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Abstract

The method of moments proposed by Carrasco and Florens (2000) permits to fully exploit the
information contained in the characteristic function and yields an estimator which is asymptotically
as efficient as the maximum likelihood estimator. However, this estimation procedure depends on
a regularization or tuning parameter « that needs to be selected. The aim of the present paper is
to provide a way to optimally choose o by minimizing the approximate mean square error (AMSE)
of the estimator. Following an approach similar to that of Newey and Smith (2004), we derive a
higher-order expansion of the estimator from which we characterize the finite sample dependence of
the AMSE on . We provide a data-driven procedure for selecting the regularization parameter that
relies on parametric bootstrap. We show that this procedure delivers a root T consistent estimator
of a.. Moreover, the data-driven selection of the regularization parameter preserves the consistency,
asymptotic normality and efficiency of the CGMM estimator. Simulation experiments based on a
CIR model show the relevance of the proposed approach.

Keywords: Conditional moment restriction, Continuum of moment conditions, Generalized method
of moments, Mean square error, Stochastic expansion, Tikhonov regularization. JEL Classification:
Coo0, C13, C15

*An earlier version of this work was joint with Jean-Pierre Florens. We are grateful for his support. This paper has been
presented at various conferences and seminars and we thank the participants for their comments, especially discussant
Atsushi Inoue. Partial financial support from SSHRC is gratefully acknowledged.

tUniversité de Montreal; CIRANO; CIREQ. Fax (4+1) 514 343 7221 E-mail: marine.carrasco@umontreal.ca

tCorresponding  author: Université de Montreal, Département de Sciences Economiques. E-mail:
rachidi.kotchoni@umontreal.ca



1 Introduction

There is a one-to-one relationship between the characteristic function (henceforth, CF) and the proba-
bility distribution function of a random variable, the former being the Fourier transform of the latter.
This implies that an inference procedure based on the empirical CF has the potential to be as efficient
as another one that exploits the likelihood function. Paulson et al. (1975) used a weighted modulus
of the difference between the theoretical CF and its empirical counterpart to estimate the parameters
of the stable law. Feuerverger and Mureika (1977) studied the convergence properties of the empir-
ical CF and suggested that "it may be a useful tool in numerous statistical problems". Since then,
many interesting applications have been proposed, including Feuerverger and McDunnough (1981b,¢),
Koutrouvelis (1980), Carrasco and Florens (2000), Chacko and Viceira (2003) and Carrasco, Chernov,
Florens, and Ghysels (2007) (henceforth, CCFG (2007)). For a quite comprehensive review of empirical
CF-based estimation methods, see Yu (2004).

The CF provides a good alternative to econometricians when the likelihood function is not available
in closed form. For example, some distributions in the a-stable family are naturally specified via their
CF's while their densities are known in closed form only at isolated points of the parameter space (see e.g.
Nolan, 2009). The density of the Variance-Gamma model of Madan and Seneta (1990) has an integral
representation whereas its CF has a simple closed form expression. The transition density of a discretely
sampled continuous time process is not available in closed form, except when its parameterization
coincides with that of a square-root diffusion (Singleton, 2001). Even in this special case, the transition
density takes the form of an infinite mixture of Gamma densities with Poisson weights. The same
type of density arises in the autoregressive Gamma model studied in Gouriéroux and Jasiak (2005).
Ait-Sahalia and Kimmel (2006) propose closed form approximations for the log-likelihood function of
various continuous-time stochastic volatility models. But their method cannot be applied to other
situations without solving a complicated Kolmogorov forward and backward equation. Interestingly,
the conditional CF can be derived in closed form for all continuous-time stochastic volatility models.

The CF, ¢ (7,0), of a random vector x; € RP (¢ = 1,...,T) is nothing but the expectation of
¢'™' 7t with respect the distribution of z;, where 6 is the parameter that characterizes the distribution
of z;, 7 € RP is the Fourier index and 4 is the imaginary number such that 2 = —1. Hence, a
candidate moment condition for the estimation of 6y (i.e., the true value of ) is given by hy(7,0) =
'™ — E(e/™). This moment condition is valid for all 7 € R? and hence, h(r,0) is a moment
function or a continuum of moment conditions. Feuerverger and McDunnough (1981b) propose an
estimation procedure that consists of minimizing a norm of the sample average of the moment function.
Their objective function involves an optimal weighting function that depends on the true unknown
likelihood function. Feuerverger and McDunnough (1981c¢) apply the Generalized Method of Moments
(GMM) to a discrete set of moment conditions obtained by restricting the continuous index 7 € R? to
a discrete grid 7 € (71, 72,...7n). They show that the asymptotic variance of the resulting estimator
can be made arbitrarily close to the Cramer-Rao bound by selecting the grid for 7 sufficiently fine

and extended. Similar discretization approaches are used in Singleton (2001) and Chacko and Viceira



(2003). However, the number of points in the grid for 7 must not be larger than the sample size for
the covariance matrix of the discrete set of moment conditions to be invertible. In particular, the first
order optimality conditions associated with the discrete GMM procedure becomes ill-posed as soon as
the grid (71,72, ...7N) is too refined or too extended. Intuitively, the discrete set of moment conditions
{hs(14,0)} Y| converges to the moment function 7 — hy(7,0),7 € R as this grid is refined and extended.
As a result, it is necessary to apply operator methods in a suitable Hilbert space to be able to handle
the estimation procedure at the limit.

Carrasco and Florens (2000) proposed a Continuum GMM (henceforth, CGMM) that permits to
efficiently use the whole continuum of moment conditions. Similarly to the classical GMM, the CGMM
is a two-step procedure that delivers a consistent estimator at the first step and an efficient estimator
at the second step. The ideal (unfeasible) objective function of the second step CGMM is a quadratic
form in an suitably defined Hilbert space with metrics K1, where K is the asymptotic covariance
operator associated with the moment function h(7, ). To obtain a feasible efficient CGMM estimator,
one replaces the operator K by an estimator Kp obtained from a finite sample. However, the latter
empirical operator is degenerate and not invertible while its theoretical counterpart is invertible only
on a dense subset of the reference space. To circumvent these difficulties, Carrasco and Florens (2000)
resorted to a Tikhonov-type regularized inverse of Kr, e.g. K, = (K% + ol )71 Kp, where I is the
identity operator and « is a regularization parameter. The CGMM estimator is root-1" consistent and
asymptotically normal for any fixed and reasonably small value of a. However, asymptotic efficiency is
obtained only by letting a7%/2 go to infinity and « go to zero as T' goes to infinity.

The main objective of this paper is to characterize the optimal rate of convergence for a as 1" goes
to infinity. To this end, we derive a Nagar (1959) type stochastic expansion of the CGMM estimator.
This type of expansion has been used in Newey and Smith (2004) to study the higher order properties
of empirical likelihood estimators. We use our expansion to find the convergence rates of the higher
order terms of the MSE of the CGMM estimator. These rates depend on both « and T. We find that
the higher order bias of the CGMM estimator is dominated by two higher order variance terms. By
equating the rates of these dominant term, we find an expression of the form ap = ¢ (6y) 9%, where
¢ (0o) does not depend on T and g (f) inherits some properties from the covariance operator K. To
implement the optimal selection of « empirically, we advocate a naive estimator of ap obtained by
minimizing an approximate MSE of the CGMM estimator obtained by parametric bootstrap. Even
though the CGMM estimator is consistent, there is a concern that its variance be infinite in finite
sample for certain data generating processes. This concern seems unfounded for the CIR model on
which our Monte Carlo simulations are based. If applicable, this difficulty is avoided by truncating the
AMSE similarly as in Andrews (1991).

The remainder of the paper is organized as follows. In Section 2, we review the properties of the
CGMM estimator in IID and Markov cases. In Section 3, we derive a higher-order expansion for the
MSE of the CGMM estimator and use this expansion to obtain the optimal rate of convergence for the
regularization parameter ap. In Section 4, we describe a simulation-based method to estimate ar and

show the consistency of the resulting estimator. Section 5 presents a simulation study based on the



CIR term structure model and Section 6 concludes. The proofs are collected in appendix.

2 Overview of the CGMM

This section is essentially a summary of known results about the CGMM estimator. The first subsec-
tion present a general framework for implementing the CF-based CGMM procedure whilst the second

subsection presents the basic properties of the resulting estimator.

2.1 The CGMM Based on Characteristic function

Let z; € RP be a random vector process whose distribution is indexed by a finite dimensional parameter
0 with true value 6y. When the process z; is IID, Carrasco and Florens (2000) propose to estimate 6

based on the moment function given by:
he(7,0) = T — o(7,6), (1)

where o(7,0) = E? (e”lmfﬂ) is the CF of z; and E? is the expectation operator with respect to the
data generating process indexed by 6.

CCFG (2007) extend the scope of the CGMM procedure to Markov and weakly dependent models.
In this paper, we restrict our attention to IID and Markov cases. The moment function used in CCFG
(2007) for the Markov case is:

ht(T,H) — (eis’xt-H _ (Pt(379)> eir’xt' (2)

where ¢, (s,0) = E?(e**'t+1|z;) is the conditional CF of z; and 7 = (s,7) € R%. In equation (2), the
set of basis functions {e’"#*} is being used as instruments. CCFG (2007) show that these instruments
are optimal given the Markovian structure of the model. Moment conditions defined by (1) are IID
whereas equation (2) describes a martingale difference sequence.

Note that a standard conditional moment restriction (i.e., non CF-based) can be converted into
a continuum of moment unconditional moment restrictions featuring (2). In this case, the CGMM
estimator may be viewed as an alternative to the estimator proposed by Dominguez and Lobato (2004)
and to the smooth minimum distance estimator of Lavergne and Patilea (2008). Subsequently, we use
the generic notation h;(7,6), 7 € R? to denote a moment function defined by either (1) or (2), where
d = p for (1) and d = 2p for (2).

