
HAL Id: hal-00867850
https://hal.science/hal-00867850v1

Preprint submitted on 30 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Estimation Using the Characteristic Function
Marine Carrasco, Rachidi Kotchoni

To cite this version:
Marine Carrasco, Rachidi Kotchoni. Efficient Estimation Using the Characteristic Function. 2013.
�hal-00867850�

https://hal.science/hal-00867850v1
https://hal.archives-ouvertes.fr


E¢cient Estimation using

the Characteristic Function�

Marine Carrascoy

University of Montreal

Rachidi Kotchoniz

University of Montreal

First draft: January 2010 This version: July 2013

Abstract

The method of moments proposed by Carrasco and Florens (2000) permits to fully exploit the

information contained in the characteristic function and yields an estimator which is asymptotically

as e¢cient as the maximum likelihood estimator. However, this estimation procedure depends on

a regularization or tuning parameter B that needs to be selected. The aim of the present paper is

to provide a way to optimally choose B by minimizing the approximate mean square error (AMSE)

of the estimator. Following an approach similar to that of Newey and Smith (2004), we derive a

higher-order expansion of the estimator from which we characterize the �nite sample dependence of

the AMSE on B. We provide a data-driven procedure for selecting the regularization parameter that

relies on parametric bootstrap. We show that this procedure delivers a root T consistent estimator

of B. Moreover, the data-driven selection of the regularization parameter preserves the consistency,

asymptotic normality and e¢ciency of the CGMM estimator. Simulation experiments based on a

CIR model show the relevance of the proposed approach.
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1 Introduction

There is a one-to-one relationship between the characteristic function (henceforth, CF) and the proba-

bility distribution function of a random variable, the former being the Fourier transform of the latter.

This implies that an inference procedure based on the empirical CF has the potential to be as e¢cient

as another one that exploits the likelihood function. Paulson et al. (1975) used a weighted modulus

of the di¤erence between the theoretical CF and its empirical counterpart to estimate the parameters

of the stable law. Feuerverger and Mureika (1977) studied the convergence properties of the empir-

ical CF and suggested that "it may be a useful tool in numerous statistical problems". Since then,

many interesting applications have been proposed, including Feuerverger and McDunnough (1981b,c),

Koutrouvelis (1980), Carrasco and Florens (2000), Chacko and Viceira (2003) and Carrasco, Chernov,

Florens, and Ghysels (2007) (henceforth, CCFG (2007)). For a quite comprehensive review of empirical

CF-based estimation methods, see Yu (2004).

The CF provides a good alternative to econometricians when the likelihood function is not available

in closed form. For example, some distributions in the B-stable family are naturally speci�ed via their

CFs while their densities are known in closed form only at isolated points of the parameter space (see e.g.

Nolan, 2009). The density of the Variance-Gamma model of Madan and Seneta (1990) has an integral

representation whereas its CF has a simple closed form expression. The transition density of a discretely

sampled continuous time process is not available in closed form, except when its parameterization

coincides with that of a square-root di¤usion (Singleton, 2001). Even in this special case, the transition

density takes the form of an in�nite mixture of Gamma densities with Poisson weights. The same

type of density arises in the autoregressive Gamma model studied in Gouriéroux and Jasiak (2005).

Ait-Sahalia and Kimmel (2006) propose closed form approximations for the log-likelihood function of

various continuous-time stochastic volatility models. But their method cannot be applied to other

situations without solving a complicated Kolmogorov forward and backward equation. Interestingly,

the conditional CF can be derived in closed form for all continuous-time stochastic volatility models.

The CF, ' (� ; �) ; of a random vector xt 2 R
p (t = 1; :::; T ) is nothing but the expectation of

ei�
0xt with respect the distribution of xt, where � is the parameter that characterizes the distribution

of xt, � 2 R
p is the Fourier index and i is the imaginary number such that i2 = �1. Hence, a

candidate moment condition for the estimation of �0 (i.e., the true value of �) is given by ht(� ; �) =

ei�
0xt � E(ei� 0xt). This moment condition is valid for all � 2 R

p and hence, ht(� ; �) is a moment

function or a continuum of moment conditions. Feuerverger and McDunnough (1981b) propose an

estimation procedure that consists of minimizing a norm of the sample average of the moment function.

Their objective function involves an optimal weighting function that depends on the true unknown

likelihood function. Feuerverger and McDunnough (1981c) apply the Generalized Method of Moments

(GMM) to a discrete set of moment conditions obtained by restricting the continuous index � 2 Rp to
a discrete grid � 2 (�1; �2; :::�N ). They show that the asymptotic variance of the resulting estimator
can be made arbitrarily close to the Cramer-Rao bound by selecting the grid for � su¢ciently �ne

and extended. Similar discretization approaches are used in Singleton (2001) and Chacko and Viceira
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(2003). However, the number of points in the grid for � must not be larger than the sample size for

the covariance matrix of the discrete set of moment conditions to be invertible. In particular, the �rst

order optimality conditions associated with the discrete GMM procedure becomes ill-posed as soon as

the grid (�1; �2; :::�N ) is too re�ned or too extended. Intuitively, the discrete set of moment conditions

fht(� i; �)gNi=1 converges to the moment function � 7! ht(� ; �); � 2 R as this grid is re�ned and extended.
As a result, it is necessary to apply operator methods in a suitable Hilbert space to be able to handle

the estimation procedure at the limit.

