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Abstract. This paper contains a review of available methods for establishing

improved interpolation inequalities on the sphere for subcritical exponents.

Pushing further these techniques we also establish some new results, clarify
the range of applicability of the various existing methods and state several

explicit estimates.

1. Introduction. On the d-dimensional sphere, for any real valued function u in
H1(Sd), let us consider the inequality

d e ≤ i where e :=
‖u‖2Lp(Sd) − ‖u‖

2
L2(Sd)

p− 2
and i := ‖∇u‖2L2(Sd) , (1)

where µ is the normalized measure on Sd induced by the Euclidean measure on
Rd+1 and p ∈ [1, 2) ∪ (2, 2∗) with 2∗ = ∞ if d ≤ 2 and 2∗ = 2 d

d−2 if d ≥ 3. The
case p = 2∗ is also covered if d ≥ 3 and corresponds to Sobolev’s inequality. When
p = 1, the inequality is equivalent to the Poincaré inequality. By taking the limit
as p→ 2, we recover the logarithmic Sobolev inequality∫

Sd
u2 log

(
u2

‖u‖2
L2(Sd)

)
dµ ≤ 2

d
‖∇u‖2L2(Sd) ∀u ∈ H1(Sd) . (2)

The constant d in (1) is optimal: see for instance [37]. When p = 2, it is consistent
to define e as the l.h.s. in (2), that is, e :=

∫
Sd u

2 log
(
u2/‖u‖2L2(Sd)

)
dµ. Hence

for p ∈ (1, 2∗), the functionals e and i are respectively the generalized entropy and
Fisher information functionals.
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In this paper we are interested in improvements of (1) and (2) in the subcritical
range, that is, for 1 < p < 2∗. By improved inequality we mean an inequality of the
form

d ‖u‖2L2(Sd) Φ

(
e

‖u‖2
L2(Sd)

)
≤ i ∀u ∈ H1(Sd) , (3)

for some monotone increasing function Φ such that Φ(0) = 0, Φ′(0) = 1 and Φ(s) > s
for any s. As a straightforward consequence we get a stability result. Indeed, let us
set

Ψ(s) := s− Φ−1(s) . (4)

Hence we get

i− d e = d

[
‖u‖2L2(Sd) Φ−1

(
i

d ‖u‖2
L2(Sd)

)
− e

]
+ d ‖u‖2L2(Sd) Ψ

(
i

d ‖u‖2
L2(Sd)

)
,

and thus,

i− d e ≥ d ‖u‖2L2(Sd) Ψ

(
i

d ‖u‖2
L2(Sd)

)
,

where the inequality is a simple consequence of (3). If, additionally, Ψ is nonde-
creasing, then by reapplying (3) we find that

i− d e ≥ d ‖u‖2L2(Sd) (Ψ ◦ Φ)

(
e

‖u‖2
L2(Sd)

)
∀u ∈ H1(Sd) . (5)

The function Ψ ◦Φ is nondecreasing, positive on (0,∞) and such that (Ψ ◦Φ)(0) =
(Ψ ◦Φ)′(0) = 0. Inequality (5) is a stability result since e controls a distance to the
optimal functions, which are the constant functions. Our goal is to find the best
possible function Φ.

As an important application of the improved version of the inequalities, we can
point stability issues. Some straightforward consequences are:

1. the uniqueness of optimal functions when they exists, and a better character-
ization of the equality cases in the inequalities,

2. stability results in spectral theory with application to problems arising from
quantum mechanics, like stability of matter,

3. some additional estimates in variational methods (improved convergence of
sequences) with applications for instance when one uses Lyapunov-Schmidt
reduction methods,

4. improved convergence rates in evolution problems.

The last point is probably the most important in view of applications in physics.
In various cases of interest, it allows to prove that before entering an asymptotic
regime of, for instance, exponential decay, a system may have an initial regime with
an even faster convergence.

Let us briefly review the literature and give some indications of our motivation
and main results. Inequality (1) has been established in [18, 19, 12]. The limit case
p = 2 was known earlier: see for instance [59] in the case of the circle, and [34] for
a detailed list of references.

In the case of compact manifolds other than the sphere, the estimates obtained
by M.-F. Bidaut-Véron and L. Véron in [19] (also see [48, 49, 9, 41, 42]) and by
J. Demange in [32, 33] can be improved at the leading order term by considering
non-local quantities like in [37].
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In the case of the sphere, the leading order term is determined by the constant d
in (1). Looking for improvements therefore makes sense. J. Demange observed
in [33] that Inequality (1) can be improved when p ∈ (2, 2∗). Moreover, in [32] he
noticed the existence of a free parameter. The first purpose of this paper is to clarify
the range of the free parameter in the method and optimize on it, in order to get the
best possible improvement with respect to that parameter. Recent contributions
on nonlinear flows and Lyapunov functionals, or entropies, that can be found in
[34, 37, 36], are at the core of our method.

Refined convex Sobolev inequalities have been established in [2] when p ∈ (1, 2)
in the setting of interpolation inequalities involving a probability measure. For
a simpler formulation, see [39]. Our second purpose is to adapt the method to
interpolation inequalities on the sphere and hence also cover the range p ∈ (1, 2).
It is based on refined estimates of entropy decay for a linear heat flow, in the spirit
of the Bakry-Emery method.

Our last contribution is inspired by [1]. Under additional orthogonality condi-
tions, we show that other (and in some cases better) improved inequalities can be
established in the range p ∈ (1, 2). The method is based on hypercontractivity
estimates for a linear heat flow and a spectral decomposition. It raises an intrigu-
ing open question on the possibility of obtaining improvements under orthogonality
conditions in the range p > 2.

Now let us explain the strategy of the paper.

1) Standard symmetrization techniques allow to decrease the function i while pre-
serving the L2 and Lp norms, and the functional e as well. Thus, there are op-
timal functions for inequalities (3) and (5) which depend only on the azimuthal
angle on the sphere and the interpolation inequalities are therefore equivalent to
one-dimensional inequalities for the d-ultraspherical operator, where d can now be
considered as a real parameter. Details are given in Section 2. We should point out
that this first step simplifies the calculations needed to get an improved inequality,
but it is not fundamental for our method. After a change of variables we are led to
the following expressions

i =

∫ 1

−1

|f ′|2 ν dνd and e =

(∫ 1

−1
|f |p dνd

) 2
p −

∫ 1

−1
|f |2 dνd

p− 2
,

where νd is a probability measure, and ν ≥ 0 is a smooth function (these functions
are explicit but their exact form is irrelevant for the moment). Then we define the
self-adjoint ultraspherical operator through the identity∫ 1

−1

f ′1 f
′
2 ν dνd = −

∫ 1

−1

Lf1 f2 ν dνd .

The natural function space for our inequalities is the form domain of L, that is

H :=

{
f ∈ L2

(
(−1, 1), dνd

)
:

∫ 1

−1

|f ′|2 ν dνd <∞
}
,

and we shall denote by ‖f‖q the Lq
(
(−1, 1), dνd

)
norm of f .

2) The key to our approach is to combine the ideas of D. Bakry and M. Emery, i.e.,
take the derivative of i− d e along some flow, with ideas that go back to B. Gidas
and J. Spruck in [44] and that were later exploited by M.-F. Bidaut-Véron and
L. Véron for getting rigidity results in nonlinear elliptic equations. An unessential
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but useful trick amounts to write the flow for w with f = wβ for some β ∈ R, in
the expressions for i and e, as we shall see below.

Let us start with the case β = 1. We consider the manifold

Mp = {w ∈ H : ‖w‖p = 1} .
The main issue is to choose the right flow for our setting. We observe that if
κ = p− 1, then Mp is invariant under the action of the flow

wt =  Lw + κ
|w′|2

w
. (6)

Notice that g = wp evolves according to the equation gt =  Lg and we shall there-
fore refer to the case associated with this equation as the linear case, or the 1-
homogeneous case. At the level of w, the equation is indeed 1-homogeneous since
λw is a solution to (6) for any λ > 0 if w is a solution to (6).

Let

2] :=
2 d2 + 1

(d− 1)2

and

γ1 :=

(
d− 1

d+ 2

)2

(p− 1) (2# − p) if d > 1 , γ1 :=
p− 1

3
if d = 1 . (7)

If p ∈ [1, 2) ∪ (2, 2]] and w is a solution to (6), then

d

dt
(i− d e) ≤ − γ1

∫ 1

−1

|w′|4

w2
dνd ≤ − γ1

|e′|2

1− (p− 2) e
.

Recalling that e′ = − i, we get a differential inequality

e′′ + d e′ ≥ γ1
|e′|2

1− (p− 2) e
,

which after integration implies an inequality of the form

dΦ(e(0)) ≤ i(0) .

Details will be given in Sections 3.1 and 5.

3) Now let us consider the case with a general β. The range of p’s for which an
improved inequality is valid can be extended to any p ∈ (1, 2∗) by considering the
nonlinear flow

wt = w2−2β

(
 Lw + κ

|w′|2

w

)
(8)

for some β ≥ 1, with κ = β (p−2)+1. ThenMβp is invariant under the flow and our

improved functional inequality follows from the computation of d
dt (i− d e) written

for f = wβ , with the additional difficulty that e′ now differs from − i. Details on (8)
will be given in Section 3 and improved inequalities will be established in Section 4.
The change of function f = wβ , for some parameter β ∈ R, is convenient to compute
d
dt (i− d e) but also sheds light on the strategy used for proving rigidity according
to the method of [19]. It moreover shows that the computations are equivalent and
explains why a local bifurcation result from constant functions can be extended to
a global uniqueness property. This is because the flow relates any initial datum to
the constants through the monotonically decreasing quantity i− d e.