Let 7 be a probability distribution function on R* and L? () be the Hilbert space of complex valued

functions that are square integrable with respect to =, i.e.:

L2(r) = {f : R - C| / ) Fn(r)dr < oo}, 3)

where f(7) denotes the complex conjugate of f(7). As |hi(.,0)|* < 2 for all § € O, the function hy(.,0)



belongs to L?(r) for all # € © and for any finite measure 7. Hence, we consider the following scalar
product on L?(7) x L?(7):

(t9) = [ 1o)amIn(ryar. @
Based on this notation, the efficient CGMM estimator is given by

N R -
0 = argmin <K (., 0), hr., 9)> .

where K is the asymptotic covariance operator associated with the moment conditions. K is an integral

operator and satisfies:

Kf(m)= /00 E(r1,7)f (1) m (7)dr, for any f € L? (m), (5)

—00

where k(71,72) is the kernel given by:

k(r1,72) = E (ht(ﬁ, 0)hu (T2, 9)) . (6)

Some basic properties of the operator K are discussed in Appendix A.

~1
With a sample of size T' and a consistent first step estimator § in hand, one estimates k(71,72) by:

T R
~1
kT(TlaT2a Z 7-17 h‘t 7_2>9 ) (7)

In the specific case of IID data, an estimator of the kernel that does not use a first step estimator is

given by:

kr(T1,72)

MHﬂ

(¢4 ~r(r1)) (75 —r(r2)). ®)
=

where pr(71) = % Z;le ¢'™1%t Unfortunately, an empirical covariance operator Kp with kernel function
given by either (7) or (8) is degenerate and not invertible. Indeed, the inversion of Kt raises a problem
similar to one of the Fourier inversion of an empirical characteristic function. This problem is worsened
by the fact that the inverse of K which Kp is aimed at estimating exists only on a dense subset of
L? (). Moreover, when K~ !f = g exists for a given function f, a small perturbation in f may give
rise to a large variation in g.

To circumvent these difficulties, we consider estimating K ! by:
_ -1
K} = (K} +al) K,

where the hyperparameter « plays two roles. First, it is a smoothing parameter as it allows K;:,{ f to
exist for all f in L? (7). Second, it is a regularization parameter as it dampens the sensitivity of K;Tl f

to perturbations in the input f. For any function f in the range of K and any consistent estimator



fT of f, K;%f:_p converges to K1 f as T goes to infinity and « goes to zero at appropriate rate. The
expression for KO}} uses a Tikhonov regularization, also called ridge regularization. Other forms of
regularization could have been used, see e.g. Carrasco, Florens and Renault (2007).

The feasible CGMM estimator is given by:

~

Or (o) = arg mein@T (v, 0), 9)

where Q7 (o, 0) = <K;71:ET(, 0),7LT(., 9)> An expression of the objective function Q7 (a, ) in matrix
form is given in CCFG (2007a, Section 3.3). An alternative expression and a numerical algorithm for
the numerical evaluation of this objective function based on Gauss-Hermite quadratures is described in

Appendix D.

2.2 Consistency and Asymptotic Normality

In order to study the properties of a CGMM estimator obtained within the framework described pre-

viously, the following assumptions are posited:

Assumption 1: The probability density function 7 is strictly positive on R¢ and admits all its
moments.

Assumption 2: The equation
E% (hy(,0)) = 0 for all 7 € R, 7 — almost everywhere,

has a unique solution 6y which is an interior point of a compact set O.
Assumption 3: h;(7,0) is three times continuously differentiable with respect to 6. Furthermore,

the first two derivatives satisfy:

T
8ht 7' 9 1 tht(T,G)
d - NP
(\/>Z 20, ><ooan Var(\/TtZ:; 26,00, < 00,
for all j, k and T
Assumption 4: E% (hp(.,0)) € ®g for all § € © and for some 3 > 1, and the first two derivatives
of E% (hr(.,0)) w.r.t. 0 belong to ®g for all # in a neighborhood of 6y and for the same 3 as previously,

where:

P = {f € L? (n) such that HK_ﬁfH < oo} (10)

Assumption 5: The random variable z; is stationary Markov and satisfies x; = r (x4—1, 6o, &¢)
where 7 (241, 0o, &) is three times continuously differentiable with respect to 6y and ¢; is a IID white

noise whose distribution is known and does not depend on 6.

Assumption 1 and 2 are quite standard and they have been used in Carrasco and Florens (2000).
The first part of Assumption 3 ensures some smoothness properties for §T (o) while the second part

is always satisfied for IID models. The largest real § such that f € ®3 in Assumption 4 may be



called the level of regularity of f with respect to K: the larger 3 is, the better f is approximated by a
linear combination of the eigenfunctions of K associated with the highest eigenvalues. Because K f(.)
involve a d-dimensional integration, 5 may be affected by both the dimensionality of the index 7 and the
smoothness of f. CCFG (2007) have shown that we always have 3 > 1if f = E% (hy(7,0)). Assumption
5 implies that the data can be simulated upon knowing how to draw from the distribution of &;. It is
satisfied for all random variables that can be written as a location parameter plus a scale parameter
time a standardized representative of the family of distribution. Examples include the exponential
family and the stable distribution. The IID case is a special case of Assumption 5 where 7 (2,1, 6o, &)
takes the simpler form r (6y, ;). Further discussions on this type of model can be found in Gourieroux,
Monfort, and Renault (1993) in the indirect inference context. Note that the function r (z_1,00,¢ct)
may not be available in analytical form. In particular, the relation x; = r (z;—1,0p,&¢) can be the
numerical solution of a general equilibrium asset pricing model (e.g., as in Duffie and Singleton, 1993).

We have the following results:

Theorem 1 Under Assumptions 1 to 5, the CGMM estimator is consistent and satisfies:
T2 (9r(a) - 60) 5 N(O, ;1)

as T and o«TY? go to infinity and « goes to zero, where I;OI denotes the inverse of the Fisher Information
Matrix.

See Proposition 3.2 of CCFG (2007) for a more general statement of the consistency and asymptotic
normality result. A nice feature about the CGMM estimator is that its asymptotic distribution does

not depend on the probability density function .

3 Stochastic expansion of the CGMM estimator

The conditions required for the asymptotic efficiency result stated by Theorem 1 allow for a wide range
of convergence rates for a. Indeed, any sequence of type ar = ¢I'~* (with ¢ > 0) satisfies these
conditions as soon as 0 < a < 1/2. Among the admissible convergence rates, we would like to find
the one that minimizes the mean square error of the CGMM estimator for a given sample size T
To achieve this, we consider deriving the stochastic expansion of the CGMM estimator. The higher
order properties of GMM-type estimators have been studied by Rothenberg (1983, 1984), Koenker et
al. (1994), Rilstone et al. (1996) and Newey and Smith (2004). For estimators derived in the linear
simultaneous equation framework, examples include Nagar (1959), Buse (1992) and Donald and Newey
(2001). The approach followed here is similar to Nagar (1959) and Newey and Smith (2004), which
tries to approximate the MSE of an estimator analytically based on the leading terms of its stochastic
expansion.

Two difficulties arise when analyzing the terms of the expansion of the CGMM estimator. First,

when the rate of a as a function of 7' is unknown, it is not always possible to write the terms of the



expansion in decreasing order. The second difficulty stems from a result that dramatically differs from
the case with a finite number of moment conditions. Indeed, when the number of moment conditions
is finite, the quadratic form Thy (6g) K Yhr (6p) is O, (1) and follows asymptotically a chi-square

distribution with degrees of freedom given by the number of moment conditions. However, the analogue

2
K=Y2\Thy (90)‘

, is not well defined in the presence of a continuum
of moment conditions. Its regularized version, HK; Y2/ Thy (00)‘

infinity and a goes to zero. Indeed, we have

of the previous quadratic form,

2
, exists but diverges as T goes to

HK(;W\/TET(HO)H < H(K2+a1)‘1/4HH(K2+a1)‘1/4K1/2HHx/TﬁT(Ho)H (11)
<q—1/4 <1 =0,(1)
= 0, (a_1/4).

The expansion that we derive for 67 (o) — 0 is of the same form for both the IID and Markov cases.

Namely:

§T () —0p=A1+As+ Az + 0, (oz_lT_l) +op (amin(l’w;l)T_l/Q) (12)

where Ay = O, (T‘1/2) , Aoy =0, (amin(1’2B2_l)T_1/2> and Az = O, (oz_lT_l). Appendix B provides

details about the above expansion whose validity is ensured by the consistency result of Theorem 1.

In deriving the expansion above, we wish to find the rate of convergence of the a which minimizes the
leading terms of the MSE:

MSE (a,60) = TE [T (07 (o)~ 80) (B (0) - eo)'] (13)

We have the following results on the higher order MSE matrix and on the optimal convergence rate for

the regularization parameter.

Theorem 2 Assume that Assumptions 1 to 5 hold. Then we have:
(i) The approzimate MSE matriz of Or (o) up to order O (oz_lT_l/Q) (henceforth, AMSE) is de-

composed as the sum of the squared bias and variance:
AMSE (a,00) = TBias * Bias' + TVar
where

TBias * Bias' = O (a?T7"),
TVar = 10701 + 0 <amin(27 25{1)) +0 (oz_lT_l/2> )

as T — 00, a?T — oo and a — 0.



(ii) The o that minimizes the trace of AMSE («,6p), denoted ar = ar (0y), satisfies:

Remarks.

1. We have the usual trade-off between a term that is decreasing in a and another that is increasing
in . Interestingly, the squared bias term is dominated by two higher order variance terms whose rates
are equated to obtain the optimal rate for the regularization parameter. The same situation happens
for the Limited Information Maximum Likelihood estimator for which the bias is also dominated by
variance terms (see Donald and Newey, 2001).

2. The rate for the O (amin(z%)) variance term does not improve for 8 > 2.5. This is due to a
property of Tikhonov regularization that is well documented in the literature on inverse problems, see
e.g. Carrasco, Florens and Renault (2007). The use of another regularization such as spectral cut-off
or Landweber-Fridman would permit to improve the rate of convergence for large values of 5. However,
this improvement comes at the cost of a greater complexity in the proofs (e.g. in the spectral cut-off,
we lose the differentiability of the estimator with respect to «).

3. Our expansion is consistent with the condition of Theorem 1, since the optimal regularization
parameter o satisfies a%T — 0.