Carrasco and Florens (2000) proposed a Continuum GMM (henceforth, CGMM) that permits to

e¢ciently use the whole continuum of moment conditions. Similarly to the classical GMM, the CGMM

is a two-step procedure that delivers a consistent estimator at the �rst step and an e¢cient estimator

at the second step. The ideal (unfeasible) objective function of the second step CGMM is a quadratic

form in an suitably de�ned Hilbert space with metrics K�1, where K is the asymptotic covariance

operator associated with the moment function ht(� ; �). To obtain a feasible e¢cient CGMM estimator,

one replaces the operator K by an estimator KT obtained from a �nite sample. However, the latter

empirical operator is degenerate and not invertible while its theoretical counterpart is invertible only

on a dense subset of the reference space. To circumvent these di¢culties, Carrasco and Florens (2000)

resorted to a Tikhonov-type regularized inverse of KT , e.g. KBT =
�
K2
T + BI

��1
KT , where I is the

identity operator and B is a regularization parameter. The CGMM estimator is root-T consistent and

asymptotically normal for any �xed and reasonably small value of B. However, asymptotic e¢ciency is

obtained only by letting BT 1=2 go to in�nity and B go to zero as T goes to in�nity.

The main objective of this paper is to characterize the optimal rate of convergence for B as T goes

to in�nity. To this end, we derive a Nagar (1959) type stochastic expansion of the CGMM estimator.

This type of expansion has been used in Newey and Smith (2004) to study the higher order properties

of empirical likelihood estimators. We use our expansion to �nd the convergence rates of the higher

order terms of the MSE of the CGMM estimator. These rates depend on both B and T . We �nd that

the higher order bias of the CGMM estimator is dominated by two higher order variance terms. By

equating the rates of these dominant term, we �nd an expression of the form BT = c (�0)T
�g(C), where

c (�0) does not depend on T and g (C) inherits some properties from the covariance operator K. To

implement the optimal selection of B empirically, we advocate a naive estimator of BT obtained by

minimizing an approximate MSE of the CGMM estimator obtained by parametric bootstrap. Even

though the CGMM estimator is consistent, there is a concern that its variance be in�nite in �nite

sample for certain data generating processes. This concern seems unfounded for the CIR model on

which our Monte Carlo simulations are based. If applicable, this di¢culty is avoided by truncating the

AMSE similarly as in Andrews (1991).

The remainder of the paper is organized as follows. In Section 2, we review the properties of the

CGMM estimator in IID and Markov cases. In Section 3, we derive a higher-order expansion for the

MSE of the CGMM estimator and use this expansion to obtain the optimal rate of convergence for the

regularization parameter BT . In Section 4, we describe a simulation-based method to estimate BT and

show the consistency of the resulting estimator. Section 5 presents a simulation study based on the
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CIR term structure model and Section 6 concludes. The proofs are collected in appendix.

2 Overview of the CGMM

This section is essentially a summary of known results about the CGMM estimator. The �rst subsec-

tion present a general framework for implementing the CF-based CGMM procedure whilst the second

subsection presents the basic properties of the resulting estimator.

2.1 The CGMM Based on Characteristic function

Let xt 2 Rp be a random vector process whose distribution is indexed by a �nite dimensional parameter
� with true value �0. When the process xt is IID, Carrasco and Florens (2000) propose to estimate �0

based on the moment function given by:

ht(� ; �) = e
i� 0xt+1 � '(� ; �); (1)

where '(� ; �) = E�
�
ei�

0xt+1
�
is the CF of xt and E

� is the expectation operator with respect to the

data generating process indexed by �.

CCFG (2007) extend the scope of the CGMM procedure to Markov and weakly dependent models.

In this paper, we restrict our attention to IID and Markov cases. The moment function used in CCFG

(2007) for the Markov case is:

ht(� ; �) =
�
eis

0xt+1 � 't(s; �)
�
eir

0xt : (2)

where 't(s; �) = E
�(eis

0xt+1 jxt) is the conditional CF of xt and � = (s; r) 2 R2p. In equation (2), the
set of basis functions feir0xtg is being used as instruments. CCFG (2007) show that these instruments
are optimal given the Markovian structure of the model. Moment conditions de�ned by (1) are IID

whereas equation (2) describes a martingale di¤erence sequence.

Note that a standard conditional moment restriction (i.e., non CF-based) can be converted into

a continuum of moment unconditional moment restrictions featuring (2). In this case, the CGMM

estimator may be viewed as an alternative to the estimator proposed by Dominguez and Lobato (2004)

and to the smooth minimum distance estimator of Lavergne and Patilea (2008). Subsequently, we use

the generic notation ht(� ; �); � 2 Rd to denote a moment function de�ned by either (1) or (2), where
d = p for (1) and d = 2p for (2).

Let � be a probability distribution function on Rd and L2(�) be the Hilbert space of complex valued

functions that are square integrable with respect to �, i.e.:

L
2(�) = ff : Rd ! Cj

Z
f(�)f(�)�(�)d� <1g; (3)

where f(�) denotes the complex conjugate of f(�). As jht(:; �)j2 � 2 for all � 2 �, the function ht(:; �)
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belongs to L2(�) for all � 2 � and for any �nite measure �. Hence, we consider the following scalar

product on L2(�)� L2(�):
hf; gi =

Z
f(�)g(�)�(�)d�: (4)

Based on this notation, the e¢cient CGMM estimator is given by

b� = argmin
�

D
K�1bhT (:; �);bhT (:; �)

E
:

where K is the asymptotic covariance operator associated with the moment conditions. K is an integral

operator and satis�es:

Kf (�1) =

Z 1

�1

k(�1; �)f (�)� (�) d�; for any f 2 L2 (�) ; (5)

where k(�1; �2) is the kernel given by:

k(�1; �2) = E
�
ht(�1; �)ht(�2; �)

�
: (6)

Some basic properties of the operator K are discussed in Appendix A.