In his thesis, J. Demange [32] made a computation which is similar to ours.
Compared to his approach, we work in a setting in which the change of function
f = wβ clarifies the relation of flow methods with rigidity results in nonlinear elliptic
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PDEs. We give an explicit range for the parameter β and numerically observe that
there is no optimal choice of β valid for an arbitrary value of the entropy e when
p > 2. We also give a new result when p ∈ (1, 2) and it turns out that only β = 1
can be used in that range.

4) Our last improvement is of a different nature. If p ∈ (1, 2) and assuming that
the function u is in the orthogonal of the eigenspaces associated with the lowest
positive eigenvalues of the Laplace-Beltrami operator ∆Sd on the sphere, using Nel-
son’s hypercontractivity result, it is possible to obtain another improved inequality.
Here we again use the linear flow (6) corresponding to β = 1. Although it is
a rather straightforward adaptation of [1], such an approach raises an interesting
open question. See Section 6.

The nonlinear flow defined by (8) and by (6) when β = 1 is the main concep-
tual tool for our analysis. It is introduced in Section 3. Explicit stability results
rely on generalized Csiszár-Kullback-Pinsker type inequalities, which are detailed
in Section 7. Most of our statements, when written for the ultraspherical operator,
are valid for d taking real values and our proofs can be adapted without changes.
However, for simplicity, we shall assume that d is an integer throughout this paper,
unless explicitly specified.

It is very likely that the improved inequalities presented in this paper are not
optimal. What could be an optimal Φ (or even if such a question really makes
sense) is an open question, but at least we can construct a whole collection of such
functions (depending on p and d), which in most cases improve on previously known
results. The strategy that we use to prove the improved inequalities builds up on
some previous works, but the way we combine these ideas is new and suggests
several directions for future investigations.

After all these preliminaries, we are now in position to state our results. Let us
start by giving an expression of the function Φ. For each p ∈ (1, 2) ∪ (2, 2]) and γ1

defined by (7), let

ϕ1(s) :=


2

γ1+2 (p−2)

[(
1− (p− 2) s

)− γ1
2 (p−2) − 1 + (p− 2) s

]
if p 6= 2− γ1

2
,

1
2−p

(
1− (p− 2) s

)
log
(
1− (p− 2) s

)
if p = 2− γ1

2
,

(9)
where we assume that s is admissible, that is, s > 0 if p ∈ (1, 2) and s ∈ (0, 1

p−2 ) if

p > 2. Next, we define

γ(β) := −
(
d− 1

d+ 2
(κ+ β − 1)

)2

+ κ (β − 1) +
d

d+ 2
(κ+ β − 1) . (10)

We observe that γ(1) = γ1, and that there exists some β ∈ R such that γ(β) > 0
only if p ≥ 1 if d = 1 or if p ∈ [2, 2∗] for any d > 1. Then, we define B(p, d) by

B(p, d) =
{
β ∈ R : γ(β) > 0 , β ≥ 1 , and β ≤ 2

4−p if p < 4
}

if p > 2 ,

B(p, d) = {1} if 1 ≤ p ≤ 2 .
(11)

A more explicit description of the region B(p, d) will be given in the Appendix. For
each β ∈ B(p, d) such that β > 1, let

ϕβ(s) :=

∫ s

0

exp
[

γ(β)
β (β−1) p

(
(1 − (p− 2) z)

1−δ(β) − (1 − (p− 2) s)
1−δ(β)

)]
dz

(12)



6 J. DOLBEAULT, M. J. ESTEBAN, M. KOWALCZYK AND M. LOSS

with

δ(β) :=
p− (4− p)β

2β (p− 2)
. (13)

The reader is invited to check that limβ→1+
ϕβ(s) = ϕ1(s) for any admissible s.

Finally we define

Φ(s) :=
(
1 + (p− 2) s

)
ϕ

(
s

1 + (p− 2) s

)
where ϕ(s) := sup

β∈B(p,d)

ϕβ(s) . (14)

Theorem 1.1. Assume that one of the following conditions is satisfied:

(i) d = 1 and p ∈ (1, 2) ∪ (2,∞),

(ii) d = 2 and p ∈ (1, 2) ∪ (2, 9 + 4
√

3),
(iii) d ≥ 3 and p ∈ (1, 2) ∪ (2, 2∗).

For any u ∈ H1(Sd) be such that ‖u‖L2(Sd) = 1, we have the inequality

d Φ

(
‖u‖2Lp(Sd) − 1

p− 2

)
≤ ‖∇u‖2L2(Sd) ,

where Φ is defined by (14). Moreover Φ(0) = 0, Φ′(0) = 1 and Φ′′(s) > 0, for
a.e. s > 0 if p > 2 or for a.e. s ∈ (0, 1/(2− p)) if p ∈ (1, 2). If p = 2, then for any
u ∈ H1(Sd) the following improved logarithmic Sobolev inequality∫

Sd
u2 log

(
|u|2

‖u‖2
L2(Sd)

)
dµ ≤ 4

γ∗1
‖u‖2L2(Sd) log

(
1 +

γ∗1
2d

‖∇u‖2L2(Sd)

‖u‖2
L2(Sd)

)
holds with γ∗1 = 4 d−1

(d+2)2 .

The reader interested in best constants in logarithmic Sobolev inequalities as in
Theorem 1.1 is invited to refer to [22, 23]. In the case p 6= 2, a first consequence
of the above improved inequality, compared to the standard inequality i ≥ d e, is
that i − d e is not only nonnegative, but that it actually measures a distance to
the constants in the homogeneous Sobolev norm. With previous notations, one can
indeed state that

‖∇u‖2L2(Sd) −
d

p− 2

[
‖u‖2Lp(Sd) − 1

]
≥ dΨ

(
1
d ‖∇u‖

2
L2(Sd)

)
for any u ∈ H1(Sd) such that ‖u‖L2(Sd) = 1, where Ψ is defined by (4). We can
rephrase this result without normalization as the following corollary.

Corollary 1. Assume that p ∈ (1, 2)∪ (2, 2∗). With the notations of Theorem 1.1,
we have

‖∇u‖2L2(Sd) −
d

p− 2

[
‖u‖2Lp(Sd) − ‖u‖

2
L2(Sd)

]
≥ d ‖u‖2L2(Sd) Ψ

(
‖∇u‖2L2(Sd)

d ‖u‖2
L2(Sd)

)
,

where Ψ is defined by (4) in terms of Φ, and Φ is given by (14).

Now we can use a generalized Csiszár-Kullback-Pinsker inequality to get an es-
timate of the distance to the constants using a standard Lebesgue norm. We shall
distinguish three cases: (i) p ∈ (1, 2), (ii) p ∈ (2, 4) , and (iii) p ≥ 4. Let us
define q(p) := 2/p, p/2 and p/(p − 2) in cases (i), (ii) and (iii) respectively. As-
sume also that r(p) := p, 2 and p− 2 in cases (i), (ii) and (iii) respectively and let
s(p) := max{2, p}.
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Proposition 1. Assume that p ∈ (1, 2) ∪ (2,∞). With the above notations and
(q, r, s) = (q(p), r(p), s(p)), there exists a positive constant C, depending only on p,
such that for any u ∈ L1 ∩ Lp(Ω, dµ), we have

1

p− 2

[
‖u‖2Lp(Sd) − ‖u‖

2
L2(Sd)

]
≥ C ‖u‖2 (1−r)

Ls(Sd)
‖ur − ūr‖2Lq(Sd)

where ū = ‖u‖Lr(Sd).

The case p = 2 appears as a limit case and corresponds to the standard Csiszár-
Kullback-Pinsker inequality. Details on this limit and an explicit estimate of C
for all p ≥ 1 will be given in Section 7 (see Corollary 4). Notice that C = 1 when
p = 1, and the inequality in Proposition 1 is thus equivalent to a Poincaré inequality.
A direct consequence of Proposition 1 and Inequality (5) is the following stability
result.

Corollary 2. With the notations of Theorem 1.1 and Proposition 1, we have

‖∇u‖2L2(Sd) −
d

p− 2

[
‖u‖2Lp(Sd) − ‖u‖

2
L2(Sd)

]
≥ d ‖u‖2L2(Sd) (Ψ ◦ Φ)

(
C
‖u‖2 (1−r)

Ls(Sd)

‖u‖2
L2(Sd)

‖ur − ūr‖2Lq(Sd)

)
∀u ∈ H1(Sd) .

Now let us turn our attention to the statements corresponding to the last class
of improvements studied in this paper. The range of p is now restricted to [1, 2)
and we consider the linear flow (6).

In [10], W. Beckner gave a method to prove interpolation inequalities between
logarithmic Sobolev and Poincaré inequalities in the case of a Gaussian measure.
The method extends to the case of the sphere as was proved in [34], in the range
p ∈ [1, 2), with optimal constants. For further considerations on inequalities that
interpolate between Poincaré and logarithmic Sobolev inequalities, we refer to [2,
1, 7, 6, 20, 21, 27, 47] and references therein.

Our purpose is to obtain an improved estimate of the optimal constant Cp in∫
Sd
|∇u|2 dµ ≥ Cp

[∫
Sd
|u|2 dµ−

(∫
Sd
|u|p dµ

)2/p
]
∀ u ∈ H1(Sd, dµ) . (15)

Without any constraint on u, we have Cp = d
2−p , and it is natural to expect that

this constant will be improved when we impose additional constraints on the set
of admissible u’s. It the present case we will assume that u is in the orthogonal
complement of the finite dimensional subspace spanned by the spherical harmonics
corresponding to the lowest positive eigenvalues of the Laplace-Beltrami operator
∆Sd on the sphere. Under this additional hypothesis we will obtain an improvement
of the estimate (15), similar to what was done [1], in a different setting.