4. Tt follows from Theorem 2 that the optimal regularization parameter ar is necessarily of the
form:

aT = 6(00) T_g(ﬁ), (14)

for some positive function ¢ (6y) that does not depend on 7" and a positive function g (f) that satisfies
max (%, ﬁ) < g (B) < 1/2. An expression of the form (14) is often used as starting point for optimal
bandwidth selection in nonparametric density estimation. Examples in the semiparametric context

include Linton (2002) and Jacho-Chavez (2010).

4 Estimation of the Optimal Regularization parameter

Our purpose is to select the regularization parameter « so as to minimize the trace of the MSE matrix

of Or () for a given sample of size T, i.e.:

ar (0p) = arg min X7 («a, 6p),
a€l0,1]

~ 2
where Y7 (a,0p) = TE <H9T (@) —00H > This raises at least three problems. First, the MSE

Y71 (a,0p) might be infinite in finite samples even though O (o) is consistent.! Second, the true

parameter value 6y is unknown. Third, the finite sample distribution of gT(oz) — 6 is not known even

!This is due to the fact that ET (a) is a GMM-type estimator. The large sample properties of such estimators are
well-known whilst their finite sample properties can be established only a special cases.



when 6y is known. Each of these problems is examined below.
The variance of ET (o) may be infinite for some data generating processes. To hedge against such

situations, one may consider a truncated MSE of the form:
ZT (aa 607 I/) =TE [gT (Oé, 00) ’éT (CM, 60) < nV] ’ (15)

~ 2
where {1 (o, 0) = H@T (a) — HH and n, satisfies v = Pr ({7 (o, 0p) > n,). A similar approach has been
used in Andrews (1991, p. 826). Given that the finite sample distribution of 67 () is unknown in

practice, it is convenient to first select the probability of truncation v (e.g., v = 1%) and then deduce
the corresponding quantile n,, by simulation. To account for the possibility of the pair (v, n,) depending

on «, one may consider instead:
Yr(a,00,v) = (1—v)TE[Ep (o, 00) &7 (o, 00) < ny] +vn, T, (16)

which accounts for the probability mass at the truncation boundary. Note that the truncation will play

no role if the MSE of 81 () is finite. In this case, we simply let:
X1 (o, 00,0) = r (a,00) = TE [§7 (o, 60)] - (17)

As ET(a) is asymptotically normal, its second moment exists for large enough 7'. Hence, the truncation
disappears (i.e., each of the expressions (15) and (16) converges to (17)) if one let v go to zero as T’
goes to infinity.?

We define the optimal regularization parameter as:

ar (0o) = arg oéren[%ﬁ]ET (v, 00,v), (18)
where X7 (o, 0p,v) is given by either (15), (16) or (17).

Our strategy for estimating o (6y) relies on approximating the unknown MSE by parametric boot-
strap. Let /9\; be the CGMM estimator of fy obtained by replacing the covariance operator with the
identity operator. This estimator is consistent and asymptotically normal albeit inefficient. We use ng
to simulate M independent samples of size T, denoted XI(J )(51) for j =1,2,..., M. It should be empha-
sized that we have adopted a fully parametric approach from the beginning by assuming that the model
of interest is fully specified. Indeed, it would not be possible to obtain MLE efficiency otherwise. The
model can be simulated by exploiting Assumption 5, which stipulates that the data generating process
satisfies &y = r (x4—1,0, ;). To start with, one first generates MT 11D draws 5§j) (for j =1,..., M and
t =1,..,T) from the known distribution of the errors. Next, M time-series of size T" are obtained by
applying the recursion :ng )= p (:1:@1,5;, 5? )), t=1,..,T, from M arbitrary starting values x[()j ),

Using the simulated samples, one computes M IID copies of the CGMM estimator for any given

2As n, — 00 as v — 0, one might be concerned by the limiting behavior of vn, as v — 0 when X7 (a, 6o) is infinite.
However, this is not an issue as long as n, is finite for all finite 7.

10



a. We let ajT(a,/élT) denote the CGMM estimator computed from the j** sample. The truncated MSE
given by (15) is estimated by:

_ A T U - Sl
Xrm <C¥7‘91T7V> = m ;gj,T(aae’:ll“)l (fj,T(Oéa 9;) < n,,) ) (19)

2
, V is a probability selected by the econometrician and 7, satisfies:

where fj’T(a,/H\;) = H@;(a,gﬂ —/05;

1

M <
J

M=

1 1 (gjﬁT(aﬁlT) < ﬁ) —1-u,

The truncated MSE based on the alternative Formula (16) is estimated by:

ij: (o 9T (fg (s, 9T) ) +vn,T. (20)

i\%

& ~1
ZTM (OA, GT? I/)
With no truncation, (21) and (19) are identical to the naive MSE estimator given by:
N TM
ZTM <C¥ HT) M Z Oé 9T (21)

which is aimed at estimating (17). Finally, we select the optimal regularization parameter according

to:
QT (51) = arg minf]TM <a,51, y) , (22)
a€(0,1]
where Sy (a,@l,y> is either (19), (20) or (21).
Let X7 (a,@l, 1/) be the limit of Sy (a,@l, V) as the number of replications M goes to infinity
and define:
~1 ~1
ar (9 ) = arg mindp (a,@ ,1/) .
a€l0,1]

~1 —~ ~1\ .
Note that ar (0 ) is a deterministic function of a stochastic argument while a7y, <9 ) is doubly

~1
random, being a stochastic function of a stochastic argument. The estimator ar (9 ) is not feasible.
However, its properties are the key ingredients for establishing the consistency of its feasible counterpart

o~

arny <9 ) To pursue, we need the following assumption:

Assumption 6: The regularization parameter o that minimizes (the possibly truncated criterion)
Y7 (e, 0, v) is of the form ag () = ¢ (0p) T—9), for some continuous positive function ¢ (6g) that

does not depend on 7" and a positive function g () that satisfies max (é, 2ﬂ+1> <g(p)<1/2.

Basically, Assumption 6 requires that the optimal rate found for the regularization parameter at (14)

11



~1 ~1
be insensitive to the MSE truncation scheme. This assumption ensures that a <9 ) =c (9 ) T7-90)
and is necessarily satisfied as T goes to infinity and v goes to zero. The following result can further be
proved.

@)

ar
ar(0o)

~1
Theorem 3 Let 6 be a /T —consistent estimator of 8y. Then under Assumptions 1 to 5,

converges in probability to zero as T goes to infinity.

~1
In Theorem 3, the function ap(.) is deterministic and continuous but the argument 6 is stochastic.

~1
As T goes to infinity, 6 gets closer and closer to 6y, but at the same time ap () converges to zero at

~1
some rate that depends on T'. This prevents us from claiming without caution that or(0) _ = op(1)

ar(0o)
since the denominator is not bounded away from zero. The next theorem characterizes the rate of
arnm (o)
convergence of ar(®0)

Theorem 4 Under assumptions 1 to 5, a{fﬁéﬁg) — 1 converges in probability to zero at rate M~1/2 as

M goes to infinity and T is fixed.

In Theorem 4, app(0p) is the minimum of the empirical MSE simulated with the true 6y. In the
proof, one first shows that the conditions of the uniform convergence in probability of the empirical
MSE are satisfied. Next, one uses Theorem 2.1 of Newey and McFadden (1994) and the fact that

arm(9o)
aT(Go%
theorem, we revisit the previous results when 6 is replaced by a consistent estimator 6 .

ar(fp) is bounded away from zero for any finite T to establish the consistency of . In the next

arar(@) | _

~1
Theorem 5 Let 6 be a /T—consistent estimator of 0. Then under assumptions 1 to 5, ar(00)

Op(Tfl/Q) + Op(M*1/2) as M goes to infinity first and T goes to infinity second.

The result of Theorem 5 is obtained by using a sequential limit in M and 7', which is needed here
because Theorem 4 has been derived for fixed T'. Such sequential approach is often used in panel data
econometrics, see for instance Phillips and Moon (1999). It is also used implicitly in the theoretical
analysis of bootstrap.®> Theorem 5 implies that arys (51) benefits from an increase in both M and T.
The last theorem compares the feasible CGMM estimator based on &rps to the unfeasible estimator
0 (ar), where ag is defined in (14).

Theorem 6 Let ary = aTM(El) defined in (22). Then:
VT (0 @rar) =0 (ar)) = 0,(T79),

provided that M > T.

3The properties of a bootstrap estimator are usually derived using its bootstrap distribution, hence letting M go to
infinity before 7'

12



Hence, theorem 6 implies that the distribution of v/T (@ (ary) — 90) is the same as the distribution

of VT (5 (ar) — 00> to the order T7-9(%) . This ensures that replacing ar by a consistent estimator apyy
such that ag—TM — 1 = 0p(1) does not affect the consistency, asymptotic normality and efficiency of the
final CGMM estimator 0 (azas). The proof of this theorem relies mainly on the fact that 6 («) is
continuously differentiable with respect to a whilst the optimal a7 is bounded away from zero for any
finite T'. Overall, our selection procedure for the regularization parameter is optimal and adaptive as

it does not require the a priori knowledge of the regularity parameter 3.

5 Monte Carlo Simulations

The aim of this simulation study is to investigate the properties of the MSE function Srm (oz,ng, 1/)
as the regularization parameter («), the sample size (T') and the number of replications (M) vary.
For this purpose, we consider estimating the parameters of a square-root diffusion (also known as the
CIR diffusion) by CGMM. Below, the first subsection describes the simulation design whilst the second

subsection presents the simulation results.

5.1 Simulation Design

A continuous time process r; is said to follows a CIR diffusion if it obeys the following stochastic
differential equation:
dry = k(B —re) dt + o\/TedWy (23)

where the parameter x > 0 is the strength of the mean reversion in the process, 5 > 0 is the long run
mean and o > 0 controls the volatility of 7,. This model has been widely used in the asset pricing
literature, see e.g Heston (1993) or Singleton (2001). It is shown in Feller (1951) that Equation (23)
admits a unique and positive fundamental solution if o2 < 2k/.