With a sample of size T and a consistent �rst step estimator b�1 in hand, one estimates k(�1; �2) by:

kT (�1; �2;b�
1
) =

1

T

TX

t=1

ht(�1;b�
1
)ht(�2;b�

1
): (7)

In the speci�c case of IID data, an estimator of the kernel that does not use a �rst step estimator is

given by:

kT (�1; �2) =
1

T

TX

t=1

�
ei�

0
1xt � b'T (�1)

� �
ei�

0
2xt � b'T (�2)

�
: (8)

where b'T (�1) = 1
T

PT
t=1 e

i� 01xt . Unfortunately, an empirical covariance operatorKT with kernel function

given by either (7) or (8) is degenerate and not invertible. Indeed, the inversion of KT raises a problem

similar to one of the Fourier inversion of an empirical characteristic function. This problem is worsened

by the fact that the inverse of K which KT is aimed at estimating exists only on a dense subset of

L2 (�). Moreover, when K�1f = g exists for a given function f , a small perturbation in f may give

rise to a large variation in g.

To circumvent these di¢culties, we consider estimating K�1 by:

K�1
BT =

�
K2
T + BI

��1
KT ;

where the hyperparameter B plays two roles. First, it is a smoothing parameter as it allows K�1
BT f to

exist for all f in L2 (�). Second, it is a regularization parameter as it dampens the sensitivity of K�1
BT f

to perturbations in the input f . For any function f in the range of K and any consistent estimator
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bfT of f , K�1
BT
bfT converges to K�1f as T goes to in�nity and B goes to zero at appropriate rate. The

expression for K�1
BT uses a Tikhonov regularization, also called ridge regularization. Other forms of

regularization could have been used, see e.g. Carrasco, Florens and Renault (2007).

The feasible CGMM estimator is given by:

b�T (B) = argmin
�

bQT (B; �) ; (9)

where bQT (B; �) =
D
K�1
BT
bhT (:; �);bhT (:; �)

E
. An expression of the objective function bQT (B; �) in matrix

form is given in CCFG (2007a, Section 3.3). An alternative expression and a numerical algorithm for

the numerical evaluation of this objective function based on Gauss-Hermite quadratures is described in

Appendix D.

2.2 Consistency and Asymptotic Normality

In order to study the properties of a CGMM estimator obtained within the framework described pre-

viously, the following assumptions are posited:

Assumption 1: The probability density function � is strictly positive on Rd and admits all its

moments.

Assumption 2: The equation

E�0 (ht(� ; �)) = 0 for all � 2 Rd; � � almost everywhere,

has a unique solution �0 which is an interior point of a compact set �.

Assumption 3: ht(� ; �) is three times continuously di¤erentiable with respect to �. Furthermore,

the �rst two derivatives satisfy:

V ar

 
1p
T

TX

t=1

@ht(� ; �)

@�j

!
<1 and V ar

 
1p
T

TX

t=1

@2ht(� ; �)

@�j@�k

!
<1;

for all j, k and T .

Assumption 4: E�0 (hT (:; �)) 2 �C for all � 2 � and for some C � 1, and the �rst two derivatives
of E�0 (hT (:; �)) w.r.t. � belong to �C for all � in a neighborhood of �0 and for the same C as previously,

where:

�C =
n
f 2 L2 (�) such that

DDDK�Cf
DDD <1

o
(10)

Assumption 5: The random variable xt is stationary Markov and satis�es xt = r (xt�1; �0; "t)

where r (xt�1; �0; "t) is three times continuously di¤erentiable with respect to �0 and "t is a IID white

noise whose distribution is known and does not depend on �0.

Assumption 1 and 2 are quite standard and they have been used in Carrasco and Florens (2000).

The �rst part of Assumption 3 ensures some smoothness properties for b�T (B) while the second part
is always satis�ed for IID models. The largest real C such that f 2 �C in Assumption 4 may be
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called the level of regularity of f with respect to K: the larger C is, the better f is approximated by a

linear combination of the eigenfunctions of K associated with the highest eigenvalues. Because Kf(:)

involve a d-dimensional integration, C may be a¤ected by both the dimensionality of the index � and the

smoothness of f . CCFG (2007) have shown that we always have C � 1 if f = E�0 (ht(� ; �)). Assumption
5 implies that the data can be simulated upon knowing how to draw from the distribution of "t. It is

satis�ed for all random variables that can be written as a location parameter plus a scale parameter

time a standardized representative of the family of distribution. Examples include the exponential

family and the stable distribution. The IID case is a special case of Assumption 5 where r (xt�1; �0; "t)

takes the simpler form r (�0; "t). Further discussions on this type of model can be found in Gourieroux,

Monfort, and Renault (1993) in the indirect inference context. Note that the function r (xt�1; �0; "t)

may not be available in analytical form. In particular, the relation xt = r (xt�1; �0; "t) can be the

numerical solution of a general equilibrium asset pricing model (e.g., as in Du¢e and Singleton, 1993).

We have the following results:

Theorem 1 Under Assumptions 1 to 5, the CGMM estimator is consistent and satis�es:

T 1=2
�
b�T (B)� �0

�
L! N(0; I�1�0 ):

as T and BT 1=2 go to in�nity and B goes to zero, where I�1�0 denotes the inverse of the Fisher Information

Matrix.

See Proposition 3.2 of CCFG (2007) for a more general statement of the consistency and asymptotic

normality result. A nice feature about the CGMM estimator is that its asymptotic distribution does

not depend on the probability density function �.

3 Stochastic expansion of the CGMM estimator

The conditions required for the asymptotic e¢ciency result stated by Theorem 1 allow for a wide range

of convergence rates for B. Indeed, any sequence of type BT = cT�a (with c > 0) satis�es these

conditions as soon as 0 < a < 1=2. Among the admissible convergence rates, we would like to �nd

the one that minimizes the mean square error of the CGMM estimator for a given sample size T .