Let us introduce some notations and recall some known results. We consider ∆Sd
as an operator on L2(Sd, dµ) with domain H2(Sd, dµ), whose eigenvalues are

λk = k (k + d− 1) ∀ k ∈ N ,

and denote by Ek the corresponding eigenspaces. Recall that

dim(Ek) =
(k + d− 2)!

k! (d− 1)!
(2 k + d− 1) ∀ k ≥ 0 ,
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according to [16, Corollary C-I-3, page 162]. Notice that E0 is generated by the
function 1. Finally, for k = 1, 2, . . . let us define constants

αk :=
1

d
λk+1 ,

and functions

Φk(s) = max

{
αk

1− (p− 1)αk
(1− s), log s

log(p− 1)

}
.

With these notations we have:

Theorem 1.2. Assume that p ∈ (1, 2). If u ∈ H1(Sd) is such that ‖u‖L2(Sd) = 1
and ∫

Sd
u e dµ = 0 ∀ e ∈ Ej , j = 1 , 2 . . . k , (16)

then we have

‖∇u‖2L2(Sd) ≥ dΦk

(
‖u‖2Lp(Sd)

)
.

We may notice that α 7→ α
1−(p−1)α is an increasing function of α > 1 and thus

larger that α0

1−(p−1)α0
= 1

2−p since α0 = 1. Hence for any k ≥ 1, we have

dαk
1− (p− 1)αk

>
d

2− p
,

thus showing that we have achieved a strict improvement of the constant compared
to the one in (15) (which is optimal without further assumption).

Moreover, lims→0+
Φk(s) = +∞, thus showing that when the orthogonality con-

ditions are satisfied, the estimate of Theorem 1.2 is strictly better than the one of
Theorem 1.1. See Fig. 4 for an illustration.

2. Symmetrisation and the ultraspherical operator. As we have pointed out
in the introduction, the improved inequality on the d-dimensional sphere can be
reduced to the inequalities for functions depending only on the azimuthal angle.
The interested reader can refer to [34]. Alternatively, let us give a sketch of a proof
for completeness. More details on the stereographic projection can be found in [35,
Appendix B.3]

We denote by ξ = (ξ0, ξ1, . . . ξd) the coordinates of an arbitrary point in the
unit sphere Sd ⊂ Rd+1. Consider the stereographic projection Σ : Sd \ {N} → Rd,
where N denotes the North Pole, that is the point in Sd corresponding to ξd = 1.
Here Σ(ξ) = x means x = (1 − ξd)−1 (ξ0, ξ1, . . . ξd−1), and to any u ∈ H1(Sd) we
associate a function σ[u] := v ∈ H1(Rd) such that

u(ξ) = (1− ξd)−
d−2

2 v(x) ∀ ξ ∈ Sd and x = Σ(ξ) .

An elementary computation shows that ‖∇u‖2L2(Sd)+
d (d−2)

4 ‖u‖2L2(Sd) = ‖∇v‖2L2(Rd),

‖u‖2L2(Sd) = ‖ 4 (1 + |x|2)−2 v ‖2L2(Rd) and ‖u‖2Lp(Sd) = ‖(2/(1 + |x|2))1+ d
p−

d
2 v ‖2Lp(Rd).

To v we may apply the standard Schwarz symmetrization and denote the sym-
metrized function by v∗. Let us define

u∗ := σ−1
[
(σ[u])∗

]
.



IMPROVED INTERPOLATION INEQUALITIES ON THE SPHERE 9

Lemma 2.1. Assume that u ∈ H1(Sd). Then we have

i[u] =

∫
Sd
|∇u|2 dµ ≥ i[u∗]

and for any q ∈ [1, 2∗], ‖u‖Lq(Sd) = ‖u∗‖Lq(Sd), so that

e[u] = e[u∗] .

This symmetry result is a kind of folklore in the literature and we can quote
[4, 50, 11] for various related results. Details of the proof are left to the reader. As
a straightforward consequence, inf i[u]/Φ(e[u]) is achieved by functions depending
only on ξd, or on the azimuthal angle θ.

Thus, to prove the inequality in Theorem 1.1 it suffices to prove it for

e =
1

p− 2

[(∫ π

0

|v(θ)|p dσ
) 2
p

−
(∫ π

0

|v(θ)|2 dσ
)]

, i =

∫ π

0

|v′(θ)|2 dσ,

and for any function v ∈ H1([0, π], dσ), where

dσ(θ) :=
(sin θ)d−1

Zd
dθ with Zd :=

√
π

Γ(d2 )

Γ(d+1
2 )

.

The change of variables x = cos θ, v(θ) = f(x) allows to rewrite the expressions for
e and i:

e =
1

p− 2

[(∫ 1

−1

|f |p dνd
) 2
p

−
∫ 1

−1

|f |2 dνd ≥

]
, i =

∫ 1

−1

|f ′|2 ν dνd ,

where dνd is the probability measure defined by

νd(x) dx = dνd(x) := Z−1
d ν

d
2−1 dx with ν(x) := 1− x2 , Zd =

√
π

Γ(d2 )

Γ(d+1
2 )

.

We consider the space L2((−1, 1), dνd) equipped with the scalar product

〈f1, f2〉 =

∫ 1

−1

f1 f2 dνd ,

and recall that the ultraspherical operator is given by 〈f1,  Lf2〉 = −
∫ 1

−1
f ′1 f

′
2 ν dνd.

Explicitly we have:

 Lf := (1− x2) f ′′ − d x f ′ = ν f ′′ +
d

2
ν′ f ′.

With these notations, for any positive smooth function u on (−1, 1), Inequalities (1)
and (2) can be rewritten as

−〈f,  Lf〉 =

∫ 1

−1

|f ′|2 ν dνd ≥ d
‖f‖2p − ‖f‖22

p− 2
,

−〈f,  Lf〉 ≥ d

2

∫ 1

−1

|f |2 log

(
|f |2

‖f‖22

)
dνd ,

if p ∈ [1, 2) ∪ (2, 2∗) and p = 2, respectively. In the framework of the ultraspherical
operator, the parameter d can be considered as a positive real parameter, with
critical exponent 2∗ = 2 d

d−2 if d > 2, and 2∗ = ∞ if d ≤ 2. We refer to [52, 5, 15,

13, 14, 41, 42, 34] for more references. The next lemma gives two elementary but
very useful identities:
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Lemma 2.2. For any positive smooth function u on (−1, 1), we have∫ 1

−1

( Lw)2 dνd =

∫ 1

−1

|w′′|2 ν2 dνd + d

∫ 1

−1

|w′|2 ν dνd ,〈
|w′|2

w
ν,  Lw

〉
=

d

d+ 2

∫ 1

−1

|w′|4

w2
ν2 dνd − 2

d− 1

d+ 2

∫ 1

−1

|w′|2 w′′

w
ν2 dνd .

3. Flows. As we explained in the introduction, the main step in our methodology
is to take the derivative of the expression i− d e along the manifoldMp of functions
whose Lp norm is equal to 1, following the evolution given by well-chosen flows. In
this section we will describe a special flow which leaves this manifold invariant and
we will carry out the computation of the derivative.

3.1. The 1-homogeneous case (β = 1). On (−1, 1), let us consider the flow

defined by (6), that is, wt =  Lw + κ |w
′|2
w , and notice that

d

dt

∫ 1

−1

wp dνd = (κ− p+ 1)

∫ 1

−1

wp−2 |w′|2 ν dνd ,

so that
∫ 1

−1
wp dνd is preserved if κ = p− 1. Recall that g = wp obeys to the linear

equation gt =  Lg. A straightforward computation (using the definition of L and
Lemma 2.2) shows that

1

2

d

dt

∫ 1

−1

(
|w′|2 ν +

d

p− 2

(
|w|2 − w2

))
dνd

= −
∫ 1

−1

|w′′|2 ν2 dνd + 2
d− 1

d+ 2
κ

∫ 1

−1

w′′
|w′|2

w
ν2 dνd −

d

d+ 2
κ

∫ 1

−1

|w′|4

w2
ν2 dνd ,

since w =
(∫ 1

−1
wp dνd

)1/p

is independent of t. The r.h.s. is negative if

− γ1 =

(
d− 1

d+ 2
κ

)2

− d

d+ 2
κ ≤ 0 ,

that is, if p ≤ 2] := 2 d2+1
(d−1)2 when d > 1, or p > 1 when d = 1, and this determines

the expression (7) of γ1. We have proved the following result.

