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RENORMALIZATION, FREEZING PHASE TRANSITIONS AND
FIBONACCI QUASICRYSTALS.

HENK BRUIN AND RENAUD LEPLAIDEUR

ABSTRACT. We examine the renormalization operator determined by the Fi-
bonacci substitution. We exhibit a fixed point and determine its stable leaf (under
iteration of the operator). Then, we study the thermodynamic formalism for po-
tentials in this stable leaf, and prove they have a freezing phase transition, with
ground state supported on the attracting quasi-crystal associated to the Fibonacci
substitution.

1. INTRODUCTION

1.1. Background. The present paper studies phase transitions from an ergodic
theory and dynamical system viewpoint. It investigates the relations between renor-
malization, substitutions and phase transition initiated in [2] and continued in [4].

Phase transitions are an important topic in statistical mechanics and also in prob-
ability theory (see e.g. [8,9]). The viewpoint presented here is different for several
reasons. One of them is that, here, the geometry of the lattice is not relevantfl]
whereas in statistical mechanics, the geometry of the lattice is the most relevant
part.

A phase transition is characterized by a lack of analyticity of the pressure function.
This definition of phase transition is inspired by statistical mechanics and is now
standard for dynamical systems, see [3, [16, [I7]. Given a dynamical systems, say
(X,T), and a potential ¢ : X — R, the pressure function is given by

P(B) = Sup{hu(T) +5/90du},

where the supremum is taken over the invariant probability measures y, h,(T) is
the Kolmogorov entropy and f is a real parameter.

For a uniformly hyperbolic dynamical system (X,7) and a Holder continuous po-
tential ¢, the pressure function 5 — P(f) is analytic (see e.g. [3 16}, 11]). Even if
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'and we only consider a one-dimensional lattice.
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2 HENK BRUIN AND RENAUD LEPLAIDEUR

analyticity is usually considered as a very rigid property and thus quite rare, it turns
out that proving non-analyticity for the pressure function is not so easy. Currently,
this has become an important challenge in smooth ergodic theory to produce and
study phase transitions, see e.g. [14} 6, [4, [10].

To observe phase transitions, one has to weaken hyperbolicity of the system or of
regularity of the potential; it is the latter one that we continue to investigate here.
Our dynamical system is the full shift, which is uniformly hyperbolic. The first
main question we want to investigate is thus what potentials ¢ will produce phase
transitions. More precisely, we are looking for a machinery to produce potentials
with phase transitions.

The main purpose of [2] was to investigate possible relation between renormalization
and phase transition. In the shift space ({0, 1}, ¢), a renormalization is a function
H satisfying an equality of the form

(1) cfoH=Hoo.

The link with potentials was made in [2] by introducing a renormalization operator
R acting on potentials and related to a solution H for .

It is easy to check that constant length k substitutions are solutions to the renor-
malization equation. In [4], we studied the Thue-Morse case substitution, which has
constant length 2. Here we investigate the Fibonacci substitution, which is not of
constant length. Several reasons led us to study the Fibonacci case:

e Together with the Thue-Morse substitution, the Fibonacci substitutions is the
most “famous” substitution and it has been well-studied. In particular, the dynam-
ical properties of their respective attracting sets are well-known and this will be
used extensively in this paper for the Fibonacci shift. As a result, we were able to
describe the relevant fixed point of renormalization exactly. Information of the left
and right-special words in these attractors is a key ingredient to prove existence of
a phase transition; it is a crucial issue in the relations between substitutions and
phase transitions.

e The type of phase transition we establish is a freezing phase transition. This means
that beyond the phase transition (i.e., for large (), the pressure function is affine
and equal to its asymptote, and the equilibrium state (i.e., ground state) is the
unique shift-invariant measure supported on an aperiodic subshift space, sometimes
called quasi-crystal. One open question in statistical mechanics (see [I8]) is whether
freezing phase transitions can happen and whether quasi-crystal ground state can be
reach at positive temperature. An affirmative answer was given for the Thue-Morse
quasi-crystal in [4]; we show here this also holds for the Fibonacci quasi-crystal.

e We think that Fibonacci shift opens the door to study more cases. One natural
question is whether any quasi-crystal can be reached as a ground state at positive
temperature. In this context we emphasize that the Fibonacci substitution also has
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a Sturmian shift, that is, it is related to the irrational rotation with angle the golden
mean -y := %5 We expect that the machinery developed here for the Fibonacci
substitution can be extended to the Sturmian shift associated to general irrational
rotation numbers (although those with bounded entries in the continued fraction
expansion will be the easiest), possibly to rotations on higher-dimensional tori, and
also to more general substitutions.

1.2. Results. Let ¥ = {0,1}" be the full shift space; points in ¥ are sequences
T := (Tn)n>o Or equivalently infinite words xoz; . ... Throughout we let 7; = 1 — x;
denote the opposite symbol. The dynamics is the left-shift

O.:T =2XgTl1T2... > T1Tg....

Given a word w = wy...w,_1 of length |w| = n, the corresponding cylinder (or
n-cylinder) is the set of infinite words starting as wy ... w,_;. We use the notation
Cu(z) = [0 . .. xy_1] for the n-cylinder containing z = xozy ... If w = 1wy ... w, 1 is
a word with length n and w' = wy ... a word of any length, the concatenation wuw’
is the word wy . .. w,_ 1wy . . ..

The Fibonacci substitution on X is defined by:
- 0— 01
1—0.
and extended for words by the concatenation rule H(ww') = H(w)H(w'). It is
convenient for us to count the Fibonacci numbers starting with index —2:

(2) F,Q == 1, F,l == O, FO - 1, Fl == 1, F2 - 2, Fn+2 - Fn+1 + Fn,
We have

F if a =
(3) Fszer”<a>|:{ w1 Ha=0,

E, if a =1.
The Fibonacci substitution has a unique fixed point

p=01001010 01001 01001010 0100101001001 ...

We define the orbit closure K = U,,0"(p); it forms a subshift of (¥, o) associated to
p. More properties on K are given in Section [2]

We define the renormalization operator acting on potentials V' : 3 — R by

VoocoH(z)+VoH(z) ifzell],

(RV)(@) = {V o H(z) it z e [1].