We assume that r; is observed at regularly spaced discrete times 1, to, ..., t7 such that ¢; —¢;_1 = A.
The conditional distribution of r; given 7:_a is a noncentered chi-square with possibly fractional order.
Its transition density is a Bessel function of type I, which can be represented as an infinite mixture of

Gamma densities with Poisson weights:

J+Qk 1 j+q
c
f(rere-a) p exp (—cry)
— kA J _ap— KA
where ¢ = W, q= 2;72ﬁ and p; = (ce™"2rin) e}(!p (zee Tt_A). To implement a likelihood based

inference for this model, one has to truncate the expression of f (r¢|r;—a). However, the conditional

CF of r; has a simple closed form expression given by:

; s\ 4 ise—FAY/,
pi(s,0) = B (e |ri-a) = (1 - f) exp <welt_1> (24)

C
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with 6 = (x, 8,0)".
To start, we simulate one sample of size T' from the CIR process assuming A = 1 and the true value
of 4 is:

90 = (Ho, 60, O'()) = (0.4, 6.0, 03) .

These parameter values are taken from Singleton (2001). We refer the reader to DeVroye (1986) and
Zhou (2001) for details on how to simulate a CIR process. We treat this simulated sample as the actual

~1
data available to the econometrician and use it to estimate the first step CGMM estimator 0 as:

5; = arg mein/ /fZT(T,H)/f;T(T,H)e_T,TdT,
R2

where hr(r,0) = e ZZT:Q (et — (s, 0)) e o1 7 = (11,71) € R? and ¢, (s, 0) is given by (24).
~1
Next, we simulate M samples of size T using 61 as pseudo-true parameter value. Each simulated

samples is used to compute the second step CGMM estimator /O\T,j (o) as:
/H\TJ (a) = arg m@in/ (K;%ET(T, «9)) ET(T, 0)e T Tdr (25)
RQ

The objective function (25) is evaluated using a Gauss-Hermite quadrature with ten points. The

regularization parameter « is selected on a thirty points grid that lies between 1071° and 1072, that is:
aec[107,25%x10710 5% 1071°,7.5 x 107191 x 107, ..., 1 x 1072]

For each « in this grid, we compute the MSE using Equation (21) (i.e., no truncation of the distribution
~ ~1 112
of ‘am (@) — (’TH ).

5.2 Simulations results

Table 1 shows the simulations T = 251, 501, 751 and 1001 for two different values of M. For a
given sample size T', the scenarios with M = 500 and M = 1000 use common random numbers (i.e.,
the results for M = 500 are based on the first 500 replications of the scenarios with M = 1000).
Curiously enough, the estimate of aTM(/G\l) is consistently equal to 2.5 x 1076 across all scenarios
except (T = 251, M = 1000) and (7" = 1001, M = 500). This result might be suggesting that the
grid on which « is selected is not refined enough. Indeed, the value that is immediately smaller than
2.5 x 1076 on that grid is 1.0 x 107%, which is selected for the scenario (T' = 1001, M = 500). Arguably,
the results suggest that the rate of convergence of ap(6y) to zero is quite slow for this particular data
generating process. Overall, 2.5 x 1076 seems a reasonable choice for the regularization parameter for
all sample sizes for this data generating process. Note that our simulations results do not allow us to
infer the behavior of ar(y) as Oy vary in the parameter space.

Figure 1 presents the simulated MSE curves. For all eight scenarios, these curves are convex and

14



have one minimum. The hump-shaped left tail of the MSE curves for T' = 251 stems to the fact that
the approximating matrix of the covariance operator (see Appendix D) is severely ill-posed. Hence, the
shape of the MSE curve reflects the distortions inflicted to the eigenvalues of the regularized inverse
of this approximating matrix as « varies. A smaller number of quadrature points should be used for

smaller sample sizes in order to mitigate this ill-posedness and obtain perfectly convex MSE curves.

Table 1: Estimation of ap for different sample size.
M = 500 M = 1000
arm (51) %iTM arm (51) %iTM
T=251 25x107% 0.0270 7.5x 1077 0.0289
T =501 25x107% 0.0114 25x107% 0.0119
T=171 25x107% 0.0066 2.5x1075% 0.0065

T=1001 1.0x107% 0.0057 2.5x1076 0.0053

Figure 1: MSE curves of the CGMM estimator for different M and T
log

. . 19 1 M ~1 . ..
The vertical axis shows =Xy = 57 ijl §j7T(04, 07) and the horizontal axis is scaled as =5~
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6 Conclusion

The objective of this paper is to provide a method to optimally select the regularization parameter
denoted « in the CGMM estimation. First, we derive a higher order expansion of the CGMM estimator
that sheds light on how the finite sample MSE depends on the regularization parameter. We obtain the
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convergence rate for the optimal regularization parameter cr by equating the rates of two higher order
variance terms. We find an expression of the form ar = ¢ (6g) T-9%), where ¢ () does not depend of
the sample size T and 0 < g () < 1/2, where [ is the regularity of the moment function with respect
to the covariance operator (see Assumption 4).

Next, we propose an estimation procedure for avp that relies on the minimization of an approximate
MSE criterion obtained by Monte Carlo simulations. The proposed estimator, arys, is indexed by the
sample size T' and the number of Monte Carlo replications M. To hedge against situations where the
MSE is not finite, we propose to base the selection of ar on a truncated MSE that is always finite.
Under the assumption that the truncation scheme does not alter the rate of o, arys is consistent for
ar as T and M increase to infinity. Our simulation-based selection procedure has the advantage to be
easily applicable to other estimators, for instance it could be used to select the number of polynomial
terms in the efficient method of moments procedure of Gallant and Tauchen (1996). The optimal
selection of the regularization parameter permits to devise a fully feasible CGMM estimator that is a

real alternative to the maximum likelihood estimator.
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Appendix

A Some basic properties of the covariance operator

For more formal proofs of the results mentioned in this appendix, see Carrasco, Florens and Renault
(2007). Let K be the covariance operator defined in (5) and (6), and hy (7,6) the moment function
defined in (1) and (2). Finally, let ®5 be the subset of L? () defined in Assumption 4.

Definition 7 The range of K denoted R(K) is the set of functions g such that K f = g for some f in
L2 (7).

Proposition 8 R(K) is a subspace of L? ().
Note that the kernel functions k(s,.) and k(.,r) are elements of L? (7) because
2
(s, 1) = | B [ne(0, )l (@) | <4, ¥ (s,7) € R¥ (1)

Thus for any f € L? (7), we have

2
Kf(s)f = ' [t ymyar] < [Iksnf o ) dr

IN

4/|f(r)|27r(r)dr<oo,

implying
1K f|? = / K f ()27 (s) ds < 00 = K f € L2 ().

Definition 9 The null space of K denoted N(K) is the set of functions f in L? (1) such that K f = 0.

The covariance operator K associated with a moment function based on the CF is such that N(K) =

{0}. See CCFG (2007).
Definition 10 ¢ is an eigenfunction of K associated with eigenvalue p if and only if K¢ = ug.

Proposition 11 Suppose piy > py > .... > p; > ... are the eigenvalues of K. Then the sequence {,uj}
satisfies: (i) p; >0 for all j, (ii) py < oo and lim p; = 0.
j—oo

Remark. The covariance operator associated with the CF-based moment function is necessarily

compact.
Proposition 12 Every f € L? () can be decomposed as: f = Z;.; <f, ¢j> ®;-
As a consequence, K f = Zj‘;l (f, ¢j> Ko¢; = Z;’il {f, ¢>j> 1d;-
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Proposition 13 If 0 < 3y < 35, then &5, C ®g,.

We recall that ®g5 is the set of functions such that HK_foH < 0o. In fact, f € R(KP2) = K= F2f
exist and HK‘B2fH2 = Z;; ,LL;QB? ‘<f, ¢j>|2 < o0o. Thus if f € R(KP2), we have:

[ = S0 2002 ()| < 2P0 (10 < o
j=1 =

= KA1 f exist = f € R(KP1). This means R(K) C R(K'/?) so that the function K~1/2f is defined
on a wider subset of L?(7) compared to K~!f. When f € &, <K‘1/2f, K_1/2f> = <K‘1f,f>. But
when f € ®3 for 1/2 < g < 1, the quadratic form <K*1/2f, K*1/2f> is well defined while <K*1f, f> is

not.

B Expansion of the MSE and proofs of Theorems 1 and 2

B.1 Preliminary results and proof of Theorem 1

Lemma 14 Let K;' = (K? + ol) 'K and assume that f € &g for some > 1. Then as a goes to

zero and n goes to infinity, we have:

b1 = 0, (a1 o
[0z K 1] = 0, (amtT). @
| =K = 0(ammt)), (4)

<(K71—K;1)f,f> _ O<amin(1,252*1)>. (5)

Proof of Lemma 14. Subsequently, ¢;,j = 1,2...,00 denote the eigenfunctions of the covariance
operator K associated respectively with the eigenvalues p;, j = 1,2...,00. We first consider (2). By the
triangular inequality:

|(KZ 4+ al) 'K — (K? + ol ) K|
< (K2 4+ ol) YKy — K)|| + (K2 + o) 'K — (K2 + o) K|
< [|(EF + o) 7| Ky = K|+ [[[(KF + al)7" = (K2 + o) K|,

<ot =0,(T~1/2)

where | K7 — K| = O, (T*1/2) follows from Proposition 3.3 (i) of CCFG (2007). We have:

I[(&F + D)™ = (K + )" K|
= [|(B2 +aD)™t (K? - K2) (K + o) 'K||
< [J0<E + an) (2 — K)o+ an) 2] [ (5 + an) K]

-~

<a~! :OP(T71/2) <a-1/2 <1
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This proves (2).
The difference between (2) and (3) is that in (3) we exploit the fact that f € ®3 with 8 > 1, hence
| K1 f|| < co. We can rewrite (3) as

[(Har = K ) Fll = [(Bap = K KEH | < [[(Kop = Ko ') K| [ K-

We have

(Kor — KJ') K

[0}

(K2 +al) 'Ky K — (K? 4+ o) 1K?
= (Ki+al) ' (Kr - K)K (6)
+[(KZ +al) ™ — (K? + o) '] K2 (7)

The term (6) can be bounded in the following manner

|(KF +al)™ ! (K7 — K) K||

IA

(53 + any 15z - KK
<a—1 :Op(;_l/Q)

_ 0, (ai711).
For the term (7), we use the fact that A~Y/2 — B~Y/2 = A=1/2 (BY/2 — A1/2) B=1/2 Tt follows that

|[(KF+al)™" — (K +al) '] K2
= |[(KF +al)™ (K* = K7) (K* + oI) ' K?||
(3 + o)~ || K2 = K32 + al) " K2|| = O, (a7'T712).