Proposition 2. For all p ∈ [1, 2]] if d > 1, p > 1 if d = 1, there exists a constant
γ1 > 0, such that if w(t) is defined by (6), then

d

dt

∫ 1

−1

wp dνd = 0 ,

− d

dt

∫ 1

−1

(
|w′|2 ν +

d

p− 2

(
w2 − w2

))
dνd ≥ 2 γ1

∫ 1

−1

|w′|4

w2
ν2 dνd ,

where γ1 is given by (7).
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3.2. The nonlinear case (β ≥ 1). On (−1, 1), let us consider the flow defined

by (8), that is, wt = w2−2β
(
 Lw + κ |w

′|2
w

)
, and notice that

d

dt

∫ 1

−1

wβp dνd = β p (κ− β (p− 2)− 1)

∫ 1

−1

wβ(p−2) |w′|2 ν dνd ,

so that w =
(∫ 1

−1
wβp dνd

)1/(βp)

is preserved if κ = β (p − 2) + 1. Similarly as in

the previous case we calculate:

− 1

2β2

d

dt

∫ 1

−1

(
|(wβ)′|2 ν +

d

p− 2

(
w2β − w2β

))
dνd

=

∫ 1

−1

|w′′|2 ν2 dνd − 2
d− 1

d+ 2
(κ+ β − 1)

∫ 1

−1

w′′
|w′|2

w
ν2 dνd

+

[
κ (β − 1) +

d

d+ 2
(κ+ β − 1)

] ∫ 1

−1

|w′|4

w2
ν2 dνd .

The r.h.s. is negative if there exists a β ∈ R such that

− γ =

(
d− 1

d+ 2
(κ+ β − 1)

)2

−
[
κ (β − 1) +

d

d+ 2
(κ+ β − 1)

]
=

(
d− 1

d+ 2
β (p− 1)

)2

−
[

d

d+ 2
β (p− 1) +

(
1 + β (p− 2)

)
(β − 1)

]
≤ 0 ,

i.e., γ given by (10) is nonnegative, and in that case we have found that

− 1

2β2

d

dt

∫ 1

−1

(
|(wβ)′|2 ν +

d

p− 2

(
w2β − w2β

))
dνd ≥ γ

∫ 1

−1

|w′|4

w2
ν2 dνd . (17)

This defines γ as in (10). Since the l.h.s. of the inequality is quadratic in β and eval-
uates to +1 for β = 0, a necessary and sufficient condition is that the discriminant,
which amounts to

4 d (d− 2)

(d+ 2)2
(p− 1) (2∗ − p) where 2∗ :=

2 d

d− 2

takes nonnegative values, that is

1 ≤ p ≤ 2∗ if d ≥ 3 .

In dimension d = 2 and 1, the discriminant is respectively 2 (p − 1) and 4
9 (p −

1)(p + 2) and takes nonnegative values for any p ≥ 1 (we always assume that
p ≥ 1). Altogether, we have proved the following result.

Proposition 3. For all p ∈ [1, 2∗], there exist two constants, β ∈ R and γ > 0,
such that if w(t) is defined by (8), then

d

dt

∫ 1

−1

wβp dνd = 0 ,

− 1

2β2

d

dt

∫ 1

−1

(
|(wβ)′|2 ν +

d

p− 2

(
w2β − w2β

))
dνd ≥ γ

∫ 1

−1

|w′|4

w2
ν2 dνd ,

where γ is given by (10).

Note that the flow described in Section 3.1 is a special case of the flow defined
by (8) corresponding to β = 1. We treat the cases β = 1 and β > 1 separately as
they cover different ranges of p, namely (1, 2#) and (2, 2∗) respectively.
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4. Improved inequalities in the range p ∈ (2, 2∗). In this section, we establish
the expression of ϕβ that is used for stating Theorem 1.1. The computation corre-
sponds to the one of J. Demange in [33] when β = 4

6−p . In [32], J. Demange noticed

that there is a free parameter, which is equivalent to the parameter β in our setting.
Our purpose is to clarify the range of admissibility of β and then optimize on it.

From here on, we assume that β > 1. In Appendix A we show that the set
B(p, d) of admissible β’s defined by (11) is non-empty if and only if one of the
following conditions (Fig. 1) holds:

(i) d ≥ 3 , p ∈ (2, 2∗) , (ii) d = 2 , p ∈ (2, 9 + 4
√

3) , (iii) d = 1 , p > 2 ,

and thus from now on we will take for granted that one of these conditions holds. In

0 4 6 8 10
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Figure 1. Generically γ(β) = 0 has two solutions, β±(p, d). Plot of
p 7→ β±(p, d) with d = 1 (left) and d = 2 (right) on the first row, d = 3
(left) and d = 4 (right) on the second row, and d = 5 (left) and d = 10
(right) on the third row. The dotted line corresponds to p 7→ 4

6−p and we

have β−(p) ≤ 4
6−p ≤ β+(p) if and only if 18 d

17 d−2
≤ p ≤ 2∗. The dashed

lines correspond to β = 1 and β = 2
4−p , and the interior of B(p, d)

corresponds to the grey area: see definition (11) of B(p, d). Also see
Fig. 5 for more details in the case d = 2.

order to get the improved inequality, we make use of (17) to get a lower bound for
d
dt (−i+ d e). We note that the factor γ is strictly positive for β ∈ B(p, d). However,
notice that there exist β /∈ B(p, d) such that γ(β) > 0. Additional restrictions on
the set of the admissible β’s indeed appear in what follows.
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Let us show that we can get a lower bound for
∫ 1

−1
|w′|4
w2 ν2 dνd by two different

methods, using three points interpolation Hölder’s inequalities.

1. With 1
2 + β−1

2β + 1
2β = 1, Hölder’s inequality shows that∫ 1

−1

|w′|2 ν dνd =

∫ 1

−1

|w′|2

w
ν · 1 · w dνd

≤
(∫ 1

−1

|w′|4

w2
ν2 dνd

) 1
2
(∫ 1

−1

1 dνd

) β−1
2β
(∫ 1

−1

w2β dνd

) 1
2β

,

from which we deduce that(∫ 1

−1

|w′|4

w2
ν2 dνd

) 1
2

≥
∫ 1

−1
|w′|2 ν dνd(∫ 1

−1
w2β dνd

) 1
2β

,

because dνd is a probability measure.

2. With 1
2 + β−1

β(p−2) + 2−(4−p)β
2β(p−2) = 1 and under the condition that

1 < β ≤ 2

4− p
if p < 4 , (18)

(but no condition if p ≥ 4, except β > 1), Hölder’s inequality shows that

1

β2

∫ 1

−1

|(wβ)′|2 ν dνd

=

∫ 1

−1

w2(β−1) |w′|2 ν dνd =

∫ 1

−1

|w′|2

w
ν · w

p(β−1)
p−2 · w2βδ dνd

≤
(∫ 1

−1

|w′|4

w2
ν2 dνd

) 1
2
(∫ 1

−1

wβp dνd

) β−1
β(p−2)

(∫ 1

−1

w2β dνd

)δ
with δ = δ(β) := p− (4−p) β

2 β (p−2) as in (13), from which we deduce that(∫ 1

−1

|w′|4

w2
ν2 dνd

) 1
2

≥ 1

β2

∫ 1

−1
|(wβ)′|2 ν dνd(∫ 1

−1
w2β dνd

)δ ,

because we have chosen
∫ 1

−1
wβp dνd = 1.

By combining the two estimates we have proved the following.

Lemma 4.1. Assume that (18) holds. For all w ∈ H1
(
(−1, 1), dνd

)
, such that∫ 1

−1
wβp dνd = 1,∫ 1

−1

|w′|4

w2
ν2 dνd ≥

1

β2

∫ 1

−1
|(wβ)′|2 ν dνd

∫ 1

−1
|w′|2 ν dνd(∫ 1

−1
w2β dνd

)δ .

Next, we can use the above estimates to show that there is a differential inequality
relating e and i. From the computations in Section 3.2, and Proposition 3, we find
that

− 1

2β2

d

dt

∫ 1

−1

(
|(wβ)′|2 ν +

d

p− 2

(
w2β − w2β

))
dνd ≥ γ

∫ 1

−1

|w′|4

w2
ν2 dνd
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with w =
(∫ 1

−1
wp dνd

)1/p

= 1, hence

− i′ + d e′ ≥ 2 γ

∫ 1

−1
|(wβ)′|2 ν dνd

∫ 1

−1
|w′|2 ν dνd(∫ 1

−1
w2β dνd

)δ = − γ

2β2

i e′

(1 − (p− 2) e)δ
.

Let us suppose that ψβ is a function that satisfies the ODE

ψ′′β(e)

ψ′β(e)
= − γ

2β2
(1 − (p− 2) e)−δ ,

and such that ψ′β > 0. It is elementary to show that such function exists when
β > 1. The l.h.s. of the inequality

i′ − d e′ − γ

2β2

i e′

(1 − (p− 2) e)δ
≤ 0

can then be considered as a total derivative, namely

d

dt

(
iψ′β(e)− dψβ(e)

)
≤ 0 ,

thus proving after an integration in t ∈ [0,∞) that

d
ψβ(e0)

ψ′β(e0)
≤ i0 .

Next, we let

ϕβ(e) :=
ψβ(e)

ψ′β(e)
.

It is then elementary to check that ϕβ satisfies the ODE

ϕ′β = 1− ϕβ
ψ′′β(e)

ψ′β(e)
= 1 + ϕβ

γ

2β2
(1 − (p− 2) e)−δ

and ϕβ(0) = 0. Solving this linear ODE, we find that ϕβ is given by (12). Notice
that ϕβ is defined for any e ∈ [0, 1

p−2 ) and ϕβ(e) > 0, for e > 0. From the equation

satisfied by ϕβ we get that ϕ′β(e) > 1 and ϕ′′β(e) > 0, e > 0, hence ϕβ(e) > e

for any admissible β. As a consequence we also get that the functions ϕ−1
β and

i 7→ i− ϕ−1
β (i) are increasing. Let us define (cf. introduction)

ϕ(e) := sup
{
ϕβ(e) : β ∈ B(p, d)

}
.