To achieve this, we consider deriving the stochastic expansion of the CGMM estimator. The higher

order properties of GMM-type estimators have been studied by Rothenberg (1983, 1984), Koenker et

al. (1994), Rilstone et al. (1996) and Newey and Smith (2004). For estimators derived in the linear

simultaneous equation framework, examples include Nagar (1959), Buse (1992) and Donald and Newey

(2001). The approach followed here is similar to Nagar (1959) and Newey and Smith (2004), which

tries to approximate the MSE of an estimator analytically based on the leading terms of its stochastic

expansion.

Two di¢culties arise when analyzing the terms of the expansion of the CGMM estimator. First,

when the rate of B as a function of T is unknown, it is not always possible to write the terms of the
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expansion in decreasing order. The second di¢culty stems from a result that dramatically di¤ers from

the case with a �nite number of moment conditions. Indeed, when the number of moment conditions

is �nite, the quadratic form TbhT (�0)0K�1bhT (�0) is Op (1) and follows asymptotically a chi-square
distribution with degrees of freedom given by the number of moment conditions. However, the analogue

of the previous quadratic form,
DDDK�1=2

p
TbhT (�0)

DDD
2
, is not well de�ned in the presence of a continuum

of moment conditions. Its regularized version,
DDDK�1=2

B

p
TbhT (�0)

DDD
2
, exists but diverges as T goes to

in�nity and B goes to zero. Indeed, we have

DDDK�1=2
B

p
TbhT (�0)

DDD �
DDD
�
K2 + BI

��1=4DDD
| {z }

�B�1=4

DDD
�
K2 + BI

��1=4
K1=2

DDD
| {z }

�1

DDD
p
TbhT (�0)

DDD
| {z }

=Op(1)

(11)

= Op

�
B�1=4

�
.

The expansion that we derive for b�T (B)��0 is of the same form for both the IID and Markov cases.
Namely:

b�T (B)� �0 = �1 +�2 +�3 + op
�
B�1T�1

�
+ op

�
Bmin(1;

2C�1
2
)T�1=2

�
(12)

where �1 = Op
�
T�1=2

�
; �2 = Op

�
Bmin(1;

2C�1
2
)T�1=2

�
and �3 = Op

�
B�1T�1

�
. Appendix B provides

details about the above expansion whose validity is ensured by the consistency result of Theorem 1.

In deriving the expansion above, we wish to �nd the rate of convergence of the B which minimizes the

leading terms of the MSE:

MSE (B; �0) = TE

�
T
�
b�T (B)� �0

��
b�T (B)� �0

�0�
(13)

We have the following results on the higher order MSE matrix and on the optimal convergence rate for

the regularization parameter.

Theorem 2 Assume that Assumptions 1 to 5 hold. Then we have:

(i) The approximate MSE matrix of b�T (B) up to order O
�
B�1T�1=2

�
(henceforth, AMSE) is de-

composed as the sum of the squared bias and variance:

AMSE (B; �0) = TBias �Bias0 + TV ar

where

TBias �Bias0 = O
�
B�2T�1

�
;

TV ar = I�1�0 +O
�
Bmin(2;

2C�1
2 )
�
+O

�
B�1T�1=2

�
:

as T !1, B2T !1 and B! 0.
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(ii) The B that minimizes the trace of AMSE (B; �0), denoted BT � BT (�0), satis�es:

BT = O
�
T
�max( 1

6
; 1
2C+1

)
�
:

Remarks.

1. We have the usual trade-o¤ between a term that is decreasing in B and another that is increasing

in B. Interestingly, the squared bias term is dominated by two higher order variance terms whose rates

are equated to obtain the optimal rate for the regularization parameter. The same situation happens

for the Limited Information Maximum Likelihood estimator for which the bias is also dominated by

variance terms (see Donald and Newey, 2001).

2. The rate for the O
�
Bmin(2;

2C�1
2 )
�
variance term does not improve for C > 2:5. This is due to a

property of Tikhonov regularization that is well documented in the literature on inverse problems, see

e.g. Carrasco, Florens and Renault (2007). The use of another regularization such as spectral cut-o¤

or Landweber-Fridman would permit to improve the rate of convergence for large values of C. However,

this improvement comes at the cost of a greater complexity in the proofs (e.g. in the spectral cut-o¤,

we lose the di¤erentiability of the estimator with respect to B).

3. Our expansion is consistent with the condition of Theorem 1, since the optimal regularization

parameter BT satis�es B
2
TT !1.

4. It follows from Theorem 2 that the optimal regularization parameter BT is necessarily of the

form:

BT = c (�0)T
�g(C); (14)

for some positive function c (�0) that does not depend on T and a positive function g (C) that satis�es

max
�
1
6 ;

1
2C+1

�
� g (C) < 1=2. An expression of the form (14) is often used as starting point for optimal

bandwidth selection in nonparametric density estimation. Examples in the semiparametric context

include Linton (2002) and Jacho-Chavez (2010).

4 Estimation of the Optimal Regularization parameter

Our purpose is to select the regularization parameter B so as to minimize the trace of the MSE matrix

of b�T (B) for a given sample of size T , i.e.:

BT (�0) = arg min
B2[0;1]

�T (B; �0) ;

where �T (B; �0) = TE

�DDDb�T (B)� �0
DDD
2
�
. This raises at least three problems. First, the MSE

�T (B; �0) might be in�nite in �nite samples even though b�T (B) is consistent.1 Second, the true

parameter value �0 is unknown. Third, the �nite sample distribution of b�T (B)� �0 is not known even
1This is due to the fact that b�T (B) is a GMM-type estimator. The large sample properties of such estimators are

well-known whilst their �nite sample properties can be established only a special cases.
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when �0 is known. Each of these problems is examined below.