We are interested in finding fixed points for R and, where possible, studying their
stable leaves, i.e., potentials converging to the fixed point under iterations of R.



4 HENK BRUIN AND RENAUD LEPLAIDEUR

Contrary to the Thue-Morse substitution, the Fibonacci substitution is not of con-
stant length. This is the source of several complications, in particular for the correct
expression for R"™.

For a > 0, let X, be the set of functions V' : ¥ — R such that V(z) ~ n=@ if
d(z,K) = 27". More precisely, X,, is the set of functions V' such that:

(1) V is continuous and non-negative.
(2) There exist two continuous functions g,h : ¥ — R, satisfying hx = 0 and
g > 0, such that

V(z) = 9(@) + @ when  d(z,K) =27".
We call g the a-density, or just the density of V € X,. Continuity and the assump-
tion hyg = 0 imply that h(z)/n® = o(n™?).

Our first theorem achieves the existence of a fixed point for R and shows that the
germ of V close to K, i.e., its a-density, allows us to determine the stable leaf of
that fixed point.

Given a finite word w, let k,(w) denote the number of symbols a € {0,1} in w. If

x € X\ K, we denote by K,(x) the number of symbols a in the finite word zg ... 2,1
where d(z,K) = 27",

Theorem 1. If V € X, with a-density function g, then
00 forallz € X\ K if a < 1;
lim R*V (z) = 0 forallx € ¥ if a>1;

k—00

[gdux-V(xz) foralzeX ifa=1,
where V € Xy is a fixed point for R, given by
Ro(a)+ 171 (2)+y . '
_ ] los (%(w)ﬂ%(zml) if v € [0

(4) V() e
10g< YRo(z)+R1 (@) +y ) Zfl’ c [1]

YKo (z)+F1 () +v2~1

This precise expression of V corresponds to a a-density g(r) =7*/2y—-1)ifz €
0N K and g(z) =~/(2y - 1) ifz € 1] NK, and [V (z)dux = 1.

Our second theorem suggests that renormalization for potentials is a machinery to
produce potentials with phase transition. We recall that a freezing phase transition
is characterized by the fact that the pressure is of the form

PB)=aB+b for 3= 0.
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and that the equilibrium state is fixed for § > §.. The word “freezing” comes from
the fact that in statistical mechanics f is the inverse of the temperature (so the
temperature goes to 0 as  — +o00) and that a ground-state is reached at positive
temperature 1/4,, see [5, [7].

Theorem 2. Any potential p :== —V with V € X} admits a freezing phase transition
at finite B: there exists B. > 0 such that

(1) for 0 < B < B, the map P(pB) is analytic, there exists a unique equilibrium
state for By and this measure has full support;
(2) for B> B., P(B) =0 and px is the unique equilibrium state for Sep.

These two theorems explain a link between substitution, renormalization and phase
transition on quasi-crystals: a substitution generates a quasi-crystal but also allows
to define a renormalization operator acting on the potentials. This operator has some
fixed point, and the stable leaf of that fixed point furnishes a family of potentials
with freezing phase transition.

1.3. Outline of the paper. In Section [2{ we recall and/or prove various properties
of the Fibonacci subshift and its special words. We establish the form of H™ and
R™V for arbitrary n and relate this to (special words of) the Fibonacci shift. In
Section [3 after clarifying the role of accidents on the computation of R"V, we
prove Theorem [I} Section (] deals with the thermodynamic formalism. Following
the strategy of [I3] we specify and estimate the required (quite involved) quantities
that are the core of the proof of Theorem [2|

2. SOME MORE PROPERTIES OF H, K AND R

2.1. The set K as Sturmian subshift. In addition to being a substitution sub-

shift, (K, o) is the Sturmian subshift associated to the golden mean rotation, 77, :

1+\f

x+— x+ v (mod 1). The golden mean is v = and it satisfies v = v + 1.

—~

Fixing an orientation on the circle, let ab denote the arc of points between a and b
in the circle in that orientation. If we cons1der the itinerary of 2v under the actlon

of T', with the code 0 if the point belongs to O’y and 1 if the point belongs to ’yO (see
Flgure 1)), we get p, the fixed point of the substitution.

There is an almost (i.e., up to a countable set) one-to-one correspondence between
points in K and codes of orbits of (S*,T,), expressed by the commutative diagram

st s
™, O Jnm
K - K
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0
-7 == ~
- ~
- ~
7 ~
e N
. &«
’ \
’ 27
’ \
; \
1 \
1 \
1 1
I 0
. ’
\ :
\
\
\
\
\
N
N
~
ol

F1GURE 1. Coding for Fibonacci Sturmian subshift.

and 7 is a bijection, except at points TJ"(fy) € SY, n > 0. Since Lebesgue measure is
the unique 7,-invariant probability measure, ux := Lebon ™! is the unique invariant
probability measure of (K, o).

We will use the same terminology for both K and S'. For instance, a cylinder C,,(z)
for € S! is an interval] with the convention that C,,(z) = 7~'(Cy(n(z))), and we
may confuse a point x € S! and its image 7 (z) € K.

Definition 2.1. Let Ag denote the set of finite words that appear in p. A word
W= wp... .wWy1 € Ag is said to be left-special if Ow and 1w both appear in Ag.
It is right-special if w0 and w1 both appear in Ax. A left and right-special word is
called bi-special. A special word is either left-special or right-special.

Since p has n+ 1 words of length n (a characterization of Sturmian words), there is
exactly one left-special and one right-special word of length n. They are of the form
P0---Pn_1and p,_1...pg respectively, which can be seen from the forward itinerary
of x =~ v and backward itinerary of z ~ 0 in the circle. Sometimes the left and
right-special word merge into a single bi-special word w, but only one of the two
words Ow0, and 1wl appears in Ag, see [I, Section 1], the construction of ', ;1 from
r,.

Proposition 2.2. Bi-special words in Ax are of the form po...pr,_3 and for each
m >3, po...pPr,—3 1S bi-special.

We prove this proposition at the end of Section

2Some work has to be done to check that it actually is an interval.
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2.2. Results for H™. We recall that k,(w) is the number of symbol a in the finite
word w.