Numerically we observe that ϕ(e) = ϕβ(e)(e) for an optimal β = β(e), which explic-
itly depends on e. For future reference we observe that ϕ′(e) > 1 and ϕ′′(e) > 0, for
a.e. e > 0, hence ϕ(e) > e and the functions ϕ−1 and i 7→ i− ϕ−1(i) are increasing.

From the preceding considerations it follows that we have the inequality:

dϕ(e) ≤ i .

Now we recall that this inequality is obtained under the assumption ‖u‖2Lp(Sd) = 1,

namely e = 1
p−2

(
1− ‖u‖2L2(Sd)

)
. Then, if we do not normalize the Lp norm we get

in general:

d ‖u‖2Lp(Sd) ϕ

(
e

‖u‖2
Lp(Sd)

)
≤ i .
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Now, remembering the definition of the improved inequality, we need to find the
relation between the l.h.s. of this estimate, which is a function of e/‖u‖2Lp(Sd), and

the function d ‖u‖2L2(Sd) Φ
(
e/‖u‖2L2(Sd)

)
. This is quite easy since we have

‖u‖2Lp(Sd)

‖u‖2
L2(Sd)

= 1 + (p− 2) s with s =
e

‖u‖2
L2(Sd)

.

By straightforward manipulations we get from this

‖u‖2Lp(Sd) ϕ

(
e

‖u‖2
Lp(Sd)

)
=
(
1 + (p− 2) s

)
ϕ

(
s

1 + (p− 2) s

)
=: Φ(s)

where Φ is the function under consideration in Theorem 1.1. Based on the properties
of ϕ, it is easy to check that Φ(0) = 0, Φ′(0) = 1 and Φ′′(s) > 0. In Fig. 2 we show
the measure of improvement between the improved inequality and the standard
inequality.

This ends the proof of Theorem 1.1 in the case p ∈ (2, 2∗) if d = 1 or d ≥ 3,

p ∈ (2, 9 + 4
√

3), if d = 2. �
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Figure 2. Plot of the function ϕβ corresponding to Theorem 1.1.
Here d = 5, p = 2.5 and β ≈ 2.383, 2.267, 2.15, 2.033, 1.917, 1.8, 1.683,
1.567, 1.45. Left: plot of e 7→ ϕβ(e)−e for e ∈ (0, 1/(p−2)). Right: plot
of e 7→ ϕβ(e) − ϕβ0(e) where β0 = 4/(6 − p) corresponds to the choice
made in [33].

As a conclusion for this section, let us comment on the literature and emphasize
the new results. In [33] J. Demange gives a proof by considering a flow which
corresponds to (8), in the special case β = 4

6−p . Here we generalize it to a larger

but explicit range of β’s, as was done in [32, pages 122–130] (see in particular
Proposition 3.12.5). Moreover we explicitly show how to optimize the interpolation
inequalities with respect to β and we specify the range of admissible β’s. See
Appendix A for more details.

5. Improved inequalities in the range p ∈ (1, 2#): Proof of Theorem 1.1
when p ∈ (1, 2) and when p = 2. In this section we adapt the Bakry-Emery
approach (which amounts to write a differential inequality for i = − e′) and improve
it by taking into account the remainder term as in [2]. Here we assume that β = 1.
Our result is primarily an improvement of the existing results for p ∈ (1, 2), but
we work in the larger range p ∈ (1, 2]) (see Section 3.1). We will see that the
limitation on the exponent appears naturally since we do not allow any freedom
for β. This special exponent 2] was already noticed in [8, 34]. In the range p > 2, the
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limitation p ≤ 2# is equivalent to require that β = 1 ∈ B(p, d). When p ∈ (2, 2#],
the computations of this section are a limiting case of those in Section 4. Since
estimates have to be adapted and since the range in p is anyway different, we
handle this case separately.

Assuming that ‖u‖p = 1 and u is a solution of (6) and following the calculations
of Section 3.1 and Section 4, one can check the validity of the differential inequality

e′′ + d e′ ≥ γ1

2

|e′|2

1− (p− 2) e
,

where γ1 > 0 has been defined in Section 3.1. The estimate is a simple consequence
of the Cauchy-Schwarz inequality |e′|2 = ‖w′‖22 ≤ ‖w‖2 ‖(w′)2/w‖2. We observe
that we have the boundary conditions e(t = 0) = e0, i(t = 0) = i0 and

lim
t→∞

e(t) = lim
t→∞

i(t) = 0 .

Proposition 4. With the above notations, and assuming p ∈ [1, 2) ∪ (2, 2#] and∫ 1

−1
wp dνd = 1, we have the following estimate

dϕ1(e) ≤ i ,

where ϕ1 is defined by (9) and such that ϕ1(0) = 0, ϕ′1(0) = 1 and ϕ′′1(s) > 0 for
any s > 0 if p > 2, or for any s ∈ (0, 1/(2− p)) if p ∈ (1, 2)
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Figure 3. The plot of ξ 7→ 2 (2−p)
2 (2−p)−γ1

ξ
2+

γ1
p−2−1
ξ2−1

represents the im-

provement achieved in Proposition 4 compared to the standard form
of the inequality, which is represented by 1. Left: p ∈ (1, 2) and
ξ = ‖f‖Lp(Sd)/‖f‖L2(Sd) is in the range (0, 1). The plot corresponds

to p = 3/2 and d = 2. Right: p ∈ (2, 2#) and ξ = ‖f‖Lp(Sd)/‖f‖L2(Sd) is

in the range ξ > 1. The plot corresponds to p = 5/2 and d = 2, 2# = 9.

Proof. Let us define h(t) := 1− (p− 2) e(t). When p ∈ (2, 2#) we have

h′ = − (p− 2) e′ > 0 , h′′ = − (p− 2) e′′ < 0 ,

while when p ∈ (1, 2) these inequalities are changed to their opposities. Also h(t) ∈
(0, 1), h(+∞) = 1, h′(+∞) = 0. Our differential inequality takes form:

− 1

p− 2
(h′′ + d h′)− γ1

2 (p− 2)2

|h′|2

h
≥ 0 ,

which upon multiplying by p−2
h′ and rearranging leads to

d

dt
log h′ +

γ1

2 (p− 2)

d

dt
log h

{
≤ − d if p > 2 ,

≥ − d if p < 2 ,
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and after one integration from 0 to t yields

h′(t) h(t)
γ1

2 (p−2)

{
≤ e−dt h′(0) h(0)

γ1
2 (p−2) if p > 2 ,

≥ e−dt h′(0) h(0)
γ1

2 (p−2) if p > 2 .

Integrating now from 0 to ∞ we find

2 (p− 2)

γ1 + 2 (p− 2)

[
1− h(0)

γ1
2 (p−2)

+1
]
≤ 1

d
h′(0) h(0)

γ1
2 (p−2) ,

from which it follows that

2d (p− 2)

γ1 + 2 (p− 2)

[
h(0)−γ1/2 (p−2) − h(0)

]
≤ h′(0) .

This is the desired inequality since h′(0) = (p − 2) i0. This ends the proof of
Proposition 4, as a particular case, and completes the proof of Theorem 1.1 in the
case p ∈ (1, 2).

An interesting consequence is that the limit case p = 2 gives an improvement of
the logarithmic Sobolev inequality, which is stated in Theorem 1.1 for p = 2. We
check that as p→ 2, γ1 converges to γ∗1 = (4 d− 1)/(d+ 2)2. The conclusion holds

by observing that e converges to 1
2

∫ 1

−1
w2 log

(
|w|2/‖w‖22

)
dνd, while

lim
p→2

2d

γ1 + 2 (p− 2)

[
(1− (p− 2) e0)

− γ1
2 (p−2) − 1 + (p− 2) e0

]
=

2d

γ∗1

[
eγ
∗
1 e0/2 − 1

]
.

6. Improved inequalities based on spectral estimates. In this section, we
first adapt the results and the proofs of [1] to the setting of the ultraspherical
operator. The method is the same, but gives a point of view which complements the
other improved inequalities of this paper in the range p ∈ (1, 2). For completeness,
we shall give short proofs and refer to [1] for more details and references in the
framework of probability measures. We shall next review some results in the critical
case p = 2∗ when d > 2 or its counterpart when d ≤ 2 (Section 6.2), in order to
raise an open question (Section 6.3).

6.1. Improved inequalities for reduced classes of functions in the range
p ∈ (1, 2). We will now establish Theorem 1.2 by proving a series of intermediate
results. We recall that Ej denotes the eigenspace associated with the eigenvalue λj
of the Laplace-Beltrami operator ∆Sd on the sphere (see the introduction for more
details).

Proposition 5. Let k ≥ 1 be an integer. Assume that u ∈ L2(Sd, dµ) is such that
(16) holds. Then the improved inequality∫

Sd
|∇u|2 dµ ≥ dαk

1− (p− 1)αk

[∫
Sd
|u|2 dµ−

(∫
Sd
|u|p dµ

)2/p
]

(19)

holds for any p ∈ [1, 2).

Proof. To establish the inequality, we proceed in two steps.

1st step: Nelson’s hypercontractivity result. The method is exactly the same
as in [34, Proposition 5]. Although the result can be established by direct methods,
we follow here the strategy of Gross in [45], which proves the equivalence of the
optimal hypercontractivity result and the optimal logarithmic Sobolev inequality.
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Consider the heat equation of Sd, namely

∂f

∂t
= ∆Sdf ,

with initial datum f(t = 0, ·) = u ∈ Lp(Sd), for some p ∈ (1, 2), and let F (t) :=
‖f(t, ·)‖Lλ(t)(Sd). The key computation goes as follows.