N~ N~

<a~1 =0, (T-1/2) <1

IA

This proves (3).

Now we turn our attention toward equation (4). We can write

Lo =3 (1, 1) L0,
| ()

K*4+ol)'Kf-K1f =
( ) Z Ot—i-,uj s i=1 Hj

We now take the norm:

/
_ 2 -1 g [v G ‘<f’¢j>‘2 "
I [ S e N Dl P ST

Jj=1

2 2 2 1/2
_ 26-2 (f, ;)] \<f 51 @
- (B () 1) < (B ) ity
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Recall that as K is a compact operator, its largest eigenvalue p; is bounded. We need to find an

equivalent to

g1 B=1 < 1 )
sup p = sup A2 (1—-—— (8)
0<pu<u a+pi ocacu? a/A+1
Case where 1 < < 3: We apply another change of variables x = a/\: sup% (ﬁ) An
ivalent to (8) is a#/2~1/2 provided that —. z_) is bounded on R*. Note that g (z) = 252/
equivalent to (8) is « provided that —7—7 ( 177 ) is bounded on R™. Note at g(z) = 455

is continuous and therefore bounded on any interval of (0, +oo) It goes to 0 at 400 and its limit at 0
also equals 0 for 1 < 8 < 3. For 8 = 3, we have: g(z) = Then g (x) goes to 1 at x = 0 and to 0
at +oo.

Case where > 3: We rewrite the left hand side of (8) as

- 1+x

2

-1« 53 Hy 5-3
N—_——
€(0,1)

To summarize, we have for f € ®5: (4)= O (amin(lv%)) .
Finally, we consider (5). We have:

J Hj ]

I f,9;) fi9
= Z“Qﬂ 1( _M?ia>< j Z< 'J> sup p?~ 1;20_:_*04.

IS

For § > 3/2, we have: SUP <, u%*l“;ﬁ a,u?ﬂ 3-0 (). For 8 < 3/2, we apply the change of
28—
variables = a/p? and obtain SUP,>0 THs (2) 2

R*. Finally: (5)= O (a i = > y | )

Lemma 15 Suppose we have a particular function f(0) € ®g for some > 1, and a sequence of

28—1

=0 (aT), as f(z) = 7z ~*57 is bounded on

functions fr(0) € ®g such that sup || fr(0) — f(0)|| = Op(T~Y/?). Then as a goes to zero, we have
0co

sup HK 2, K*1/2f(9)H = 0,(a" T2 + 0 (amin(1’%>> .
€
Proof of Lemma 15.

sup || K+ fr(0) — K~ £(0)|| < By + B,
0cO

with
By = sup [ 72(0) — K0 and By = sup (K~ K~ 70
€
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We have

&
IA

K 2| sup || fr(8) — f(8)]
0cO

[(or + 52)7| | (0 + K2) ™ K [sup 1 2(6) - @)

<apl? <1

= Oplag P17,

IN

:OP(T_I/z)

On the other hand, Lemma 14 implies that:

«

< |[(Bar = K FO +[|(#£7 = K7) £0)]]

= 0y (a7 T712) 4 0 (50

By = [[(Kor =K ) fO)
1

Hence, B is negligible with respect to Bs and the result follows.H

Lemma 16 For all nonrandom functions (u,v), we have:

E [<u,ET(.,9)> <U,ET(.,9)>} - % (u, K)

Proof of Lemma 16. We have:

B|(uinl0)) (hn.0))]| = B|( [u@ a0 yar) ([@hetrommar)]

_ B [//ET(n,e)ET(m,e)u(n)v(m)w(n)w(m)dndm]

= //E ET(Tl,H)ET(TQ,e)}U(Tl)mﬂ' (11) 7 (72) dT1dTo.

Because the h;s are uncorrelated, we have:

B [fer(ry, 0 (72,6)| = B [ha(rs, 00 0)] = b (71, 72),
we have
£ | (whir(.0)) (0. 0))]
_ 711/ </k:(7172)v(7-2)7r (72)d7'2>u(7'1)7r(7'1)d71 = = (u, Kv).
ot
n
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Lemma 17 Let S be a neighborhood of 5, such that 0 — 0 = Op(T_1/2) for all 0e S, where 0 solves:
<K0771‘6T('7§)7/HT(-75)> =0

and éT(., 0) = 8hg(9"0). We have:

Im <K;%6T(,5),71T(,5)> =0, (T7") for all fes.

Proof of Lemma 17. Note that S contains 6y and:

0—0h= 0-0 + 0—0, :0p<T—1/2).
OP(T_l/z) Op(T_l/Q)

Hence, a first order Taylor expansion of ET(,E) around 6y yields:

hr(.,8) = (., 60) + G (., 6o) (5 - 90) +0, (T7Y).

Likewise, a first order Taylor expansion of @T(,Aé) around 6 yields:
—~ ~ ~ q o~ ~
Gr(.,0) = Gr(.,60) + > H;r(.00) <9j - 9j,0> +0p (T71).
j=1

Hence, we have:
(KpGr(.0).hr(,8) = (KGr(.00), (. 00))
+ <K(;TICA¥T(., 60), Gr(., 90)> (5 - 00) +0,(T7Y).

Note that the term <K;T1@T(, 00), Gr(., 6?0)> (5 — 00> is real. At the particular point § = 6 (and for
fixed a):

0= <K;;6T(., 60), hr (., 00)> n <K;;€;T(., 60), Gr(., 00)> (@— 90) +0, (T7Y).

Hence, the imaginary part of <K;%CA¥T(.,90),ET(.,90)> is Op (T1), and so is the imaginary part of

<K;T16T(.,§),ET(.,5)> for all 0 € S.H
Proof of Theorem 1. The proof follows the same steps as that of Proposition 3.2 in CCFG
(2007). However, we now exploit the fact EVgh; (#) € ®5 with 5 > 1. The consistency follows from

Lemma 15 provided o7%/2 — 0o and o — 0. For the asymptotic normality to hold, we need to find a
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bound for the term B.10 of CCFG (2007). We have:

|B.10| = ’<K‘1V9ﬁ;p <@ ) K'E (VQBT (90)> VThy (90)>‘
< HK 1/2V913T( ) K12E (VehT (0o) )H H\th )H
=0,(1)

= 0, (oflﬂT*l/?) i) (amin(l’%g .

Hence the asymptotic normality requires the same conditions as the consistency, that is, aT/2 — oo and

a — 0. The asymptotic efficiency follows from the fact that K;% — K~ under the same conditions.H

B.2 Stochastic expansion of the CGMM estimator: IID case

The objective function is
0 = arg mgin {QaT (0) = <K;T1hT(., 0), hr(., 9)>} .
where hyp(7,0) = x ST (e”/mt — (T, 9)) The optimal 6 solves:

8Qur (5)

o = 2Re (K 1G(.8),hr(,8)) =0 (9)

where G(.,0) = _W‘

A third order expansion gives

0= B S (1) + 3 (- ) g (- ).

j=1
where 0 lies between 6 and fy. The dependence of 9 on a7 is hidden for convenience. Let us define

dp(7,6) _ Pe(r,0) L Pe(r,8) . Pe(r,0)
00; 0) = =505 Hi-0) =~ 9000 ’LJ__aejaeae"

G;(.,0) = —
and

Ur(6o) = Re (K FG(.00),hr(.60)).

Wr()) = (K2G(.,00),G(., 00)>+Re<K;;H(.,00),ET(.,00)>,
Bir(B) = 2Re(KG(.0),H;(,0) +Re (K L;(.0), hr(,0))
+Re (K 1 H(.,0),G;i(.0)).



Then we can write:

0= Wr(0) + Wr(bo) (9 - 60) + Eq: (95 = 050) Bir(@) (0 - o).

J=1

Note that the derivatives of the moment functions are deterministic in the IID case. We decompose
U7 (00), Wr(6o) and B;7(0) as follows:

Ur(00) = Tr0(60) + T1.0(00) + P70 (00),
where

Uro(fo) = Re <K‘1G,ET> =0, (T—1/2)
Ura() = Re <(K;1 — K G,ET> o, (amm( ”—)T—l/z)

Urato) = Re((Kyt—K,')Ghr)=0,(a”'T7)

where the rates of convergence are obtained using the Cauchy-Schwarz inequality and the results of

Lemma 14. Similarly, we decompose Wr(fp) into various terms with distinct rates of convergence:
Wr(00) = Wo(6o) + Wa(00) + Wa(bo) + Wro(fo) + Wr.a(6o),
where

(0o) = (K'G, G>:O( ),

(00) = ((K.'=K)G,G)=0 (amn0550),
Walbo) = ((Kif—K;")G.G) =0, (a7 T2
(
(

0o) = Re<K*1H(.,00),ET(.,HO)> -0, <T’1/2> ,
Wra(6)) = Re <(K;T1 ) H(.,eo),ﬁT(.,eo)> =0, (a7'T7).

We consider a simpler decomposition for B;r(6):
Bjx(0) = Bj(0) + (Bjr(0) — B;(9))
where

Bj(9> = 2Re <K71G(.,5)7Hj(_,é>> + Re <K71H(-,é>,Gj(_,é)> _ O(l)
Bjr(0) = Bj(0)+0 (amiﬂ(lv%)) Lo, <a—1T-1/2) '
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By replacing these decompositions into the expansion of the FOC, we can solve for 0— 0o to obtain:

-0, = Y(00)®1,0(00)

—Wqy (6o)
W (60) [xpm (60) + Wa(6o) (5_ 90)}

—~Wy *(6o) [\I]T, (60) + Wal(6) (5— 00)}
1 (00)Wro(o) (9 90)

o~

0; —

M £ Dlg

j,0> Wy ' (60)B;(6) (5 — 90)

1

J

9
0, — 9j,0) Wy (60)(B;.1(0) — B;(0)) (5 - 90) .

(
.