The variance of b�T (B) may be in�nite for some data generating processes. To hedge against such
situations, one may consider a truncated MSE of the form:

�T (B; �0; �) = TE [�T (B; �0) j�T (B; �0) < n� ] ; (15)

where �T (B; �) �
DDDb�T (B)� �

DDD
2
and n� satis�es � = Pr (�T (B; �0) > n�). A similar approach has been

used in Andrews (1991, p. 826). Given that the �nite sample distribution of b�T (B) is unknown in
practice, it is convenient to �rst select the probability of truncation � (e.g., � = 1%) and then deduce

the corresponding quantile n� by simulation. To account for the possibility of the pair (�; n�) depending

on B, one may consider instead:

�T (B; �0; �) = (1� �)TE [�T (B; �0) j�T (B; �0) < n� ] + �n�T; (16)

which accounts for the probability mass at the truncation boundary. Note that the truncation will play

no role if the MSE of b�T (B) is �nite. In this case, we simply let:

�T (B; �0; 0) � �T (B; �0) = TE [�T (B; �0)] : (17)

As b�T (B) is asymptotically normal, its second moment exists for large enough T . Hence, the truncation
disappears (i.e., each of the expressions (15) and (16) converges to (17)) if one let � go to zero as T

goes to in�nity.2

We de�ne the optimal regularization parameter as:

BT (�0) = arg min
B2[0;1]

�T (B; �0; �) ; (18)

where �T (B; �0; �) is given by either (15), (16) or (17).

Our strategy for estimating BT (�0) relies on approximating the unknown MSE by parametric boot-

strap. Let b�1T be the CGMM estimator of �0 obtained by replacing the covariance operator with the

identity operator. This estimator is consistent and asymptotically normal albeit ine¢cient. We use b�1T
to simulate M independent samples of size T , denoted X

(j)
T (b�1) for j = 1; 2; :::;M . It should be empha-

sized that we have adopted a fully parametric approach from the beginning by assuming that the model

of interest is fully speci�ed. Indeed, it would not be possible to obtain MLE e¢ciency otherwise. The

model can be simulated by exploiting Assumption 5, which stipulates that the data generating process

satis�es xt = r (xt�1; �; "t). To start with, one �rst generates MT IID draws "
(j)
t (for j = 1; :::;M and

t = 1; :::; T ) from the known distribution of the errors. Next, M time-series of size T are obtained by

applying the recursion x
(j)
t = r

�
x
(j)
t�1;

b�1T ; "
(j)
t

�
, t = 1; :::; T , from M arbitrary starting values x

(j)
0 .

Using the simulated samples, one computes M IID copies of the CGMM estimator for any given

2As n� ! 1 as � ! 0, one might be concerned by the limiting behavior of �n� as � ! 0 when �T (B; �0) is in�nite.
However, this is not an issue as long as n� is �nite for all �nite T .
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B. We let b�jT (B;b�
1

T ) denote the CGMM estimator computed from the jth sample. The truncated MSE

given by (15) is estimated by:

b�TM
�
B;b�1T ; �

�
=

T

(1� �)M

MX

j=1

�j;T (B;
b�1T )1

�
�j;T (B;

b�1T ) � bn�
�
; (19)

where �j;T (B;
b�1T ) =

DDDb�jT (B;b�
1

T )� b�
1

T

DDD
2
, � is a probability selected by the econometrician and bn� satis�es:

1

M

MX

j=1

1
�
�j;T (B;

b�1T ) � bn�
�
= 1� �;

The truncated MSE based on the alternative Formula (16) is estimated by:

b�TM
�
B;b�1T ; �

�
=
T

M

MX

j=1

�j;T (B;
b�1T )1

�
�j;T (B;

b�1T ) � bn�
�
+ �bn�T: (20)

With no truncation, (21) and (19) are identical to the naive MSE estimator given by:

b�TM
�
B;b�1T

�
=
T

M

MX

j=1

�j;T (B;
b�1T ); (21)

which is aimed at estimating (17). Finally, we select the optimal regularization parameter according

to:

bBTM
�
b�1
�
= argmin

B2[0;1]

b�TM
�
B;b�1; �

�
; (22)

where b�TM
�
B;b�1; �

�
is either (19), (20) or (21).

Let �T

�
B;b�1; �

�
be the limit of b�TM

�
B;b�1; �

�
as the number of replications M goes to in�nity

and de�ne:

BT

�
b�1
�
= argmin

B2[0;1]
�T

�
B;b�1; �

�
:

Note that BT

�
b�1
�
is a deterministic function of a stochastic argument while bBTM

�
b�1
�
is doubly

random, being a stochastic function of a stochastic argument. The estimator BT

�
b�1
�
is not feasible.

However, its properties are the key ingredients for establishing the consistency of its feasible counterpart

bBTM
�
b�1
�
. To pursue, we need the following assumption:

Assumption 6: The regularization parameter B that minimizes (the possibly truncated criterion)

�T (B; �0; �) is of the form BT (�0) = c (�0)T
�g(C), for some continuous positive function c (�0) that

does not depend on T and a positive function g (C) that satis�es max
�
1
6 ;

1
2C+1

�
� g (C) < 1=2.

Basically, Assumption 6 requires that the optimal rate found for the regularization parameter at (14)

11



be insensitive to the MSE truncation scheme. This assumption ensures that BT

�
b�1
�
= c

�
b�1
�
T�g(C)

and is necessarily satis�ed as T goes to in�nity and � goes to zero. The following result can further be

proved.

Theorem 3 Let b�1 be a
p
T�consistent estimator of �0. Then under Assumptions 1 to 5, BT (

b�
1
)

BT (�0)
� 1

converges in probability to zero as T goes to in�nity.

In Theorem 3, the function BT (:) is deterministic and continuous but the argument b�
1
is stochastic.

As T goes to in�nity, b�1 gets closer and closer to �0; but at the same time BT (�0) converges to zero at
some rate that depends on T . This prevents us from claiming without caution that BT (

b�
1
)

BT (�0)
� 1 = op(1)

since the denominator is not bounded away from zero. The next theorem characterizes the rate of

convergence of bBTM (�0)BT (�0)
.