Lemma 2.3. For any finite word w, the following recursive relations hold:
ko(H"(w)) = Furo(w) + Fpo1k1(w);
ki(H"(w)) = F, 1ko(w)+ F, ok (w);
[H" (w)| = Fuaro(w) + Fyuki(w) = [H" ™ (w)| + [H"(w)],
where |H(w)| = |w|, [H(w)| = [H(w)|.

Since we have defined F. 5 =1 and F_; = 0, see , these formulas hold for n = 0
and n =1 as well.

Proof. Since H™(0) contains F), 1, zeroes and F,_; ones, while H"(0) contains F,,_;
zeroes and Fj,_s ones, the first two lines follow from concatenation. The third line is
the sum of the first two, and naturally the recursive relation follows from the same
recursive relation for Fibonacci numbers. 0

Since (K, o, g ) is uniquely ergodic, and isomorphic to (S*, T,, Leb), we immediately
get that

o R(Hw) _ [l0y[=2 ifa=0,
(5) 1 { 1

ntio [H(w)
Lemma 2.4. Assume that x and y have a mazximal common prefix w. Then H"(x)
and H"(y) coincide for T, (w) + Fni2 — 2 digits, where T, (w) is defined by

(6) To = |w|, Th = [H(w)|, Thsa(w) = Toia(w) + Tn(w).

Proof. For v =w0... and y = wl..., we find
w 0| #, H(w) 0 [1 H, H?*(w) 01 010
w1l H(w) 0 |0 H*(w) 0 1 0 |1

i>H?’(w)()1001011>
Hw) 0100100
where we used that H(a) starts with 0 for both @ = 0 and a = 1. We set T,,(w) =
|H™(w)|, then the recursive formula (6) follows as in Lemma [2.3]
Iterating H on the words 01 and 10, we find:
(7) 01&010&01001&0
10 0/0 1 0101 O 0

0

0
Thus |[H"(10)| = |H™(01| = F, 42 and the common prefix of H"
length Fj, .o — 2 is precisely the same as the common block of
between H"(w) and the first difference.

0 10
0 01
(10) and H™(01) has
H™(w0) and H"(w0)

1 10
1 10
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Therefore, H"(z) and H"(y) coincide for T, (w) + F, 12 — 2 digits. O
Corollary 2.5. For x € K and n € N, H"(z) and p coincide for at least F, 3 — 2
digits if x € [0] and for at least F, o — 2 digits if x € [1].

Proof. If z € [0], then, by Lemma [2.4, H"(x) coincides with H"(p) = p for at least
T,(0)+ Foyo — 2 digits. But T,(0) = [H"(0)] = Fyur, 50 Tp(0)+ Fyro —2 = Fpog—2.

If z € [1], then H(z) € [0] and the previous argument gives that H™(z) coincides
with H"(p) = p for at least F, ;o — 2 digits. O

Proof of Proposition[2.3. We iterate the blocks 0-01, 0- 10 and 1-01 under H:

0 - 0 1 0 1]0[1T 0 .1 0]010[T0
0 - 10 5jo1io0fo1|5]l..t0010]0 1L,
1 -0 1 0/ 010 01/010(10

so the common central block here is bi-special, and it is the same as the common
block v of H"(01) and H™(10) of length F, ;2 — 2 in the proof of Lemma Thus
we have found the bi-special word of length F,, ;5 — 2, and every prefix and suffix of
v is left and right-special respectively. The fact that these are the only bi-special
words can be derived from the Rauzy graph for this Sturmian shift, see e.g. [1, Sec.
1]. In their notation, there is a bi-special word of length & if the two special nodes
in the Rauzy graph coincide: Dy = G}. The lengths of the two “buckles” of non-
special nodes between Dy = (G are two consecutive Fibonacci numbers minus one,
as follows from the continued fraction expansion

1
=1+ —
v 1t 1

1+
Therefore, the complexity satisfies
k+ 1= p(k) = #{nodes of Rauzy graph of order k} = F,, — 1+ F,_; — 1 +1,

so indeed only the numbers k = F},.; — 2 can be the lengths of bi-special words. [

2.3. Iterations of the renormalization operator. The renormalization operator
for potentials can be rewritten under as (recall the definition of F?, a = 0,1, from

B))

Fe—1

(8) RV |l = Z Vool oH|y.
j=0

This general formula may be extended to other substitutions and leads to an ex-
pression for R™V. The main result here is Lemma [2.7] where we show that
Foe—1

g (R™V)(@) = Y Vool o H(a),
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where

. Jn+1 ifxel0]
(10) " _{n if x € [1].

The substitution H solves a renormalization equation of the form . fx=0z...
then H(z) = 01H(xy)... and 6?0 H(z) = Hoo(x). If z = 1z ... then we simply
have 0 o H(x) = H o o(z). The renormalization equation is thus more complicated
than for the constant length case. We need an expression for iterations of H and o.

Lemma 2.6. Given k > 0 and a = 0,1, let w = wywy ... wra = H*(a). Then for
every 0 < ¢ < F! we have

Hoo'o Hk][a] = gl wiw)l 4 Hk+1|[a].

Proof. For k = 0 this is true by default and for k = 1, this is precisely what is done
in the paragraph before the lemma. Let us continue by induction, assuming that the
statement is true for k. Then o' removes the first i symbols of w = H¥(a), which
otherwise, under H, would be extended to a word of length |H (w; ... w;)|. We need
this number of shifts to remove H(w; ... w;) from H([w]) = H*([a]). O

Lemma 2.7. For every k > 0 and a = 0,1, we have
RkV‘[a] = SF;;V o Hk|[a],

where S,V = Z;:Ol V o o® denotes the n-th ergodic sum.