)=

1

J

To complete the expansion, we replace 0— 0o by =W, 1(90)\IIT,0(90) in the higher order terms:
6 —0g=A1+ Ao+ As+ Ay + As + R,

where R is a remainder that goes to zero faster than the following terms:

Ay = =W (60)Tr,0(f0),
Ny = =Wy 00) [¥1,a(00) — Wa(Bo) Wy (00)Tr,0(60)] ,
Ay = —W;(6o) [‘I’Ta(eo) Wa(eo)ng(eo)‘I’T,o(eo)] ,

Ay = Wy 00)Wro(00)Wy H(00)Tr0(0o)

Z 1(6o) ‘I’TO(QO)) Wy H(00)B;(0)Wy ' (60) r,0(00),
=

DI

MQ

As = (o) \IJTO(HO))~W0 (60)(Bj.r(0) — B;(6)) Wy (80)¥r,0(0).-

]=1

To obtain the rates of these terms, we use the fact that |Af| < || Al |f|. This yields immediately:

2ﬁ1

A1 = 0y (T7V2); 8g = 0, (a™m55T712) | Ay = 0, (7' T7Y) 5 Ay = 0, (T7),
A5 = O(am™@5I71) 10, (a7l T2,

To summarize, we have:

/é — 90 = Al + A2 + A3 + Op (Oé_lT_l) 4 op (amin(l,ﬁ%l)T_l/Q) '
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B.3 Stochastic expansion of the CGMM estimator: Markov case

The objective function here is given by:
~ ' B PN ~
0 = argmin { Qur (0) = (K (., 0),hr(,0) )}

where hp(7,6) = x ST (eis'mf“ —¢(s,0, mt)> ¢ and 7 = (s,r) € R?. The optimal 6 solves

8Qur (@)

_ 1G5, D Pl D) —
i _2Re<KaTGT(.,6’),hT(.,9)>_0 (11)

~ -
where GT(T; 0) = _% 31:1 %6” Ty

The third order Taylor expansion of (11) around 6 yields:

WQut 00)  PQur )5y (5, g, ) POy

0="2 9600’ 96,0000’

Jj=1

where 0 lies between 0 and 0.

Let us define:

~ 82 8 0 xt ”, £ A 1 d 890(5767$t) ir' Ty
Hp(r,0) = —= Z 3000 » Gir(7,0) = —% ; o8, ©
~ 1 82 S 6 $t ’L’I" zr T d 83 (Szgvxt) ir' zy
H],T(T70) - _T Z 89 89 ’ L]’T(T79) B T Z We ’

and

~

Ur(dy) = Re(K 2Gr(.00).hr(.00)).

Wr(fo) = <K;;GT(.,90),GT(.,O)>+Re<K;T1ﬁT(.,eo),ET(.,eo>>,
Bir(@0) = 2Re(K 1Gr(,0), Hr(,0)) + Re (K tHr(.0),Gir(,0))
+Re (Kt Lir(..0) hr(.0))

Then the expansion of the FOC becomes:

0 = U (Bo) + Wr (o) (9 90) +§q: (9 —0; 0) B (0) (5—00),

J=1
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Unlike in the IID case, the derivatives of the moment function are not deterministic. We thus define:

G(r,0) = plim@T(T,H), H(t,0) :plimﬁT(T,H),

T—o0 T—oo
Gi(r,0) = plmG,r(r,0), Hi(r,0) = plimH;r(r,0).
T—o00 T—o0

It follows from Assumption 3 and Markov’s inequality that:

G(T, 9) - G\T(T, 9) = Op (T*1/2) , H(T,H) — f-\IT(T,G) — Op (T*I/Z) :
GJ(T70) - éj,T(Tge) = Op (T_1/2> ’ Hj(7_70) _ ﬁj,T(Tae) — Op (T—1/2) )
We have the following decomposition for \TJT(QO):
U7 (0o) = Ur.0(00) + U1,0(00) + 7.0 (80) + V7.0 (00) + Ur,0(60).

By using the fact that [|Af]| < ||A||||f]|, we obtain the following the rates:
) = Re <K71G,ET(,,«90)> =0, (T*I/Q) ’

) = Re((K;' = K7)Ghr(,60)) = 0p (am5507-112)
Ura(6o) = Re <(K;711 — KNG, (. 90)> =0, (a7 1T7Y),

) (K1 (Gr =) (. 00)) = O (0712171

Ura(f0) = Re <(K;7¥ ~ K1Y (@T - G) hr(., 90)> =0, (a*3/2T*3/2) .

= Re

The difference between the above decomposition of (I\JT(HO) and the one in the IID case only comes from

the additional higher order terms \/I}T,a (0p) and \TIT7Q(90). Hence we can write \TJT(HO) as:
U (0o) = Wr0(00) + ¥r,0(00) + 7.0 (00) + Ry,

where Ry = o, (a_lT—l) + 0p (Ozmin(l’%)T_l/Q)'

We have a similar decomposition for WT(HO):

Wr(lo) = Wo(8o) + Wa(80) + Walbo) + Wa(6o) + Wa(6o)
FW1(00) + Wia(B0) + Wia(6o) + Wi.a(60) + W1a(60),

where

Wo(fo) = (K~'G,G) = O(1),
Wa(0p) = <(K;1 — K_l) G, G> -0 (amin(1,$)> ’
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Wa(0o) = (K1 — K3 G,G) = 0, (o~ 'T71/?)
Walbo) = (K.* (Gr - G),G) = 0, (" 12T 1/2),
Wi(0o) = Re <K—1H,ET> T < K-1G, Gy — G> =0, (T1?),
Wi a(60) = <(K;T1 ~ K1) <@T _ G) ,G> -0, (073/2T 1.
ﬁl,a(eo) = Re <(K;1 ~ K H, ﬁT> T <(Koj1 K1) G,Gr — G> -0 (amin(ly%)TAD) 7
Wia(00) = Re (Kb — KV H by ) + (K} — K1) G, Gr — G> =0, (a~1T7Y),
lea(Ho) =Re(K;' (Hr—H ’ETi + g K, (GT - G) ,Gr — G> =0, (a™1/2771) and

Ry = Re (Kt = K.Y (Hr = 1) ) + (K4 - K51) (Gr = G) ,Gr = G) = 0, (a7%2T972).
For the purpose of finding the optimal «, it is enough to consider the shorter decomposition:
Wr(6o) = Wo(6o) + Wa(00) + Wa(bo) + Wa(6o) + Wi(60) + Wia(fo) + Bw,
with
Ry = ﬁm(ao) + Wia(00) + Wia(00) + Ry = Op (@ 'T1) + 0 ( min(1, 754) - 1/2)
Finally, we consider again a simpler decomposition for Bj,T(é):
Bjr(0) = Bj(0) + (B;r(0) — B;(0))

where

Bj(é) = 2R6<K_1G é) 0 >+RG<K_1H(-,9),GJ-(,,9)> :O(l) and
Bjr(0) = Bj(9)+0( min(1, 75 )) ‘o, (a—lT—W)_

We replace these decompositions into the expansion of the FOC and solve for (= 0y to obtain:

G-00 = —Wy5(06)Tr0(f0)
fng(e)[q/Ta (60) + Wa(6o) (0 — 00)

) (-00)]
— Wy (0) [qu (60) + Wa(60) ( 90)] L(00)Wa (60) (5— 90)
0

Wy
W5 (B0)W(00) (B—00) — > (85— 50) Wy (00) B (0) (0 — 0

j=1
~Wy 1 (00)W1,a(60) (5_ 90)
—Z( 030) W™ (00) (B;:r(6) — B,(8)) (3 — 60

—Wy *(60) R (5— 90) — Wy (60) Ry
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Next, we replace 0— 0y by —Wo_l(Qo)\IIT,O(GO) =0, (T_I/Q) in the higher order terms. This yields:

6 —60g=A1+ Ay + As+ Ry + Ry + Rs + Ry,

where
Ay = Wy (00)¥r0(60) = O, (T_1/2> ,
— min( i —
AQ = —WO 1(90) [\I’T@(@Q) — Wa(eo)W 00 \I’TQ 00 ] p( 2 2 1)T 1/2) ,
As = —WJI(Q()) [@Tﬂ(eo) — Wa(eo)WO 90 \IJTO 90 :| p _1T )
El = W_l(eo)wa(g())WO_l(90)\I/T70<60) = Op (ofl/QT ) ,
Ry = Wy (00)Wi(00) Wy (80)Ur.0(6o)
q
= (W (00)¥r0(00)) ; Wy (60) B; (O)W5* (60) ¥r0(f0) = O, (T71)
j=1
Ry = W5 (00)Wia(00)Ws (00)¥ro(bo) = O, (a=2742),
and
Ry = —W;6o)Ry + Wyt (60) Rw Wyt (60)Ur,0(60)
q

= (W5 (00)¥r,0(00)) ; W5 (00)(Bjr(8) — Bj(0)) Wy (60) ¥r0(0o),
j=1
— o, (a T ) +o, (amin(l’?w—l/?) .
In summary, we have:
~ . B—1
0= 00 = A1+ A5+ Ay + 0, (71T 1) + 0 (am05T)T71/2), (12)
which is of the same form as in the IID case.

B.4 Proof of Theorem 2.

Using the expansions given in (10) and (12), we obtain:
6—60p=A1+ A+ A3+ 0, (T,

Lemma 17 ensures that all terms that are slower than O, (T _1) in the expansion above are real. Hence

the Re symbol may be removed from the expression of Aj, Ay and Ag.
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Asymptotic Variance

The asymptotic variance of 0 is given by
TVar (A1) = TWy 'E [Wro(60)r0(60)] Wy
- TW{'E [<K—1G,ET> <K1G,ET>/] Wyl =Wy (K716, GY Wy,
where the last equality follows from Lemma 16. Hence,
TVar (A1) =Wy ' (K'G,G) Wyt =Wyt

Higher Order Bias

The terms A; and As have zero expectations. Hence, the bias comes from Ags:
Bias=FE [/0\ — 90} = E[A3]

where Az = —WO_I\TITQ + WO_IWQWO_I\IJT,O. As VVO_1 is a constant matrix, we focus on EIT@ +
W W5ty
We first consider the term V7 ,. By applying Cauchy-Schwarz twice, we obtain:

|2 (era) | = [z (0~ et b
(1ot )6l i) < 2 (et - sty o) ()

Using the fact that hy (7,6) is a martingale difference sequence and is bounded, we obtain:

E<HETH2> - E</ET (r,0) hr (T,e)ﬂ(f)d7> (13)

= %E (/ht (7,0) hy (1,0) 7 (1) dr) =O0(T).