Theorem 4 Under assumptions 1 to 5, bBTM (�0)BT (�0)
� 1 converges in probability to zero at rate M�1=2 as

M goes to in�nity and T is �xed.

In Theorem 4, bBTM (�0) is the minimum of the empirical MSE simulated with the true �0. In the

proof, one �rst shows that the conditions of the uniform convergence in probability of the empirical

MSE are satis�ed. Next, one uses Theorem 2.1 of Newey and McFadden (1994) and the fact that

BT (�0) is bounded away from zero for any �nite T to establish the consistency of bBTM (�0)BT (�0)
. In the next

theorem, we revisit the previous results when �0 is replaced by a consistent estimator b�
1
.

Theorem 5 Let b�1 be a
p
T�consistent estimator of �0. Then under assumptions 1 to 5, bBTM (

b�
1
)

BT (�0)
�1 =

Op(T
�1=2) +Op(M

�1=2) as M goes to in�nity �rst and T goes to in�nity second.

The result of Theorem 5 is obtained by using a sequential limit in M and T , which is needed here

because Theorem 4 has been derived for �xed T . Such sequential approach is often used in panel data

econometrics, see for instance Phillips and Moon (1999). It is also used implicitly in the theoretical

analysis of bootstrap.3 Theorem 5 implies that bBTM (b�
1
) bene�ts from an increase in both M and T .

The last theorem compares the feasible CGMM estimator based on bBTM to the unfeasible estimator
b� (BT ), where BT is de�ned in (14).

Theorem 6 Let bBTM = bBTM (b�
1
) de�ned in (22). Then:

p
T
�
b� (bBTM )� b� (BT )

�
= Op(T

�g(C));

provided that M � T .
3The properties of a bootstrap estimator are usually derived using its bootstrap distribution, hence letting M go to

in�nity before T .
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Hence, theorem 6 implies that the distribution of
p
T
�
b� (bBTM )� �0

�
is the same as the distribution

of
p
T
�
b� (BT )� �0

�
to the order T�g(C). This ensures that replacing BT by a consistent estimator bBTM

such that bBTM
BT

� 1 = op(1) does not a¤ect the consistency, asymptotic normality and e¢ciency of the
�nal CGMM estimator b� (bBTM ). The proof of this theorem relies mainly on the fact that b� (B) is
continuously di¤erentiable with respect to B whilst the optimal BT is bounded away from zero for any

�nite T . Overall, our selection procedure for the regularization parameter is optimal and adaptive as

it does not require the a priori knowledge of the regularity parameter C.

5 Monte Carlo Simulations

The aim of this simulation study is to investigate the properties of the MSE function b�TM
�
B;b�1T ; �

�

as the regularization parameter (B), the sample size (T ) and the number of replications (M) vary.

For this purpose, we consider estimating the parameters of a square-root di¤usion (also known as the

CIR di¤usion) by CGMM. Below, the �rst subsection describes the simulation design whilst the second

subsection presents the simulation results.

5.1 Simulation Design

A continuous time process rt is said to follows a CIR di¤usion if it obeys the following stochastic

di¤erential equation:

drt = � (C � rt) dt+ �
p
rtdWt (23)

where the parameter � > 0 is the strength of the mean reversion in the process, C > 0 is the long run

mean and � > 0 controls the volatility of rt. This model has been widely used in the asset pricing

literature, see e.g Heston (1993) or Singleton (2001). It is shown in Feller (1951) that Equation (23)

admits a unique and positive fundamental solution if �2 � 2�C.
We assume that rt is observed at regularly spaced discrete times t1; t2; ..., tT such that ti�ti�1 = �.

The conditional distribution of rt given rt�� is a noncentered chi-square with possibly fractional order.

Its transition density is a Bessel function of type I, which can be represented as an in�nite mixture of

Gamma densities with Poisson weights:

f (rtjrt��) =
1X

j=0

pj
rj+qk�1t cj+q

� (j + q)
exp (�crt)

where c = 2�
�2(1�e���)

, q = 2�C
�2

and pj =
(ce���rt��)

j
exp(�ce���rt��)
j! : To implement a likelihood based

inference for this model, one has to truncate the expression of f (rtjrt��). However, the conditional
CF of rt has a simple closed form expression given by:

't(s; �) � E
�
eisrt jrt��

�
=

�
1� is

c

��q
exp

 
ise���Vt�1

1� is
c

!
(24)
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with � = (�; C; �)0.

To start, we simulate one sample of size T from the CIR process assuming � = 1 and the true value

of � is:

�0 = (�0; C0; �0) = (0:4; 6:0; 0:3) :

These parameter values are taken from Singleton (2001). We refer the reader to DeVroye (1986) and

Zhou (2001) for details on how to simulate a CIR process. We treat this simulated sample as the actual

data available to the econometrician and use it to estimate the �rst step CGMM estimator b�1T as:

b�1T = argmin
�

Z

R2

bhT (� ; �)bhT (� ; �)e��
0�d�;

where bhT (� ; �) = 1
T�1

PT
i=2

�
ei�1rti � 't(s; �)

�
ei�2rti�1 , � = (�1; �1) 2 R2 and 't(s; �) is given by (24).

Next, we simulate M samples of size T using b�1T as pseudo-true parameter value. Each simulated
samples is used to compute the second step CGMM estimator b�T;j (B) as:

b�T;j (B) = argmin
�

Z

R2

�
K�1
BT
bhT (� ; �)

�
bhT (� ; �)e��

0�d� (25)

The objective function (25) is evaluated using a Gauss-Hermite quadrature with ten points. The

regularization parameter B is selected on a thirty points grid that lies between 10�10 and 10�2, that is:

B 2 [10�10; 2:5� 10�10; 5� 10�10; 7:5� 10�10; 1� 10�9; :::; 1� 10�2]

For each B in this grid, we compute the MSE using Equation (21) (i.e., no truncation of the distribution

of
DDDb�T;j (B)� b�

1

T

DDD
2
).