Proof. For k = 0 this is true by default. For k£ = 1, this follows by the definition of
the renormalization operator R. Let us continue by induction, assuming that the
statement is true for k. Write w = H*(a) and t; = |H (w;)| = F,,. Then

RkHV“a] = (RV)oSgV o Hk|[a] (Induction assumption)
F;?—l ti—1
= Z (ZVoajOH> o' o H|\4 (by formula (g))
i=0 \j=0

Fo-1 /-1
— Z (Z Vo 0—j+|H(’w1...’wi)| o H) o Hkl[a] (by Lemma
i=0 \j=0

Fg -1

= 2 VedoH™y,

=0

as required. O
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2.4. Special words are sources of accidents. Overlaps of p with itself are
strongly related to bi-special words. They are of prime importance to determine
the fixed points of R and their stable leaves, see e.g. formula below. Dynami-
cally, they correspond to what we call accident in the time-evolution of the distance
between the orbit and K.

For most z close to K, d(o(z), K) = 2d(z,K), but the variation of d(¢7(z), K) is not
always monotone with respect to 7. When it decreases, it generates an accident:
Definition 2.8. Let z € ¥ and d(z,K) = 27", If d(o(x),K) < 27", we say that we
have an accident at o(z). If there is an accident at o7 (x), then we shall simply say
we have an accident at j.

The next lemma allows us to detect accidents.

Lemma 2.9. Let x = xgx; ... coincide with some y € K for d digits. Assume that
the first accident occurs at b. Then xy, . ..xq_1 s a bi-special word in Ax. Moreover,
the word xq . ..xq_1 1S not right-special.

Proof. By definition of accident, there exists y and ' in K such that d(z, K) = d(z, y)
and d(o”(2),K) = d(o”(2),y').

Y
Ve | -l ’ """""""""""" ! X
d
Y
b

FIGURE 2. Accident and bi-special words
Figure [2| shows that the word z;...x4_;1 is bi-special because its two extensions y
and 3/ in K have different suffix and prefix for this word.
It remains to prove that . .. x4_1 is not right-special. If it was, then g ... x4 124 =

Yo . . . Ya—1Jq would a K-admissible word, thus d(z, K) < 27+ £ 2-d, O

3. PROOF OF THEOREM [1I

3.1. Control of the accidents under iterations of R. Next we compute R"V
and show that accidents do not crucially perturb the Birkhoff sum involved. This
will follow from Corollaries B.2] and 2.5l



RENORMALIZATION AND THERMODYNAMICS 11

Note that Lemma shows that H is one-to-one. The next proposition explains
the relation between the attractor K and its image by H.

Proposition 3.1. The subshift K is contained in H(K)Uo o H(K). More precisely,
if [0)NK C H(K) and z € [1]NK C 0 o H(K).

Proof. First note that Lemma [2.4] shows that H is one-to-one. We also recall that
the word 11 is forbidden in K. Hence, each digit 1 in z = zgxi22 ... € K is followed
and preceded by a digit 0 (unless the 1 is in first position).

Assuming xy = 0, we can unique split x into blocks of the form 0 and 01. In this
splitting, we replace each single 0 by 1 and each pair 01 by 0. This produces a new
word, say y, and by construction, H(y) = z. This operation is denoted by H~'.
It can be used on finite words too, provided that the last digit is 1. If o = 1, we
repeat the above construction with Oz, and = = o o H(y).

It remains to prove that y € K. For every x € K, there is a sequence k, — oo such
that o (p) — x. Assume again that zo = 0. Then we can find a sequence [,, ~ k, /7y
such that H o o' (p) = o*»(p). Therefore lim, o'"(p) € K, and this limit is indeed
the sequence y that satisfies H(y) = z. Finally, for xy = 1, we repeat the argument
with Ox. 0J

Corollary 3.2. Ifd(z,K) = d(z,y) withy € K, then d(H"(z),K) = d(H"(z), H"(y))
forn > 0.

Proof. Write x = wa and y = wa where a is an unknown digit and @ its opposite.
Note that H™(x) starts with 0 for any n > 1. Assume that there is some z € K such
that d(H(z), z) < d(H(z), H(y)).

Case 1:x = w0... and y = wl.... Necessarily, y = wl0. Therefore H(z) =
H(w)01... and H(y) = H(w)001.... By assumption, z coincide with H(x) longer
than H(y), which shows that z starts as 2 = H(w)01... Consequently H~!(z) =
w0 ... and this contradicts that d(z,K) = d(z,y).

Case 2: x = wlb... and y = w0.... Then H(z) = H(w)00... (since H(b) starts
with 0 regardless what b is) and H(y) = H(w)01... Again z coincides with H(z)
longer than H(y) and thus z starts as H(w)00. The 0 before last position is nec-
essarily a single zero for the H'-procedure and thus H~!(z) coincide with z for
longer than y. This is a contradiction.

Consequently for both cases we have shown d(H (x),K) = d(H(x), H(y)). The result
follows by induction. U

We recall that by @, R™V is given by a Birkhoff sum, of Fj,« where n* =n+1 or
n as in (10). To compute (R"V)(x), we need an estimate for d(c?(H"(z)),K), for
0<j<F1—1or0<j<F,—1. The key point is that no accident can occur
for these j. This follows from the next lemma.
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Lemma 3.3. The sequence H"(x) has no accident in the first F,,« entries.

Proof. We give the proof for x € [1], so n* = n. The proof for x € [0] is analogous.
By Corollary 2.5, H"(z) coincides for at least F,, .o — 2 digits with p. If an accident
happens in the first F), digits, say at entry 0 < j < F},, then by Lemma 2.9, a
bi-special word starts at j, which by Proposition is a suffix of p of length F;,, —2
for some m. Since we have an accident, j + F,,, —2 > Fj,.0o —1,som >n+ 1.

Hence py ... pF,,,—1 can be written as BBB’ where B is the suffix of p of length j
and B’ is a suffix of p of length > |B|/~. Clearly B starts with 0. We can split it
uniquely into blocks 0 and 01, and B fits an integer number of such blocks, because
if the final block would overlap with the second appearance of B, then B would
start with 1, which it does not.