F ′

F
=

d

dt
logF (t) =

d

dt

[
1

λ(t)
log

(∫
Sd
|f(t, ·)|λ(t) dµ

)]
=

λ′

λ2 Fλ

[∫
Sd
v2 log

(
v2∫

Sd v
2 dµ

)
dµ− 4

λ− 1

λ′

∫
Sd
|∇v|2 dµ

]
with v := |f |λ(t)/2. Assuming that 4 λ−1

λ′ = 2
d so that F ′ ≤ 0 by the logarithmic

Sobolev inequality (2), that is
λ′

λ− 1
= 2 d ,

we find that

log

(
λ(t)− 1

p− 1

)
= 2 d t

if we require that λ(0) = p < 2. Let t∗ > 0 be such that λ(t∗) = 2, i.e.

t∗ = − log(p− 1)

2 d
.

As a consequence of the above computation, we have

‖f(t∗, ·)‖L2(Sd) ≤ ‖u‖Lp(Sd) because
1

p− 1
= e2 d t∗ . (20)

2nd step: Spectral decomposition. Let u = ū +
∑
j>k fj be a decomposition

of the initial datum on the eigenspaces of −∆Sd so that −∆Sdfj = λj fj . Let aj =
‖fj‖2L2(Sd), for any j > 0, and a0 = ū2. As a straightforward consequence of this

decomposition, we know that ‖u‖2L2(Sd) = a0 +
∑
j>k aj , ‖∇u‖2L2(Sd) =

∑
j>k λj aj ,

‖f(t∗, ·)‖2L2(Sd) = a0 +
∑
j>k

aj e
−2λj t∗ .

Using (20), it follows that∫
Sd |u|

2 dµ−
(∫

Sd |u|
p dµ

)2/p
2− p

≤
(∫

Sd |u|
2 dµ

)
−
∫
Sd |f(t∗, ·)|2 dµ

2− p

=
1

2− p
∑
j>k

λj aj
1− e−2λj t∗

λj
.

Since λ 7→ 1−e−2λ t∗

λ is decreasing, we can bound 1−e−2λj t∗

λj
by 1−e−2λk+1 t∗

λk+1
for any

k ≥ 1. This proves that∫
Sd |u|

2 dµ−
(∫

Sd |u|
p dµ

)2/p
2− p

≤ 1− e−2λk+1 t∗

(2− p)λk+1

∑
j>k

λj aj

=
1− e−2λk+1 t∗

(2− p)λk+1
‖∇u‖2L2(Sd) .

The conclusion easily follows.
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Using the same spectral method as in the proof of Proposition 5, as in [1], we
will next a establish a more general interpolation inequality.

Proposition 6. Let k ≥ 1 be an integer. Assume that u ∈ L2(Sd, dµ) is such that∫
Sd
u e dµ = 0 ∀ e ∈ Ej , j = 1 , 2 . . . k .

Then, with the same notations as in Proposition 5, the improved inequality

‖∇u‖2L2(Sd) ≥
dαk

1− (p− 1)αkγ/2

[
‖u‖2L2(Sd) − ‖u‖

γ
Lp(Sd)

‖u‖2−γ
L2(Sd)

]
(21)

holds for any p ∈ [1, 2) and any γ ∈ (0, 2).

Proof. The computations are analogous to the ones of Proposition 5. If f is a
solution to the heat equation with initial datum u, then

‖u‖2L2(Sd) − ‖f(t∗, ·)‖γL2(Sd)
‖u‖2−γ

L2(Sd)

= a0 +
∑
j>k

aj −

a0 +
∑
j>k

aj e
−2λjt


γ
2
a0 +

∑
j>k

aj


2−γ

2

can be estimated using Hölder’s inequality by

a0 +
∑
j>k

aj e
−γλjt∗ = a0 +

∑
j>k

(
aj e
−2λjt∗

) γ
2 · a

2−γ
2

j

≤

a0 +
∑
j>k

aj e
−2λjt∗


γ
2
a0 +

∑
j>k

aj


2−γ

2

.

Nelson’s estimate (20) shows that

‖u‖2L2(Sd) − ‖u‖
γ
Lp(Sd)

‖u‖2−γ
L2(Sd)

≤
∑
j>k

aj
(
1− e−γλjt∗

)
≤ 1− e−γλk+1t∗

λk+1

∑
j>k

λj aj

using the decay of λ 7→
(
1− e−γλt∗

)
/λ and conclude as before with

∑
j>k λj aj =∫

Sd |∇u|
2 dµ.

An optimization on γ can also be done, as in [1].

Corollary 3. Let k ≥ 1 be an integer and p ∈ (1, 2). Assume that u ∈ L2(Sd, dµ)
is such that ∫

Sd
u e dµ = 0 ∀ e ∈ Ej , j = 1 , 2 . . . k .

Then the following estimate holds∫
Sd
|∇u|2 dµ ≥ 2 d

log(p− 1)
‖u‖2L2(Sd) log

(‖u‖Lp(Sd)

‖u‖L2(Sd)

)
(22)

if

‖u‖Lp(Sd) ≤ (p− 1)αk/2 ‖u‖L2(Sd) .
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Proof. We optimize the r.h.s. of Inequality (21) w.r.t. γ ∈ (0, 2), that is, we maxi-
mize

γ 7→ dαk ‖u‖2L2(Sd)

‖u‖2L2(Sd) − ‖u‖
γ
Lp(Sd)

‖u‖2−γ
L2(Sd)

[1− (p− 1)αkγ/2]‖u‖2
L2(Sd)

= dαk ‖u‖2L2(Sd) h(γ) ,

with

h(γ) :=
1− aγ

1− bγ
, a =

‖f‖Lp(Sd)

‖f‖L2(Sd)

≤ 1 and b = (p− 1)αk/2 ≤ 1 .

We write h(γ) = g(bγ) with g(y) := (1− y
log a
log b )/(1− y). For a < b < 1 the function

g(y) is monotone increasing because y 7→ ylog a/ log b is convex. Hence, h(γ) is
monotone decreasing. Analogously, h is monotone increasing for b < a < 1. Hence,
the maximum of the function h(γ) on [0, 2] is either h(2) (if a > b) or limγ→0 h(γ)
(in the case a < b). This yields the conclusion.

Summarizing, Inequalities (19), (21) and (22) can be written respectively with
i = 1, 2, and 3 as ∫

Sd
|∇u|2 dµ ≥ d ‖u‖2L2(Sd) χ

(i)
k

(‖u‖Lp(Sd)

‖u‖L2(Sd)

)
,

where

χ
(1)
k (x) :=

αk
1− (p− 1)αk

(1− x2) , χ
(2)
k (x) :=

αk
1− (p− 1)γαk/2

(1− xγ) ,

and

χ
(3)
k (x) :=

2

log(p− 1)
log x .

Here x ∈ (0, 1] and the proof of Corollary 3 amounts to

χ
(2)
k (x) ≤ max

{
χ

(1)
k (x), χ

(3)
k (x)

}
.

This completes the proof of Theorem 1.2. See Fig. 4.
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Figure 4. Plot of ξ 7→ χ
(2)
k (ξ)/χ

(1)
k (ξ) for various values of γ and of

ξ 7→ χ
(3)
k (ξ)/χ

(1)
k (ξ) (bold curve) when d = 2, p = 3/2, k = 1 and α1 = 3.

The plot of Fig. 3-left appears as a dashed line. Notice that an additional
assumption required in Theorem 1.2, namely the orthogonality to the
eigenfunctions associated with λ1 = d.
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6.2. A review of some results in the critical case p = 2. The question of
improvements under orthogonality constraints is a topic which has been studied in
various contexts. Although our method does not apply to p ≥ 2, for completeness
let us mention a few results that are concerned with the critical case p = 2, or with
Onofri related inequalities in dimension less or equal than 2.

Let us start with the case d = 1. In [54, 56] (also see [55]), B. Osgood, R. Phillips
and P. Sarnak established the inequality, known as the first Lebedev-Millin inequal-
ity [40, Section 5.1],

log

∫ 2π

0

eφ
dθ

2π
≤
∞∑
k=1

k |φ̂(k)|2

with
∫ 2π

0
φdθ = 0, which can be improved into

log

∫ 2π

0

eφ
dθ

2π
≤ 1

2

∞∑
k=1

k |φ̂(k)|2

if, additionally,
∫ 2π

0
eφ eiθ dθ = 0. This inequality has been improved to

log

∫ 2π

0

eφ
dθ

2π
≤ 1

n+ 1

∞∑
k=1

k |φ̂(k)|2

under the conditions
∫ 2π

0
φdθ = 0 and

∫ 2π

0
eφ eimθ dθ = 0 for any m = 1, 2. . .n by

H. Widom in [60].
The case d = 2 is not understood as well. Consider the inequality

log

∫
S2

eu
dω

4π
−
∫
S2

u
dω

4π
≤ α

16π

∫
S2

|∇u|2 dω .

Here dω is the measure induced by Lebesgue’s measure on S2 ⊂ R3 (without nor-
malization). This inequality has been established in [51] (without optimal constant)
and in [53] with sharp constant α = 1 when u is an arbitrary function in H1(S2).
In [28], S.-Y. A. Chang and P.C. Yang asked the question whether the inequality is
true with α = 1/2 if ∫

S2

eu xj dω = 0 ∀ j = 1 , 2 , 3 .

A partial answer has been given in [43] by N. Ghoussoub and C.-S. Lin, who showed
that in such a case α < 2/3.