5.2 Simulations results

Table 1 shows the simulations T = 251, 501, 751 and 1001 for two di¤erent values of M . For a

given sample size T , the scenarios with M = 500 and M = 1000 use common random numbers (i.e.,

the results for M = 500 are based on the �rst 500 replications of the scenarios with M = 1000).

Curiously enough, the estimate of bBTM (b�
1
) is consistently equal to 2:5 � 10�6 across all scenarios

except (T = 251;M = 1000) and (T = 1001;M = 500). This result might be suggesting that the

grid on which B is selected is not re�ned enough. Indeed, the value that is immediately smaller than

2:5�10�6 on that grid is 1:0�10�6, which is selected for the scenario (T = 1001;M = 500). Arguably,

the results suggest that the rate of convergence of BT (�0) to zero is quite slow for this particular data

generating process. Overall, 2:5� 10�6 seems a reasonable choice for the regularization parameter for
all sample sizes for this data generating process. Note that our simulations results do not allow us to

infer the behavior of BT (�0) as �0 vary in the parameter space.

Figure 1 presents the simulated MSE curves. For all eight scenarios, these curves are convex and
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have one minimum. The hump-shaped left tail of the MSE curves for T = 251 stems to the fact that

the approximating matrix of the covariance operator (see Appendix D) is severely ill-posed. Hence, the

shape of the MSE curve re�ects the distortions in�icted to the eigenvalues of the regularized inverse

of this approximating matrix as B varies. A smaller number of quadrature points should be used for

smaller sample sizes in order to mitigate this ill-posedness and obtain perfectly convex MSE curves.

Table 1: Estimation of BT for di¤erent sample size.

M = 500 M = 1000

bBTM (b�
1
) 1

T
b�TM bBTM (b�

1
) 1

T
b�TM

T = 251 2:5� 10�6 0:0270 7:5� 10�7 0:0289

T = 501 2:5� 10�6 0:0114 2:5� 10�6 0:0119

T = 751 2:5� 10�6 0:0066 2:5� 10�6 0:0065

T = 1001 1:0� 10�6 0:0057 2:5� 10�6 0:0053

Figure 1: MSE curves of the CGMM estimator for di¤erent M and T .

The vertical axis shows 1
T
b�TM = 1

M

PM
j=1 �j;T (B;

b�1T ) and the horizontal axis is scaled as logB10 :
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6 Conclusion

The objective of this paper is to provide a method to optimally select the regularization parameter

denoted B in the CGMM estimation. First, we derive a higher order expansion of the CGMM estimator

that sheds light on how the �nite sample MSE depends on the regularization parameter. We obtain the
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convergence rate for the optimal regularization parameter BT by equating the rates of two higher order

variance terms. We �nd an expression of the form BT = c (�0)T
�g(C), where c (�0) does not depend of

the sample size T and 0 � g (C) � 1=2, where C is the regularity of the moment function with respect
to the covariance operator (see Assumption 4).

Next, we propose an estimation procedure for BT that relies on the minimization of an approximate

MSE criterion obtained by Monte Carlo simulations. The proposed estimator, bBTM , is indexed by the
sample size T and the number of Monte Carlo replications M . To hedge against situations where the

MSE is not �nite, we propose to base the selection of BT on a truncated MSE that is always �nite.

Under the assumption that the truncation scheme does not alter the rate of BT , bBTM is consistent for

BT as T and M increase to in�nity. Our simulation-based selection procedure has the advantage to be

easily applicable to other estimators, for instance it could be used to select the number of polynomial

terms in the e¢cient method of moments procedure of Gallant and Tauchen (1996). The optimal

selection of the regularization parameter permits to devise a fully feasible CGMM estimator that is a

real alternative to the maximum likelihood estimator.
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Appendix

A Some basic properties of the covariance operator

For more formal proofs of the results mentioned in this appendix, see Carrasco, Florens and Renault

(2007). Let K be the covariance operator de�ned in (5) and (6), and bht (� ; �) the moment function
de�ned in (1) and (2). Finally, let �C be the subset of L

2 (�) de�ned in Assumption 4.

De�nition 7 The range of K denoted R(K) is the set of functions g such that Kf = g for some f in

L2 (�).

Proposition 8 R(K) is a subspace of L2 (�).

Note that the kernel functions k(s; :) and k(:; r) are elements of L2 (�) because

jk(s; r)j2 =
CCCE
h
ht(�; s)ht(�; r)

iCCC
2
� 4; 8 (s; r) 2 R2p (1)

Thus for any f 2 L2 (�), we have

jKf (s)j2 =

CCCC
Z
k(s; r)f (r)� (r) dr

CCCC
2

�
Z
jk(s; r)f (r)j2 � (r) dr

� 4

Z
jf (r)j2 � (r) dr <1;

implying

kKfk2 =
Z
jKf (s)j2 � (s) ds <1) Kf 2 L2 (�) :

De�nition 9 The null space of K denoted N(K) is the set of functions f in L2 (�) such that Kf = 0.

The covariance operatorK associated with a moment function based on the CF is such that N(K) =

f0g. See CCFG (2007).

De�nition 10 � is an eigenfunction of K associated with eigenvalue � if and only if K� = ��.

Proposition 11 Suppose �1 � �2 � :::: � �j � ::: are the eigenvalues of K. Then the sequence
�
�j
	

satis�es: (i) �j > 0 for all j, (ii) �1 <1 and lim
j!1

�j = 0.

Remark. The covariance operator associated with the CF-based moment function is necessarily

compact.

Proposition 12 Every f 2 L2 (�) can be decomposed as: f =
P1
j=1

A
f; �j

B
�j.

