3 t;0	1	:
	K t (1u) = 0" 2 t;0 + " 2 t;m 0 H 0 2 H01 X K BN HLS t;Lead	4 H	m X j=1	" t;j " t;j0H 0	2 H	m X j=1	" t;j " t;j0H01
	2) +4 +8! 0 1 i P m = 2 j=1 (1 + a t;j ) 2 a 2 P m j=1 34 (2);t;j + 4 t;j02 32 P m j=1 (1 + a t;j + a t;j a t;j01 ) 2 32 (2);t;j 32 (2);t;j 32 (2);t;j02 + 8! 0 j=1 (1 + a t;j ) 2 32 (2);t;j P m j=1 a 2 t;j 32 (2);t;j + 8m! 2 0 + 2 E h " 4 t;j i 0 ! 2 0 + 2 0 2a t;0 + a 2 t;0 1 2 34 (2);t;0 +2 0 2a t;m + a 2 t;m 1 2 34 (2);t;m + 2 0 2a t;m + a 2 t;m 34 (2);t;m + 4a 2 t;01 a 2 t;0 32 (2);t;01 32 (2);t;0 (2);t;m (AC;m;1) t + 2 H h=2 k H h 0 1 X 1 m = V K t (1") = X j=1 (" t;j 0 " t;j01 ) 2 + 2 H X h=1 k h 0 1 H m j=1 (" s;j 0 " s;j01 ) (" s;j0h 0 " s;j0h01 ) ; X P m (2);t;j01 that the bias of K BN HLS t;Lead
			+4a 2 t;m01 a 2 t;m 32 (2);t;m01 32 (2);t;m + 8! 0	32 (2);t;m01 0 32 (2);t;0

08a t;m01 a t;m (1 + a t;m + a t;m a t;m01 ) 32 (2);t;m01 32 (AC;m;1) t because all we need to know is that it is O(m), as shown in Lemma 64 Lemma 7 h=2 (" t;0 " t;0h 0 " t;m " t;m0h ) + 2 H (" t;0 " t;0H 0 " t;m " t;m0H ) ; as m ! 1 and H = Dm D for D 2 (0; 1). m X j=1 (" s;j 0 " s;j01 ) (" s;j0h 0 " s;j0h01 ) ; m X j=1 (" tm X j=1 " t;j " t;j0h+1 + 2 m X j=1 " t;j " t;j0h 0 m X j=1 " th=2 (" t;0 m X j=1 " t;j " t;j0H 0 2 H m X j=1 " t;j " t;j0H01 0 2 H H01 X h=2 (" t;0 " t;0h 0 " t;m " t;m0h ) + 2 H (" t;0 " t;0H 0 " t;m " t;m0H ) 4 = K t (r 3 ) + K t (r 3 ; 1u) + K t (1u; r 3 ) + K t (1u) = O p (m
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second procedure is designed for MA(L) noises and it uses as many moment conditions as there are parameters to be estimated. The simulations show that the AR(1) inference procedure has power against MA(L) alternatives. Hence, our best investigation strategy in practice consists of rst testing whether the noise is AR [START_REF] Ait-Sahalia | How often to sample a continuous-time process in the presence of market microstructure Noise[END_REF] and next, applying the MA(L) inference procedure if the AR(1) specication is rejected. We apply this strategy to twelve stocks listed in the Dow Jones Industrial and nd that the AR(1) noise model cannot be rejected for six stocks. For the other stocks, we apply the MA(L) noise inference procedure and nd estimates of L that lie between 8 and 12 minutes. 

P m j=1 a t;j02 (" t;j 0 " t;j01 ) r 3 (2);t;j02 : (V III) = 2 P m j=1 (" t;j 0 " t;j01 ) (" t;j01 0 " t;j02 ) : (IX) = P m j=1 (" t;j 0 " t;j01 ) 2 : Because only squared terms will have nonzero expectation, we have:

i with the convention that ln j m j = D if B = 0. This yields the rst result.

For the second result, E (K t (1u)) = 0mH 01 (4! m;H + 2! m;H+1 ) while ! m;H = 0 for H L+1 under an MA(L) noise4