Therefore we can perform an inverse substitution H !, for each block B and also for
B’ because we cal globally do H™* for py ... pp,.,—1. We find H'(BBB') = CCC’
which has the same characteristics. Repeating this inverse iteration, we find that p
starts with 0101, or with 00, a contradiction. 0

Let N(z,n) be the integer such that 2= V@") = d(H"(z), K). By the previous lemma
d(o? (H™(z))K) = 2-WN@m=3) for every j < F,-. For the largest value j = Fy-, we
have d(o? (H™(x))K) = 2~ Tn+Fur2=2=F) - Therefore, if g is the a-density function
for V| then we obtain

Fo«—

= gooio H'(x foe b o od o H (&
@@=, <gN<m,n>—§'>3<+“<jZO <gN<x,n>—§>i)‘

3.2. Proof of Theorem [1l.

3.21. V is a fized point. A simple computation shows that R fixes V from .
Assume x ¢ K is such that ko(x) = n and k1 (z) = m (see the definition of ¥, above
the statement of Theorem . Then, by Lemmas |2.3| and and the fact that H(z)
starts with 0, we get

Ro(H(xz)) =n+m+1 Ko(o o H(z)) = n+m,
ri(H(x))=n Fi(oco H(x)) =n.
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o If x starts with 0, then H(z) starts with 01 and

(RV)(z) = V(H(z))+V oo(H(x))

L (n+m+1)+n+7y l ( Y(n+m)+n+~? )
& (n+m+1)+%n+*y—1 yn+m)+n+42—1
n+m+1)+in++y n+m+in+y
= log — + log — T
n+m+on+y ntm+nty -3
n+m+1+4+Iin+y
= log —
n+m+;n—|—fy—§
n(l+3)+m+~y+1 )
= log . il since 7 =y +1
n(l-l—;)—km—l—v—;

2 n+Lim+y -
= log mtmEy = log — =V (x).
yn+m+y(y—1) n+4sm+y—1

o If x starts with 1, then H(z) starts with 0 and

(RV)(;L‘) = ‘7(H($)):log( (Tl—l-m—i-l)-{-;n—i—ﬂy >

(n+m+1)+ n+y-1

Y(n+m+1)+n+9>2
Yn+m+1)+n+2—y

(5
_ <n7+1 +7m+7+7)
s

= Og

n(y+1) +ym + 2

YA+ ym + )
v+ ym + 52

2 ~
_ log(w):bg( yntmty ):m).
yn 4+ m 4y ym+m+y2—1

3.2.2. A Toeplitz summation. Next, we consider V € X;. We shall see in the proof
that the convergence for these V' automatically implies that for V € X, with o # 1,
the same computations work but with either too light or too heavy denominators.

«—1 gogloH"(z)

N = actually converges, which

In the same spirit, we shall see that Z
immediately yields that o <Zf=o_1 %

any term of that kind.
Recall that by Lemmas [2.3 and 2.4 and Corollary [3.2] we have

N(z,n) :=logy, d(H"(2),K) =T, 4+ Fruo —2 for T, := F,1ko(z) + F,ki(x).

) converges to 0. We can thus forget
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We thus have to compute the limit of

FZ_I gool o H(x)
=0 Fn+1%0(l') + anl(l') + Fn+2 - (] + 2)

as n* — +oo, where n* = n+1if x € [0] and n* = n if 2 € [1]. Moreover g is
a non-negative continuous function, hence uniformly continuous. Furthermore, for
y € K closest to x, the point o* o H"(x) coincides with of»* o H"(y) for at least
F,, — 2 digits. There exists a sequence ¢, | 0 such that

|g 00! (H"(2)) — g oo’ (H"(y))| < en,
for every j < F,» — 1.
Finally, Binet’s formula F, 1 — vF, = v/57~ Y shows that
Foko(z) + Fofi(z) + Faoa— (5 +2)

~ 1. '
= Fua(Fo(@) + —F(2) +7— =) (1+¢h)
Y Fn+1
= Fu(yFo(x) + Fa(a) + 97 = ) (1 + <)),

where ¢/, and €” tend to 0 as n — +oc.

Combining ¢, ¢/ and £” in a single o(1), we can rewrite the above equalities to

(12) F"*Z_l goalo H"(x) _ 1+o0(1) %goajoH”(y)
=0 Foiko(z) + Fofa(z) + Foye — (7 +2) P o n — Fi* 7

where X,, = Ko(z) + %El(a:) +if z € [0] and X,, = vRo(x) + Fy(x) + % if z € [1].

3.2.3. Convergence of the weighted sum in . The reader can verify that we are
here considering a Toeplitz summation method, with a regular matrix (see [12]
Definition 7.5] and [19]), up to a renormalization factor, which is the limit of

F»
1

Fe

1

g
]:O Xn Fn*

This expression is a Riemann sum, and converges to V(x) as n* — oc.

From [19] we have that the Miiller (see [15]) criterion applies, and we get that for
px-almost every z € K|

(13) lim — FZ 9°0C) _ 5y [ ga
W Ly, m W e
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Nevertheless, our expression in is different, because the point z we are consid-
ering is H"(y) and thus depends on n. A priori, this may generates fluctuations in
the convergence, but we prove here that this is not the case.

The main argument is that (K, o) is uniquely ergodic. We claim that this implies
that the convergence in is uniform in z.

Indeed, if it is not uniform, we can find € > 0 and a sequence of z, such that for

every n, |ﬁ ngg %(:i) — ‘7(3:) [ gduk| > ¢ for every n. Then any accumulation

point s, of the family of measures

1 &L 1
b 3= 2 D g e
3=0 n F,«

is o-invariant (because F,» — +00), supported on K, and [ gdpuo # [ g dux. This
would contradict the unique ergodicity for (K, o).

Therefore, the convergence in is uniform in z and this shows that

F,* .
1 godl(H™ ~
— Lj@» S V(x)- /gduK-
]:0 n Fn*

This finishes the proof of Theorem

4. PROOF OF THEOREM

4.1. The case — log ”T""l We first consider the potential ¢(z) = —log”TJrl if
d(z,K) = 27", leaving the general potential in &) for later.