IN

Next, using (6) and (7), we obtain:

(|t~ K 6P) < B (1K -5 E[) 576
< E(|(K3+an)" (KT_K)KH)HKAGHZ (14)

+8 (| (63 + oDt = (2 +an) ! |?) K |* K67 (1)
Hence:

(14) = (||} +an™ (kr - K) K|*) [K 6]

< o2 (|lKkr - KI?) 1K) [K7'G]* = (@217,
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where F (HKT - KH2) = O(T71) follows from Carrasco and Florens (2000, Theorem 4, p. 825). For
(15), we use the fact that A=t — B~ = A=} (B — A) B~ to obtain:

15) = B(|0ch+ oD (2 +an) ) I |G

IN

B ([[(&F +an) | | K7 - K| |62+ an) ) K] K6

VAN

o2 (|57 - &) K11 £

- 2 2 41 pre1 |2
< o 2B (|Kr - KI? | Kr + K|?) K| | K6
By the triangular inequality, || K7 + K| < |K7|| + || K. Hence:

(15) < o 2E [ Kr = KI? (1Kol + |KID?] 1K 16

From (1) in Appendix A, we know that |k(71,72)* < 4. Similarly, 7<:\T(7'1, 7'2,51) is bounded such that

~ 112
kT(Tl,Tg,Hl) < 4. Hence:

K| < \///|k(71,72)]27r(Tl)W(Tg)dTldTg <9
~ ~1 12
|Kr|| < //‘kT(TbTQ,e)‘ m(T1) 7 (T2) dT1dTy < 2
Consequently:
(15) < 16a2E <||KT . K||2) 1K | K167 = O(a2T ).
Finally,

HE (@T,a) H = /O(@2T—1) x O(T1) = O(a~'T7Y). (16)

We now consider the term WQWJ l\IJT’O. Again, using Cauchy-Schwarz twice leads to:

s nal) < (17[F) 2 (195 weal),

o (i) < 5 |

We have:
p(witwnol) = & (|we (5 eRnem)|) < & (10 P 1) P e o0

w5 P 6P £ (Jrt 0] ) = 0,

- 2
where E <HhT(.,00)H > = O(T~1) follows from (13). Next:
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E(HWa

)

where the rate follows from (14) and (15). Hence, by the Cauchy-Schwarz inequality,

B (Kot~ K1) G O) < B (|(Kat — K3 G 161P)

I6IP B (|| (554 - K1) 6]*) = OaT7Y),

| (WMo |

AN
«
&
-
5l
N
=
—
S
<
5
=

= /O(a2T-HO(T-1) = O(a'T7Y). (17)
By putting (16) and (17) together, we find E [As] = O, (o !T ™) so that the squared bias satisfies:
T Bias.Bias' = O (of2T71) .

Higher Order Variance

The dominant terms in the higher order variance are
Cov (A1, Az) + Var (Az) + Cov (A, As) .
We first consider Cov (Aq, Az):
Cov (A1, A2) = Wy ' E [Ur0Ura(00) ] Wyt — Wy E [Wg oW ] Wy ' WaWy .

From Lemma 16, we have:

1

E [q/T,O\If’T,a] ==

((K;'-K™)G,G) =W,.
and E [‘I’T,O‘I’/Tp} = Wy. Hence,
1 1
Cov (A1, Ag) = Tngwanl — TW(jlWongWanl =0.

Now we consider the term Cov (Ay, A3):

Cov (A, Ag) = Wo ' B (UroWh, ) Wo ' = W' E (\IJT,O\II’T,OWO’IWQ) Wyt
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We first consider [\IJTD\AIVI'T’ a]. By the Cauchy-Schwarz inequality:

\/ (rrol?) £ (i)

- e (e u ) (I - e o))
£ (|(xmah)[) <l e ([fn]) = o

HE \I’TO‘I’Ta

Hence we have:

Also,
(G e I (C i e 2y
2 (s - 1) ) (o

IN

~ |4
We first consider HhTH :

il = (firinrar)’ - a(/zhthm o [ Soto )

| & (3 1 )] - Ze[(fmncran) ]+

= O(T™%
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The second squared term leads to:

(oo

t#s

_ B Té:( [ b )2] ‘B zi#s’l#%#l’j) ( [ b <T>d7> < / hzhjﬂﬂdr)]
= T(TTZ Vp (/hthsw (1) d7>2 =O0(T7?), fort #s.

As the hys are uncorrelated, the cross-term is equal to zero:

(B e o) (s friston]) | o

t#s

~ 4
In total, we obtain: E <HhTH ) = 0O(T72).

We now consider £ (H (K — K31 GH4>. Using the same decomposition as in (14) and (15) leads

to:
(I -k ElY) < (e - K1 K] 5l
< EB(|[(K}+an™ (57 - K) K|") |G (18)
+B ([ (5 +an™ = (K2 + an) ™ |*) | K|°|| K (19)
Hence:

(18) = B (|| (&5 + an) ™ (567 - K) K[| ") | K7G[* < a7 B (157 - K]*) 1K) 6]
For (19), we use A~! — B™1 = A=1 (B — A) B! to obtain:

(19) = E(|[0F+an™ - (2 +an) ) K| 5

IN

B (| (83 +an) (|53 — K2[* (K2 +an) ) 1] | K6

IN

o B (K3 - &2|") |K P )

IN

o B (|[kr — K|[* [ + K1) K] K6
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By the triangular inequality:
— 4 4 8 — 4
(19) < o B (K - K| (1Kl + 1K1)*) 15 [ 576

< 2560 'E (HKT - KH4) (el haued

due to ||K7|| <2 and ||K| < 2.
The rates of (18) and (19) depend on the rate of E (HKT - KH4>.

HKT—KH2 < th (T1,72) (11) 7 (T2) dT1dT2
= ﬁZ [ [P (ra)w () draar (20)
+2Z//Xt 71, 72)xi(T1, 72)7 (71) 7 (T2) dT1dT2 (21)
t£l
~1

where x,(71,72) = ki(71,72,0 ) — k(71,72). Hence

E (|57 - K|1*) < B (10)) + 2B ([(20)] [(21)]) + £ ([(21)]?)

Because E ([(20)][(21)]) < \/E ([(20)]2) (E [(21)]2), we only need to check the rates of the squared

terms. We have:

E((20) = &B [(f [ Ixeram) P (1) w (r2) d71d72)2]
+%E [(ff |Xt(7-1>7'2)|27r(7'1)77(7'2)d7'1d7'2) (ff |Xz(7'1,7'2)|27r(7‘1)7T(7’2)d7’1d7‘2>} , for [ # ¢.

Hence E ([(20)]2> = O(T~2). Next:

<//Xt 1,1\ (r1, )T (r1) ™ (72)d71d72>]
o K [ [rosrtrinte dﬂdm) ( [ [xmmrye dﬁdm)}

t#ln#], (t D#(n,j)

X:(71,72). Due to the m.d.s property, the last term has expectation zero. Hence:

E([(zl)f):T(i;Zl)E <//Xt(Tl,Tg)Xl(Tl,Tg)w(7'1)7r(72)d71d72>2

with x, =

=0(T7?).
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By putting these together, we obtain F (HKT - K||4) = O(T72) so that:
B(|(kd - KN G|") < (18)+19) = 0 (aT7%) and

s(osst-em) < e (- kel s ()

= VO (aT2)x O (T2) =0 (o °T7?)

IN

In total:

IN

e ([ u) (It - sy o))

= VO[T ) x0(a?T?) = 0(—1T 3/2)

| (vro¥a)

We now check the rate of the second term of Cov (A1, Ag):

<\ (Jwrowsa’) 2 (|

2
We first consider F <H\IIT70‘I}IT,0H > By the Cauchy-Schwarz inequality:

E (||0roWh|) = B <H<K10,Tw> <Kla,ﬁT>'H2> <||kG|'E <HETH4) _ o)

For the second term, we have:

B (el ) = e (st - w7 66))

IWoll 21612 B (]| (7"~ K1) G6]*) = 00217,

| (wrowh oW W)

)

A

according to (14)-(15). Hence,

HE (\IJTO\I/TOWO W, )

’ < VO(T2) x O(a2T-1) = O(a ' T73/?)

It now remains to find the rate of Var (Ag). We recall that Ay = —WO_I\IIT?Q + W(;lWaW()_l\IJT70.
We have

Var (D) = Wi'E [Uro V.| Wyt = Wit E [Ur,a U] Wy 'Wo Wy
— Wy ' WaWy ' E [Or0Uh | Wyt + Wy ' Wo Wi E [Tl o] Wy "W Wyt

Replacing £ {\IIT,O\I/’T@} = %Wa and F {\IIT@\IJ’Tﬁ} = %W(], we see immediately that the last two terms
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cancel out so that
Var (Ag) = Wy 'E [Ur,o V| Wyt — Wy ' WoWg ' Wo Wy
For the first term of Var (As), we use Lemma 16 to obtain:
EWra¥,] = E|((Ka' =K Ghr) (K= K™)G.hr)|

2
Sy A ML W
- L KGR, K)KG>—Z(M§+Q L) e
i

J

2

_ ] 1 2541 (G, ¢J (G, ¢J 1\* 2841

= E 3 —— | K < E sup 5 il Y .
pi+a prda p

- <
j H=py

2
— l) w2+ namely:

We focus on the square-root of (

o p

1w esre_ B\ a1
sup — | p =sup (1—-— W .
K< py N p? + o p<py pe+ o

Case where 3 > 5/2

2 B—1/2
sup <1_2,u> MB 1/2—ozsup #2 < a sup u6_5/2<au'3 5/2,
p< gy peta p<p B° gy

Case where 3 < 5/2

We apply the change of variable 2 = a/u? and obtain

u? 1/ 1 oy 52 21 x 251
sup (1 — — ,uﬁ_ 12 = sup (1 — (—) =qa 4 sup r 1.
p<py J e e >0 I+xz/) \x >0 1+

: 26-1 . P
The function f (z) = g _HL,:E 4 is continuous and hence bounded for x away from 0 and infinity. When
5-23

x goes to infinity, f () goes to zero because 23 — 1 > 0. When = goes to zero, f (z) = % goes to
zero because 5 — 23 > 0. Hence, f ( ) is bounded on RT. In conclusion, the rate of convergence of
E (\I/T@\Il’ﬂ a) is given by: o™in(225) 71 Note that this rate is an equivalent, not a big O.