In dimension d ≥ 3, there are no explicit results, as far as we know, but G. Bianchi
and H. Egnell show in [17] that improvements (without optimal constants) can also
be achieved if we require the appropriate orthogonality conditions. A more precise
statement, although still not fully explicit in terms of spectral estimates, has been
established in [29].

6.3. An open problem. The results of Sections 6.1 and 6.2 raise a straightfor-
ward question: how can spectral estimates together with well-chosen orthogonality
constraints provide improved inequalities in the subcritical range p ∈ (2, 2∗) when
d > 2, or in the range p > 2 when d ≤ 2 ?
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7. Csiszár-Kullback-Pinsker inequalities. The standard form of the Csiszár-
Kullback-Pinsker inequality is∫

Ω

f log

(
f

f0

)
dµ ≥ 1

4M
‖f − f0‖2L1(Ω,dµ) ,

for any nonnegative integrable functions f and f0 such that
∫
Sdf dµ =

∫
Sdf0 dµ = M .

See [30, 46, 57] for details. Here we need a generalized form of this inequality for
p 6= 2. As will be made clear in the proof, the result is based on Taylor expansions
and does depend neither on the domain of integration Ω nor on the positive measure
dµ. We shall therefore assume that Ω is a measurable subset in a submanifold of
the Euclidean space, and that dµ is a probability measure on Ω, without further
notice. In practice (Ω, dµ) is either the d-dimensional sphere Sd endowed with
the probability measure induced by Lebesgue’s measure, or (−1, 1) and dµ = dνd
corresponds to the setting of the ultraspherical operator.

The following result is somewhat standard and the interested reader is invited to
read for instance [24, 58]. It allows us to prove various kinds of Csiszár-Kullback-
Pinsker type inequalities. For completeness, we also provide a proof.

Proposition 7. Assume that q ∈ [1, 2] and consider ψ(s) = sq if q > 1 or ψ(s) =
s log s if q = 1. Let f and g be two nonnegative functions in L1 ∩ Lq(Ω, dµ). Then

eψ[ f |g ] :=

∫
Ω

[
ψ(f)− ψ(g)− ψ′(g)(f − g)

]
dµ

≥ q (q − 1)

22/q
min

(
‖f‖q−2

Lq(Ω,dµ), ‖g‖
q−2
Lq(Ω,dµ)

)
‖f − g‖2Lq(Ω,dµ) . (23)

Remark 1. The case q = 1 is the well-known Csiszár-Kullback-Pinsker inequality,
cf. [30, 46, 57, 3]. The case q = 2 is a consequence of the expansion of the square.

Proof. Assume first that f > 0. By a Taylor expansion at order two, we get

eψ[ f |g ] =
1

2

∫
Ω

ψ′′(ξ) |f − g|2 dµ ≥ A

2

∫
Ω

ξq−2 |f − g|2 dµ , (24)

where ξ lies between f and g. By Hölder’s inequality, for any h > 0 and for any
measurable set A ⊂ Ω, we get∫

A
|f − g|q h−α hα dµ ≤

(∫
A
|f − g|2 hq−2 dµ

)q/2(∫
A
hαs dµ

)1/s

with α = q (2− q)/2, s = 2/(2− q). Thus,(∫
A
|f − g|2 hq−2 dµ

)q/2
≥
∫
A
|f − g|q dµ

(∫
A
hq dµ

)(q−2)/2

.

We apply this formula to two different sets.

1) On A = A1 = {x ∈ Ω : f(x) > g(x)}, use ξq−2 > fq−2 and take h = f :(∫
A1

|f − g|2ξq−2 dµ

)q/2
≥
(∫
A1

|f − g|q dµ
)
‖f‖−(2−q) q/2

Lq(Ω,dµ) .

2) On A = A2 = {x ∈ Ω : f(x) ≤ g(x)}, use ξq−2 ≥ gq−2 and take h = g:(∫
A2

|f − g|2ξq−2 dµ

)q/2
≥
(∫
A2

|f − g|q dµ
)
‖g‖−(2−q) q/2

Lq(Ω,dµ) .
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To prove (23) in the case f > 0, we just add the two previous inequalities in (24)
and use the inequality (a + b)r ≤ 2r−1(ar + br) for any a, b ≥ 0 and r ≥ 1. To
handle the case f ≥ 0, we proceed by a density argument and conclude by using
Lebesgue’s convergence theorem.

Next we give the proof of some generalized Csiszár-Kullback-Pinsker inequalities
for various values of p, all easily derived from the above proposition. The case of
p ∈ [1, 2) can be handled with q = 2/p. For p ∈ (2, 4], one can use the inequality of
Proposition 7 written for q = p/2 and control ‖u2 − ū2‖Lq(Sd). For p ≥ 4, the control

is achieved in terms of ‖up−2 − ūp−2‖Lp/(p−2)(Sd). For each range, the average ū has
to be defined specifically. We do not claim originality for the following result, as it
has probably been discovered in other settings. Let us just mention a few additional
references: in the case p > 2, see: [26, 31] and [38, Proposition 2] for related results.
A recent contribution in a similar spirit can be found in [25].

Corollary 4. For any u ∈ L1 ∩ Lp(Ω, dµ), we have

‖u‖2L2(Ω,dµ) − ‖u‖
2
Lp(Ω,dµ) ≥ κ(p) ‖u‖2 (1−p)

L2(Ω,dµ) ‖u
p − ūp‖2

L2/p(Ω,dµ)
if p ∈ [1, 2) ,∫

Ω
|u|2 log

(
|u|2

‖u‖2
L2(Ω,dµ)

)
dµ ≥ 2 |κ′(2)|

‖u‖2
L2(Ω,dµ)

‖u2 − ū2‖2L1(Ω,dµ) if p = 2 ,

‖u‖2Lp(Ω,dµ) − ‖u‖
2
L2(Ω,dµ) ≥ κ(p) ‖u‖−2

Lp(Ω,dµ) ‖u
2 − ū2‖2

Lp/2(Ω,dµ)
if p ∈ (2, 4) ,

‖u‖2Lp(Ω,dµ) − ‖u‖
2
L2(Ω,dµ) ≥ κ(p) ‖u‖2 (3−p)

Lp(Ω,dµ) ‖u
p−2 − ūp−2‖2

L
p
p−2 (Ω,dµ)

if p ≥ 4 ,

where
κ(p) = 21−p 2−p

p2 , ū = ‖u‖Lp(Ω,dµ) if p ∈ [1, 2) ,

|κ′(2)| = 1
8 , ū = ‖u‖L2(Ω,dµ) if p = 2 ,

κ(p) = 2−1− 4
p (p− 2) , ū = ‖u‖L2(Ω,dµ) if p ∈ (2, 4) ,

κ(p) = 2
4
p (p− 2)−2 , ū = ‖u‖Lp−2(Ω,dµ) if p ≥ 4 .

Proof. When p ∈ [1, 2), we apply Proposition 7 with q = 2/p, ψ(s) := s2/p, to
f = up and g = ‖u‖pLp(Ω,dµ). The result follows using ‖u‖Lp(Ω,dµ) ≤ ‖u‖L2(Ω,dµ). If

p = 2, Proposition 7 directly applies, with ψ(s) := s log s. If p ∈ (2, 4), we apply
Proposition 7 with q = p/2, ψ(s) := sp/2, to f = u2 and g = ‖u2‖L1(Ω,dµ) = ū2, so
that

‖u‖pLp(Ω,dµ) − ‖u‖
p
L2(Ω,dµ) ≥ 2−2− 4

p p (p− 2) ‖u‖p−4
Lp(Ω,dµ) ‖u

2 − ū2‖2Lp/2(Ω,dµ) .

Since t 7→ 1−t− 2
p (1−tp/2) is convex, nonnegative, with t = ‖u‖2L2(Ω,dµ)/‖u‖

2
Lp(Ω,dµ),

we can write that

‖u‖2Lp(Ω,dµ) − ‖u‖
2
L2(Ω,dµ)

= ‖u‖2Lp(Ω,dµ) (1− t) ≥ ‖u‖2Lp(Ω,dµ)

2

p
(1− tp/2)

=
2

p
‖u‖2−pLp(Ω,dµ)

[
‖u‖pLp(Ω,dµ) − ‖u‖

p
L2(Ω,dµ)

]
and get the announced result.

If p ≥ 4, we apply Proposition 7 with q = p/(p−2), ψ(s) := sp/(p−2), to f = up−2

and g = ‖up−2‖L1(Ω,dµ) = ūp−2, so that

‖u‖pLp(Ω,dµ) − ū
p ≥ 2−1+ 4

p
p

(p− 2)2
‖up−2‖

p
p−2−2

Lp/(p−2)(Ω,dµ)
‖up−2 − ūp−2‖2

L
p
p−2 (Ω,dµ)

.
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We conclude by using the convexity of t 7→ 1−t− 2
p (1−tp/2) with t = ū2/‖u‖2Lp(Ω,dµ)

and, by Hölder’s inequality, the fact that ū = ‖u‖Lp−2(Ω,dµ) ≥ ‖u‖L2(Ω,dµ).

Proposition 1 is a straightforward consequence of Corollary 4. Details are left to
the reader.

Remark 2. In the proof of Corollary 4, p = 4 is a threshold case. In [38, Lemma
2], it is p = 3 that plays a special role. Many other estimates can be derived for
p > 2 and the value p = 4 a priori plays no special role, as it is shown by the
following computation. Let

f(w) := wp − 1− p

p− p0
(wp−p0 − 1)− 1

p− 1
|w − 1|p .