4.1.1. Strategy, local equilibria. Fix some cylinder J such that the associated word,
say wy, does not appear in p (as e.g. 11). We follow the induction method presented
in [13]. Let 7 be the first return time into J (possibly 7(z) = 4+00), and consider
the family of transfer operators

Lzp: 0 = Lzp)

T = LZﬁ(w)(x) ::Z Z 65-(Sn@)(y)*nZz/}<y>7

n=1 yeJ T(y)=n
o”(y)=x

which acts on the set of continuous functions ¢ : J — R. Following [13, Proposition
1], for each /8 there exists Z.(/) such that £z is well defined for every Z > Z.(5).
By [13| Theorem 1], Z.(5) > 0 because the pressure of the dotted system (which in
the terminology of [13] is the system restricted to the trajectories that avoid J) is
larger (or equal) than the pressure of K which is zero.

We shall prove
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Proposition 4.1. There exists 5y such that Log(1;)(x) < 1 for every 8 > By and
xeJ.

We claim that if Proposition holds, then [13, Theorem 4| proves that P(5) = 0
for every 8 > [y, and uk is the unique equilibrium state for Sp.

To summarize [I3] (and adapt it to our context), the pressure function satisfies (see
Figure @D,
Z.(B) < P(B) < max(log(Loys(1,)),0).

As long as P(f) > 0, there is a unique equilibrium state and it has full support. In
particular this shows that the construction does not depend on the choice of J. If

Proposition [4.1] holds, then
Z.(B) = P(p) = max(log(Lys(1,)),0) =0, for 8 > 5.

and pg is the unique equilibrium state because Lo (1) < 1.

z z=1log Ao

FIGURE 3. The Pressure between Z.(8) and log Ao g := Lo (1)

4.1.2. Proof of Proposition [{.1-Step 1. We reduce the problem to the computation
of a series depending on . Note that ¢(z) only depends on the distance from x to
K. This shows that if x,2’ € J and y,y’ € J are such that

y=wr, Yy =wr,
with w € {0,1}", 7(y) = 7(¥') = n, then
(Snp)(y) = (Snp) (V).

In other words, Lz 5(1 ) is a constant function, and then equal to the spectral radius
A Z.,B of L Z,B-

Consequently, to compute Az g, it suffices to compute the sum of all e (Sn@)(w)—nZ
where w is a word of length n + |wy|, starting and finishing as w;. Such a word w

3We will see that Lo g(1l)(z) is a constant function on .J.
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can also be seen as a path of length n starting from J and returning (for the first
time) to J at time n.

We split such a path in several sub-paths. We fix an integer N and say that the path
is free at time k if wy, .. .w,_1w; is at distance larger than 27V to K. Otherwise, we
say that we have an ezcursion. The path is thus split into intervals of free moments
and excursions. We assume that IV is chosen so large that 0 is a free moment. This
also shows that for every k < n, d(o*(wwy),K) is determined by wy ... w,_1.

If k is a free time, p(0"(ww;)) < Ay := —log (1+ %). Denote by ko the maximal
integer such that k is a free time for every k < k. Then Sy, 119 < (ko + 1)Ax and
there are fewer than 2*0+! such prefixes of length ko + 1.

Now, assume that every j for kg +1 < j < ko + k; is an excursion time, and assume
that k; is the maximal integer with this property. To the contribution (Sk,+1¢)(ww.r)
we must add the contribution (Sy,)(c*(ww;)) of the excursion. Then we have
a new interval of free times, and so on. This means that we can compute Lo 5(1 )
by gluing together paths with the same decompositions of free times and excursion
times. If we denote by Cp the total contribution of all paths with exactly one
excursion (and only starting at the beginning of the excursion), then we have

+o00 +o00 kt+1
n hos = Los(1) < 3 (z e<ko+1><ﬂAN+bg2>) ch

k=1 \ko=0
The sum in k accounts for £+1 intervals of free moment with k intervals of excursions
times between them. The sum in kg accounts for the possible length kg + 1 for an
interval of free times. These events are maybe not independent but the sum in ((14)
includes all paths, possible or not, and therefore yields an upper bound.

The integer N is fixed, and we can take [ so large that SAy < —log2. This shows
that the sum in kg in converges and is as close to 0 as we want if § is taken
sufficiently large.

To prove Proposition [4.1] it is thus sufficient to prove that C'r can be made as small
as we want if  increases.

4.1.3. Proof of Proposition [4.1-Step 2. We split excursions according to their num-
ber of accidents, see Definition 2.8, Let = be a point at a beginning of an excursion.

Let By 2:0:b0, By :=0b; > bo, By := by + by > bl, By = b1+b2+b3,...,BM =
b1 + by + - - - + by be the times of accidents in the excursion. There is yo € K such
that x shadows yy at the beginning of the excursion, say for dj iterates. Let y; € K,
i =1,...,M, be the points that x starts to shadow at the i-th accident, for d;
iterates.

Then by Lemma [2.9)

F,,., — 2 for some n; ;.

... xq, is bi-special and by Proposition , di — biyq =

i+1
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% Yo dy Y2 v

-
-

dy p—

by ba b
FIGURE 4. Accidents during an excursion.

Remark 1. We emphasize that the first d; entries of 3; do not form a special
word. Indeed, it is neither right-special (due to Lemma[2.9)) nor left-special, because
otherwise there would be an accident earlier. [ |

If there are M + 1 accidents (counting the first as 0), the ergodic sums for ¢ are

bis1—1
(Shn)(@® (@) = Y oo (x)
k=0
B bii—l_lo dl—{—l—k‘
- 8T k&
k=0
di + 1 bi+1
— log— T g1
Ogdi+1—bi+1 o8 +di+1_bi+1)’

for 0 <4 < M — 1, while the ergodic sum of the tail of the excursion is

dy—1
dy + 1
(15) (Say @) (0™ () = Y oo™ (z) = —log ]J\‘;I—i-l :
k=0

We set e; = ¥ @)@ 1@) for 4 = 1... M and ey 1= e SaP) @M @) - Com-
puting C'g, we can order excursions according to their number of accidents (M + 1)
and then according to the contribution of each accident. Let E; stand for the total
contribution of all possible e;’s between accidents ¢ — 1 and ¢. Then

+oo M+1

(16) ce=>_ []E:

M=0 =1

4.1.4. Proof of Proposition [/.1-Step 3. Let us now find an upper bound for E;. By
definition, F; is the sum over the possible d;_; and b; of e;.