For the second term of Var (Ag), we use the fact that W, = O (amm(l’QﬁTl)> according to Equation
(5) in Lemma 14:
28 26—1

1. -1 1 1 min(1,22-1) min(1,22-1)
WG W Wy = TxO(l)xO(a ; )xO(l)xO(a ; )x0(1)

= 0 (w207,
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Optimal Rate for a

Note that the bias term T Bias * Bias’ = O (oz_QT_l) goes to zero faster than the covariance
term T'Cov (A1,Ag) = O (a‘lT_1/2). Hence the optimal « is the one that achieves the best trade-off
between TVar (Ag) ~ a™n(28 ~2) which is increasing in a and T'Cov (A1, Az) which is decreasing in

«. We have
Qmin26-3) _ (~1p-1/2 oy of — max(g,3557)

Note that this rate satisfies o~ 'T~1/2 = o(1).

AN /\1
C Consistency of ary, (0 )
We first prove the following lemma.

Lemma 18 :Under Assumptions 1 to 5, 571(04; o) is once continuously differentiable with respect to «

and twice continuously differentiable with respect to 0y and ar(0y) is a continuous in 0y.

Proof of Lemma 18: The objective function @T (c, 0) involves the following operator:

K;%ﬁT(.,G) = Z ~3 <ET('30)7$3‘>$J’

where Ej is the eigenfunction of Kp associated with the eigenvalue ,IZ]-. By assumption 3, the moment
function hr(., @) is three times continuously differentiable with respect to 6, the argument with respect
to which we minimize the objective function of the CGMM. By assumption 5, z; = = (241, 0o, £;) where
7 is three times continuously differentiable with respect to 6y (the true unknown parameter) and ¢, is
an IID white noise whose distribution does not depend on #y. Thus as an exponential function of x;, the
moment function is also three times continuously differentiable with respect to 6g. Thus Assumptions
3 and 5 imply that the objective function of the CGMM is three times continuously differentiable with
respect to 6 and 6. Now we turn our attention toward the differentiability with respect to a. It is easy
to check that Pt
A0 g i 0

where I?QT = — (K% + aTI) -2 K7 which is well defined on L? (7) for ar fixed. When a goes to zero,
we have to be more careful. We check that ‘<I~(aTﬁT(., 0),?L\T(., 9)> is bounded. We have

‘<KaTET('7 0), hr(., 9)>‘

IN

|Rahrt o) [frt. 0] < 0+ )™ s frc 0

~~

Sa;3/2 Sl :OP(T71

i -ty >t vy v o
)

- 07T ) =00,
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where the last equality follows from Theorem 2(ii). This shows that Qr (a,0) is once continuously
differentiable with respect to a and three times continuously differentiable with respect to 6. By

the implicit function theorem, 571(0[;00) = arg min@T (a,0) is once continuously differentiable with
0

respect to a and twice continuously differentiable w.r.t. 3. The MSE /G\T(a; o) is an expectation of
a quadratic function in ET(a;Go). Hence Yp(a;6p) is also once continuously differentiable w.r.t. «
and twice continuously differentiable w.r.t. 6y. Finally, the Maximum theorem implies that ar (6y) =

arg minXp(a; 0p, v) is continuous w.r.t. 6y.H

a€l0,1]

ar@) _ @)
alT(Go) - 6(90)'
18, ar(6) and hence ¢ () are continuous functions of . Since 6 is a consistent estimator of #p, the

Proof of Theorem 3: Using Assumption 6, we see that Moreover by Lemma

continuous mapping theorem implies that ig:; ElasT = ool

Proof of Theorem 4: Here, we consider the expression of the MSE given by (15) but the same
proof can be easily adapted to the expressions given by (16) and (17). Consider f]TM(a,HO,V) =
ﬁ Zj]\il §ir(a)l (ij (@) < My,7) where §ir () =& (a,bp) is IID (across j) and continuous
in a. We have:

i\:TM(OQ 907 V) - ET(OK, 907 V)

M
= (l—Tu)M Z [gj,T ()1 (ij (o) < ﬁu,TM) - E (fj,T ()1 (ij () < nu,T))] )
j=1

where n, 7 = lim n, M.
b} M w b

If we can show that there exists a function by > 0 independent of « such that

5] <o

and E (br) < oo, then, by Lemma 2.4 of Newey and McFadden (1994), we would have

sup ’iTM(a,Qo,V) — Yr(a, by, y)’ = Op (M*1/2> .
a€l0,1]
and it would follow from Theorem 2.1 of Newey and McFadden (1994) that aras (6o) — ar (6g) =

O, (M_l/Q). This would imply that a(fﬁéz())) -1=0, (M_l/Q), given that ar (0g) is bounded away

from zero when T is fixed.

Let {p be any of the {; 1,7 = 1,..., M. To prove inequality (22), we first compute:

0 807(a, 00) 1~
Fat =220 (5o, 0) —00)
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where by the implicit function theorem:

Hr(a,00) (901 (,0)\ " 02Qr (,0)
da 0600 9690

The expressions involved are:

9*Qr (,0) e e _p ;
o000 " <KQTGT(-,90),GT(-,90)> + <KQTHT(-,90),hT(-,90)>,
9?Qr (o, 0 . A ~ . ~
aaa(a) <KaTGT('7 00), hr (., 90)> + <KaThT(‘a 00), G (., 90)>
and Kp = — (K7 + ozI)f2 Krp. Next recall that for fixed T, ar (6p) is bounded away from zero so

that there exists a sequence ap such that ap (6g) >ap for all T

Hence, the minimization problem for the selection of & may be re-written as « (6p) = arg min¥r(«; 6o, v),
a€ap,1]

82Qr(a,0;00)

20 .
so that X7 (a; 6o, v) is a bounded function of a on the choice set. Because O°Qr(abio) ,nq 5004

0000’
are continuous with respect to a, 65570(;1) is also continuous with respect to a. Hence, we indeed have
< 0o where ar = argsup

Jor ()| = || %5 5| m
a€lap,1]

Proof of Theorem 5: We first make the following decomposition

ol ~1 ~1 S| oAl
aTM(0 ) 1 = aT(9 ) 1 aT(9 ) OtTM(9 ) OéTM(H )
ar(fo) ar(fo) ar(fo) ar(d) ar(d)
By first letting M go to infinity, we obtain the result of Theorem 4 which has been proved for fix 7"

agﬁéi‘))) -1 = Op(M_l/Z). Next, we let T' go to infinity in order to obtain the result of Theorem 3:
~1
ar(9)

~1 N 1
ar@) ~ L= O,(T~'/2). The product of (aT(e ) 1> and (QTME?) - 1) is negligible with respect to

ar(fo) ar(0)

N 1
either of the other terms. Thus, it follows that aofﬁ(gz)) —1=0,(T?) +0,(M~/?).1

Proof of Theorem 6: The mean value Theorem yields:

8@r) ~0(ar) = 2D @y —an),

where @ lies between arys and ap and agp is bounded away from zero, i.e., 3apr >0:ap <ap <1,V

T. From the proof of Theorem 4, we know that g(a) is continuously differentiable with respect to a.

This implies that:

00 (@)
Oa

99 (o)
Oa

< sup
a€lar,1]

= 0,(1).

43



Consequently, the rate of [ (arar) — [ (ar) is determined by the rate at which ary — ar converges to

zero. We have:

Grar — o = oy (O‘TM _ 1) = ¢(0) T~9®) <O‘TM _ 1> = 0,(T~9®)-1/2),
ar ar

provided that M > T. Hence:

90 (@)
da

VT (@(aTM) _ 5(@) - VT (Grar — ar) = O,(T~9P)) = 0,(1),

which shows that v/T' (5(aTM) - 90) and VT (5(0@) - 90) have the same asymptotic distribution.

D Numerical algorithms: Computing the objective function of the
CGMM

The moment function h; (6,7) € L2 (r) for any finite measure 7. Hence, we can take 7 (7) to be the

standard normal density up to a multiplicative constant: 7 (7) = exp {—7'7} . We have:
Krhr (0,7) = / kr (s,7) hr (6, s) exp {—5's} ds.
Rd

This integral can be well approximated numerically by using the Gauss-Hermite quadrature. This

amounts to find m points s1, s3, ...8;m and weighs w1, wo, ...w,, such that:
m
/ P(s)exp{—s's}dz = Zka(sk)
R k=1

for any polynomial function P(.) of order smaller than or equal to 2m — 1. See for example Liu and
Pierce (1994).
If f is differentiable at any order (for example an analytic function), it can be shown that for any

positive € arbitrarily small, there exist m such that:

‘/ f(s)exp{—s's}dx — Zwkf(sk) < e.
Ri k=1

The choice of the quadrature point does not depend on the function f. The quadrature points and

weights are determined by solving:

n
/sl exp{—s°}ds = Zwksfk foralll=1,..,2n —1
k=1
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Applying that method to evaluate the above integral, we get

KThT 0, T ZwkkT Ska )hT (0 Sk)
k=1

~ ~ ~ ~ / —~
Let hr(0) denote the vector (hT (0, sk),hr (0, 8k) ... hr (0, sk)> and Wr denote the matrix with ele-

ments: Wy, = wk%T (8k,s;). Thus we can simply write:
KT};T (9) ~ WT}ZT (9) .

For any given level of precision, the matrix /WT can be looked at as the best finite dimensional reduction

of the operator K. From the spectral decomposition of K;%, it is easy to deduce the approximation:
~ — 1~ ~
K Yhp (0) ~ (W% + a[) Wl (8) = oy (8) .
Finally, the objective function of the CGMM is computed as:

<K;%ET(0 /‘K l/th 0,1 ‘ exp{ TT}dTwak‘hT (0 sk)‘2

where hp (0, s) is the k" component of hr (0).
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