Two differentiations show that

f ′(w) = pwp−2(w − w1−p0)− p
p−1 |w − 1|p−2(w − 1) ,

f ′′(w) = pwp−3
(
(p− 1)(w − 1) + p0 w

1−p0
)
− p |w − 1|p−2 .

On the one hand we have f(1) = f ′(1) = 0 and, on the other hand,

1

p
f ′′(w) ≥ (w− 1)p−3

(
(p− 1)(w− 1) + p0 w

1−p0
)
− (w− 1)p−2 ≥ (p− 2) (w− 1)p−2

for any w ≥ 1 if we assume that

p ≥ 3 and p0 ≥ 1 .

Thus f is convex and therefore nonnegative on (1,+∞).
Now, if we define ūp−p0 =

∫
Ω
up−p0 dµ, by integrating the inequality f(u/ū) ≥ 0

with respect to the measure ūp dµ, we arrive at∫
Ω

up dµ− ūp ≥ 1

p− 1

∫
Ω

|u− ū|p dµ .

Hence, if p− p0 ≥ 2, then the inequality ū = ‖u‖Lp−p0 (Ω,dµ) ≥ ‖u‖L2(Ω,dµ) and the

convexity of t 7→ 1 − t − 2
p (1 − tp/2) applied with t = ū2/‖u‖2Lp(Ω,dµ) allows us to

conclude that

‖u‖2Lp(Ω,dµ) − ‖u‖
2
L2(Ω,dµ) ≥

2

p
‖u‖2−pLp(Ω,dµ)

[
‖u‖pLp(Ω,dµ) − ‖u‖

p
L2(Ω,dµ)

]
≥ 2

p (p− 1)
‖u‖2−pLp(Ω,dµ) ‖u− ū‖

p
Lp(Ω,dµ)

with ū = ‖u‖Lp−p0 (Ω,dµ).

Appendix A. A discussion on the range of admissible p and β. Consider

γ(β) = −
(
d−1
d+2

)2
(κ + β − 1)2 + κ (β − 1) + (κ + β − 1) d

d+2 with κ = β (p − 2) + 1

as in (10). Denoting

a(p, d) := 2− p+

[
(d− 1) (p− 1)

d+ 2

]2

and b(p, d) :=
d+ 3− p
d+ 2

,

we have that
− γ(β) = aβ2 − 2 bβ + 1 .

Provided a 6= 0 (this will be discussed below), the two roots of the equation γ(β) = 0
are

β− := min
b±
√
b2 − a

2 a
and β+ := max

b±
√
b2 − a

2 a
.
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Lemma A.1. With the above definitions, γ is nonnegative if and only if:

1. d ≥ 5 and β ∈ [β−(p, d), β+(p, d)].
2. d = 4 and
• either p ∈ [1, 3) ∪ (3, 4] and β ∈ [β−(p, 4), β+(p, 4)],
• or p = 3 and β ≥ 3/4.

3. d = 3 and
• either p ∈ [1, 9/4) and β ∈ [β−(p, 3), β+(p, 3)],
• or p ∈ (9/4, 6) and β ∈ (−∞, β−(p, 3)] ∪ [β+(p, 3),+∞),
• or p = 9/4 and β ≥ 2/3.

4. d = 2 and
• either p ∈ [1, 9− 4

√
3) ∪ (9 + 4

√
3,∞) and β ∈ [β−(p, 2), β+(p, 2)],

• or p ∈ (9− 4
√

3, 9 + 4
√

3) and β ∈ (−∞, β−(p, 2)] ∪ [β+(p, 2),+∞),

• or p = 9− 4
√

3 and β ≥ (1 +
√

3)/4,

• or p = 9 + 4
√

3 and β ≤ (1−
√

3)/4.
5. d = 1 and
• either p ∈ [1, 2), and β ∈ [β−(p, 1), β+(p, 1)],
• or p = 2 and β ≥ 3/4,
• or p > 2 and β ∈ (−∞, β−(p, 1)] ∪ [β+(p, 1),+∞).

See Fig. 1, and Fig. 5 for the special case d = 2.
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Figure 5. The case of the dimension d = 2 deserves a special treat-
ment. The coefficient a is negative in the interval (9− 4

√
3, 9+ 4

√
3) ≈

(2.0718, 15.9282). The right plot is an enlargement of the left plot in a
neighborhood of p = 2, β = 1. The grey area corresponds to the interior
of B(p, 2)

Proof. First of all, we observe that γ(β) = − (β − 1)2 if p = 1 and γ(β) = − ((d−
3)β + 2− d)2/(d− 2)2 if p = 2∗, which is consistent with the fact that β±(1, d) = 1
and β±(2∗, d) = d−2

d−3 if d ≥ 4. Notice that for d = 3 and p = 6 = 2∗, γ(β) = −1 is
independent of β, and hence always negative.

Elementary computations show that

b2 − a =
d (p− 1)

(d− 2) (d+ 2)2

(
2 d

d− 2
− p
)

if d 6= 2 and b2 − a =
p− 1

2
if d = 2

is positive if and only if either p ∈ (1, 2∗) and d 6= 2 or p > 1 and d = 2. If a 6= 0
and if β± are the two roots of the equation γ(β) = 0, then γ(β) is positive if and
only if one of the following conditions is satisfied

1. a is positive and β ∈ (β−(p), β+(p)),
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2. a is negative and β ∈ (−∞, β−(p)) ∪ (β+(p),+∞),
3. a = 0, b is positive and β > 1/(2 b),
4. a = 0, b is negative and β < 1/(2 b).

Since

(d+ 2)2 a = (d− 1)2 p2 − 3 (d2 + 2) p+ 3 (d2 + 2 d+ 3)

we find that the discriminant 9 (d2+2)2−12 (d2+2 d+3) (d−1)2 = 3 (4−d) d (d+2)2

is negative for any d ≥ 5, but nonnegative if d = 1, 2, 3, or 4. In the range
d ∈ (0, 1) ∪ (1, 4), the equation a(p, d) = 0 has two roots

p±(d) :=
3 (d2 + 2)± (d+ 2)

√
3 d (4− d)

2 (d− 1)2
.

0 1 2 3 4

5
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15

20

Figure 6. Horizontal axis: d, vertical axis: p. Bold plain curve: d 7→
p+(d), bold dotted curve: d 7→ p−(d). Other curves shown on the picture
correspond to d = 1, d = 2 and p = 2 d

d−2
. We notice that a(p, d) < 0 if

and only if either d = 1 and p ∈ (2,∞), or d = 2 and p ∈ (9− 4
√
3, 9 +

4
√
3), or d = 3 and p ∈ ( 9

4
, 6). We may also notice that limd→1 p−(d) = 2

and limd→1 p+(d) = +∞ (if we consider p± as a function of d ∈ R).

d 1 2 3 4 ≥ 5

a 2− p p2−18 p+33
16

4 p2−33 p+54
25

(p−3)2

4 2− p+
[

(d−1) (p−1)
d+2

]2
> 0

b 4−p
3

5−p
4

6−p
5

7−p
6

d+3−p
d+2

p− not defined 9− 4
√

3 9
4 3 not defined

p+ not defined 9 + 4
√

3 6 3 not defined

Table 1. Values of a and b for d ∈ N, d ≥ 1.
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See Fig. 6 for a plot and Table 1 for a summary of the values of a and b depending
on the value of d, when d is an integer.

Hence we know that a = 0 if and only if

1. d = 1 and p = 2,
2. d = 2 and p = p±(2) = 9± 4

√
3 ≈ 9± 6.8292,

3. d = 3 and p = p−(3) = 9/4 or p = p+(3) = 6 = 2 d/(d− 2),
4. d = 4 and p = 3.

In these cases, the sign of b = d+3−p
d+2 matters:

1. if d = 1 and p = 2 then b = 2
3 > 0,

2. if d = 2 and p = p−(2) = 9 − 4
√

3 then b =
√

3 − 1 > 0; if d = 2 and

p = p+(2) = 9 + 4
√

3 then b = −1−
√

3 < 0,
3. if d = 3 and p = p−(3) = 9/4 then b = 3

4 > 0; if d = 3 and p = p+(3) = 6 =
2 d/(d− 2) then b = 0 (but then µ(β) = 1 is always positive),

4. if d = 4 and p = 3 then b = 2
3 > 0.

We also get that a is negative if and only if
• either d = 1 and p ∈ (2,∞),
• or d = 2, 3 and p ∈ (p−(d), p+(d)).

Similarly a is positive if and only if
• either d = 1 and p ∈ [1, 2),

• or d = 2 and p ∈ [1, 9− 4
√

3) ∪ (9 + 4
√

3,∞),
• or d = 3 and p ∈ [1, 9

4 ),
• or d = 4 and p 6= 3,
• or d ≥ 5.
Consistently, we may notice that a(1, d) ≡ 1 for any d ∈ R \ {1} and, for any d > 2,

a(2∗, d) =
(
d−3
d−2

)2
is positive unless d = 3.

This concludes the proof by discussing the cases depending whether a = 0 (and
the range of β is determined by b) or a has a strict sign and β± defines the admissible
range for β in order that µ is nonpositive.
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Séminaire de Probabilités, XXXVI, Lecture Notes in Math., 1801, Springer, Berlin, 2003,
230–250.

[15] A. Bentaleb and S. Fahlaoui, A family of integral inequalities on the circle S1, Proc. Japan

Acad. Ser. A Math. Sci., 86 (2010), 55–59.
[16] M. Berger, P. Gauduchon and E. Mazet, Le Spectre d’une Variété Riemannienne, Lecture
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