Recall d;—y — b; = F,,, — 2, so b; and F},, determine d,_;. The key idea is that F},,
and F,, , determine the possible values of b;. This implies that E; can be written
as an expression over the F,,, and F},, .
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e For 2 < ¢ < M each e; depends on F,,, and ;. Let us show that for 2 <i < M,
b; depends on n; and n,_;. Indeed, the sequence y; € K coincides for F,,, — 2 initial
symbols with p, and from entry b;;; has another d; — b1 = F),,,, — 2 symbols in
common with the head of p, but differs from xp, 14, at entry d;, see Figure ] Thus
we need to find all the values of d; > F;,, —2 such that py ... p4,_1 ends the bi-special
word pg ... pE but is itself not bi-special. The possible starting positions of this

i1 -3
appearance of pg...pg are the required numbers b;, ;.

ni4p1—3

Lemma 4.2. Let us denote by bi11(j), j > 1, the j-th value that b; 1 can assume.
Then

(17> bl+1<]) > maX<Fm - Fni+17 Fni_l) + ij+1—2‘

This will allow us to find an upper bound for E; for 1 < ¢ < M — 1 later in this
section.

Proof. We abbreviate the bi-special words Ly = po...pr,_3 for & > 4. For the
smallest value d; > F,, — 2 so that pg...ps—1 ends in (but is not identical to) a
block L this block starts at entry:

TLi+17
Fn, — Fu., if n;11 < n; and n; — n;yq is even,
bi+1 (0) = Fnz — Fni+1_1 if Niy1 <Ny and n; — Nit1 is Odd,
Frii1 if nip1 > n,.

However, if n;; 1 < n; then d; = F,,, —2 and if n;;1 > n; then d; = F,,,, 11 — 2 in this
case, and thus py ... pg_1 is right-special, contradicting Lemma [2.9, Therefore we
need to wait for the next appearance of L, . For the Rauzy graph of the Fibonacci
shift, the bi-special word Ly is the single node connecting loops of length Fj_; and
Fy_o, see [1], Section 1]. Therefore the gap between two appearances of Ly is always
Fy_9 or Fi_y. This gives bi41(j + 1) > biy1(j) + Fu,yy—2 for all 7 > 0 and (17))
follows. 0

e For i = 1, formula can be applied, if we introduce the quantity ng, coinciding
with the overlap of the end of the previous “fictitious” word, say y_;. The point is
that v is the “beginning” of the excursion, thus the first accident. Then, F,,, < N
and F,,, > N, which yields ny < ny. Therefore by = F,,, —2+ f—y(Fm —2) with j > 0.

e The estimation

Pyt Fyv +d\"? N+1/ Fy. \'*
E — Blog( N1 ) — Nm < m
=D e =2 =SB -1\N+1

d>1 d>1

follows from by , with dy; = F},,, +d and d > 1.

Recall that within excursions, all F,; > N + 1 for all j, where N can be chosen as

large as we want. By Binet’s formula F, = 2-(y"*! — (=1/7)"*"), we can replace
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F, by Lﬂ, and we can also treat the quantities —1 as negligible compared to ~".
\/5 .
Therefore, assuming that 5 > 1, we obtain

max(FnZ. *Fn,b-+1 ’F"i_1>+jF"i+1_2 )

—Blog( 1
B o= YRS

j=1
~ Z (1 —+ maX(me_m“'l _ 1,’}/ni_ni+1_1) +j/’)/2)_ﬁ
j=1
7 s
S 6 1 (1 + maX('y”i_"“'l . 17 *}/m_ni“_l)) .

for2<i:< M

lo;

N
Let P~ % be the largest integer n such that F,, < N. Then yields

+o0o 2 M
g (N +1)
Cr = (6 ) B-1

(18) El (1 + max(v""_"i“ . L,yni—nprl—l))l*ﬁ ,y(P—nM)(ﬁ—l).

4.1.5. Proof of Proposition [{.1+-Step 4. We show that Cp — 0 as § — +o0.

Proposition 4.3. There exists A = A(B) € (0,1) with limg_, ;oo A = 0 such that

+o0 +o00 M i
cp <P tl +11 Y ey ZOAM >

n=1 M= 1=0

Before proving this proposition, we show that is finishes the proof of Proposition [4.1]

The series has only positive terms. Clearly, 177, AM Ziﬂio ’Z—,l

sum converges if 727! > e. Thus Proposition implies that C'g — 0 as § — +o0.

< ﬁe", so the main

Therefore, inequality shows that if 5 — 400, then Ao — 0 too, and hence
Proposition [4.1} is proved.

The rest of this subsection is then devoted to the proof of Proposition .3}

Lemma 4.4. Let n and y be positive real numbers. Then for every n,

n

o0 | J
n,—n(z—y) 1. _ E :Ey_
/ z"e de = =
y

J=0
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Proof. Set u,, := fyoo 2"e " Y dx. Then

Uy = / (x +y)"e "dx
0

—1 < on [
= [—(x + y)”e"”} + = / (z4y) e
n 0 nJo
= y_ + —Up—1
n
The formula follows by induction. 0

Let n be some positive integer and & and ¢ two positive real numbers. We consider

a matrix D, = (dm])?:llf:l with n + 1 rows and n columns defined by

EmET i<y,
dpij = 1 ifi=j+1,
0 if i > 7+ 1.
or in other words:
0¢ 11¢% 20¢3 ... (G-DIY ... (n-1DI"
& ¢ ... (n —2)I¢" 1
0 5§ ¢ . :
po_| 00 £ et
0 ' 5
: 0 & ¢ ¢?
0 0 £ ¢
0 0 0 0 £

We call w non-negative (and write w > 0) if all a entries of w are non-negative.
This defines a partial ordering on vectors by

ww <= w —w>0.

Lemma 4.5. Assume 0 < ( <1 and set K := l_ic Then, for every n,

K K

o! 0!

anl Kn

1! 1!

Kn—l K"

D, o] = | =r

Knr—1 K™
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Proof. This is just a computation. For the first row we get

n n—1
> G- 1)!<;J'.<JK_ o < K”l.%c < K™

=1
For row 7 > 1 we get

1 K"! = (j—1)! Jitl Kt K 2 K"
(¢—1)<¢—2)!+;<¢—1)!< GO o ) ST

OJ
Proposition 4.6. Set ( := m and K = ﬁ Consider M integers ny,...nyy,
with ny; > P. Then, for every M > 2,
M-1 s M—1 (nar — P)
S TT (s — 1 gpomeah) = < o 3 =P
ni,...,npy—1>P 1=1 =0

Proof. Note that

M
S T mantyor — e

ni,...,npr—1>P i=1

3 ( (Z (Z (14 max(y77 = 1) 1o9).

ny—1=1 no=1 \ni=1
(14 max(y"" — 1,5m7m 1)) )
(1 + max ("M — ] 7nz\pl—nM—1)1fﬁ ‘

This means that we can proceed by induction. Now

o0

> (1 max(y T — 1, ym )
n1=P+1

no oo
< [Ty [ eyt

P ng

<mny,— P+ /Oo e~ (B=1) (z—n2) logv 7.
na

:ng—P+/ ef%dx,

2

because ( = ——+——. This shows that the result holds for M = 2.
(8—1)logy
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Assuming that the sum for M = p is of the form Z?;; a;j(n, — P)?, we compute the
sum for M =p+ 1.

S (np — P)’
Z Z 1+max np—npr1 _ | fynp Np41— 1)),8 1

np=P+1 j=0
Np+1 (ZB _ j
Z /P 1+,Ym Np41— 1 dx—f—zaj\/n_'—l T—Npt1 ﬁ 1d$
P
n _ ]+1 oo R

Z pH +/ (x — P)le” " dx.

i j + 1 Mp+1
Set w - w' = > ww;, for vectors w = (wy,...,wpy1) and W' = (wi,...,w,, ).
Lemma [£.4] yields

S (np — P
Z Z 1 + maX np—np+1 —1 f)/np Np+1— 1))B 1

=P+1 57=0

I
a; 41 J: j—it1 i
§Z<j+1)(np+1_P)J +ZECJ (npt1 — P)

j i=0
Qo 1
a1 Np+1
S Dp : p.
ap—1 Mt
Lemma concludes the proof of the induction. 0

Proof of Proposition[{.5 We have just proven that

ST (1 max(yhre - 1 gy A (Pon@-1)

ni,..np>P

i Z (nar — P (s =P)(5-1)

ny = =P+1 j =0
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It remains to sum over ng. Note that in that case, there are only P terms of the

form Zf_ L because ng < P < ny for each possible ny,
j=0 (1+,Yn0 ny— 2+J)

iy 1 1
Z T AL B (1—1-*)/”0 m=2) +Z -2 g
=0 <1+7”0 m +7—2> (1+7”0 mo2 4 )
2
y 1
< 1+
B =1 (1 4 yno-m-2)771
5_
< 14+ —
< 1+

for 3 > v/27. Finally, inequality (18 @ ) yields
N 1 “+o00 +o0 M-—1 j
oo <ap SEL ST S S
— J
n=1 7=0

with A= 75K = [T This tends to 0 as 8 — 400. O
log~y

4.2. End of the proof of Theorem [2]

4.2.1. End of the case — log . Proposition shows that there exists some min-
imal [y such that Agg < 1 for every 3 > [. ThlS also shows that P(5) = 0 for
S > Bp. Since P(f) is a continuous and convex function, it is constant for 8 > fy. As
P(0) = log 2, there exists a minimal §. > 0 such that P(f) > 0 for every 0 < 5 < ..
Clearly, 5. < 0.

We claim that for 5 < 3., there exists a unique equilibrium state and that it has full
support. Indeed, there exists at least one equilibrium state, say j5, and at least one
cylinder, say J, has positive pg-measure. Therefore, we can induce on this cylinder,
and the form of potential (see [I3, Theorem 4]) shows that there exists a unique
local equilibrium state. It is a local Gibbs measure and therefore ps is uniquely
determined on each cylinder, and unique and with full support (due to the mixing

property).

We claim that the pressure function P(f) is analytic on [0, 5.]. Indeed, each cylinder
J has positive pig-measure and the associated Z.(3) is the pressure of the dotted sys-
tem (that is: restricted to the trajectories that avoid J). This set of trajectories has
a pressure strictly smaller than P () because otherwise, several equilibrium states
would coexist. Therefore P(3) is determined by the implicit equation Ap(g) s = 1
and P(B) > Z.(5) for B € [0, B.]. The Implicit Function Theorem shows that P(f3)
is analytic.

For 3 > f,, the pressure P(f) = 0 and for cylinders J as above, we have Z.(/3) > 0.
This shows that Z.() = 0 for every 8 > (.. Due to the form of the potential, A s
is continuous and decreasing in .
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We claim that 8. = (. Indeed, assume by contradiction 5 < B.. Then \gg, > 1,
since otherwise (because g3 being strictly decreasing in ), Ag s, < 1 would yield
that Ao s < 1 for every 8 > .. This would imply 8. > fy (recall that 5y is minimal
with this property). Now, for fixed 8, Z +— Az is continuous and strictly decreasing
and goes to 0 at Z — 4o00. Therefore, if A\g5, > 1 then there exists Z > 0 such
that Az 3, = 1. The local equilibrium state for this Z generates some o-invariant
probability measureﬂ with pressure for Sy equal to Z, thus positive, and this is in
contradiction with P(5.) = 0. This proves that 5. = §y and finishes the proof of
Theorem [2|in the case that V(z) = —log 2t

4.3. The general case V € X;. For V € X}, there exists x > 0 such that
—V < k.

This shows that the pressure function is constant equal to zero for 5 > fy/k. Again,
the pressure is convex, thus non-increasing and continuous. We can define ., such
that P(8) > 0 for0 < 8 < . and P(8) =0 for 8 > f..

The rest of the argument is relatively similar to the previous discussion. We deduce
that for § < (., there exists a unique equilibrium state, it has full support and
P(p) is analytic on this interval. For g > f., it is not clear that \g 3 decreases in .
However, we do not really need this argument, because if A\g 3 > 1, then the decrease
of Z — Azp (which follows from convexity argument and limy, . Azs = 0), is
sufficient to produce a contradiction.
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