As a consequence, Kf =
P1
j=1

A
f; �j

B
K�j =

P1
j=1

A
f; �j

B
�j�j .
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Proposition 13 If 0 < C1 � C2; then �C2 � �C1.

We recall that �C is the set of functions such that
DDK�Cf

DD < 1. In fact, f 2 R(KC2) ) K�C2f

exist and
DDK�C2f

DD2 =P1
j=1 �

�2C2
j

CCAf; �j
BCC2 <1: Thus if f 2 R(KC2), we have:

DDDK�C1f
DDD
2
=

1X

j=1

�
2(C2�C1)
j �

�2C2
j

CCAf; �j
BCC2 � �2(C2�C1)1

1X

j=1

�
�2C2
j

CCAf; �j
BCC2 <1

) K�C1f exist ) f 2 R(KC1). This means R(K) � R(K1=2) so that the function K�1=2f is de�ned

on a wider subset of L2(�) compared to K�1f . When f 2 �1,
A
K�1=2f;K�1=2f

B
=
A
K�1f; f

B
. But

when f 2 �C for 1=2 � C < 1, the quadratic form
A
K�1=2f;K�1=2f

B
is well de�ned while

A
K�1f; f

B
is

not.

B Expansion of the MSE and proofs of Theorems 1 and 2

B.1 Preliminary results and proof of Theorem 1

Lemma 14 Let K�1
B = (K2 + BI)�1K and assume that f 2 �C for some C > 1. Then as B goes to

zero and n goes to in�nity, we have:

DDK�1
BT �K�1

B

DD = Op

�
B�3=2T�1=2

�
; (2)

DD�K�1
BT �K�1

B

�
f
DD = Op

�
B�1T�1=2

�
; (3)

DD�K�1
B �K�1

�
f
DD = O

�
Bmin(1;

C�1
2
)
�
; (4)

A�
K�1 �K�1

B

�
f; f
B
= O

�
Bmin(1;

2C�1
2 )
�
: (5)

Proof of Lemma 14. Subsequently, �j ; j = 1; 2:::;1 denote the eigenfunctions of the covariance

operator K associated respectively with the eigenvalues �j ; j = 1; 2:::;1. We �rst consider (2). By the
triangular inequality:

DD(K2
T + BI)

�1KT � (K2 + BI)�1K
DD

�
DD(K2

T + BI)
�1(KT �K)

DD+
DD(K2

T + BI)
�1K � (K2 + BI)�1K

DD
�
DD(K2

T + BI)
�1
DD

| {z }
�B�1

kKT �Kk| {z }
=Op(T�1=2)

+
DD�(K2

T + BI)
�1 � (K2 + BI)�1

�
K
DD ;

where kKT �Kk = Op
�
T�1=2

�
follows from Proposition 3.3 (i) of CCFG (2007). We have:

DD�(K2
T + BI)

�1 � (K2 + BI)�1
�
K
DD

=
DD(K2

T + BI)
�1
�
K2 �K2

T

�
(K2 + BI)�1K

DD

�
DD(K2

T + BI)
�1
DD

| {z }
�B�1

DD�K2 �K2
T

�DD
| {z }
=Op(T�1=2)

DDD(K2 + BI)�1=2
DDD

| {z }
�B�1=2

DDD(K2 + BI)�1=2K
DDD

| {z }
�1
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This proves (2).

The di¤erence between (2) and (3) is that in (3) we exploit the fact that f 2 �C with C > 1, henceDDK�1f
DD <1. We can rewrite (3) as

DD�K�1
BT �K�1

B

�
f
DD =

DD�K�1
BT �K�1

B

�
KK�1f

DD �
DD�K�1

BT �K�1
B

�
K
DDDDK�1f

DD :

We have

�
K�1
BT �K�1

B

�
K = (K2

T + BI)
�1KTK � (K2 + BI)�1K2

= (K2
T + BI)

�1 (KT �K)K (6)

+
�
(K2

T + BI)
�1 � (K2 + BI)�1

�
K2: (7)

The term (6) can be bounded in the following manner

DD(K2
T + BI)

�1 (KT �K)K
DD �

DD(K2
T + BI)

�1
DD

| {z }
�B�1

kKT �Kk| {z }
=Op(T�1=2)

kKk

= Op

�
B�1T�1=2

�
:

For the term (7), we use the fact that A�1=2 �B�1=2 = A�1=2
�
B1=2 �A1=2

�
B�1=2: It follows that

DD�(K2
T + BI)

�1 � (K2 + BI)�1
�
K2
DD

=
DD(K2

T + BI)
�1
�
K2 �K2

T

�
(K2 + BI)�1K2

DD

�
DD(K2

T + BI)
�1
DD

| {z }
�B�1

DDK2 �K2
T

DD
| {z }
=Op(T�1=2)

DD(K2 + BI)�1K2
DD

| {z }
�1

= Op

�
B�1T�1=2

�
:

This proves (3).

Now we turn our attention toward equation (4). We can write

(K2 + BI)�1Kf �K�1f =

1X

j=1

"
�j

B+ �2j
� 1

�j

#
A
f; �j

B
�j =

1X

j=1

 
�2j

B+ �2j
� 1
! A

f; �j
B

�j
�j :

We now take the norm:

(4) =
DD(K2 + BI)�1Kf �K�1f

DD =

0
@

1X

j=1

 
�2j

B+ �2j
� 1
!2 CCAf; �j

BCC2

�2j

1
A
1=2

=

0
@

1X

j=1

�2C�2j

 
�2j

B+ �2j
� 1
!2 CCAf; �j

BCC2

�2Cj

1
A
1=2

�

0
@

1X

j=1

CCAf; �j
BCC2

�2Cj

1
A
1=2

sup
1�j�1

�C�1j

B

B+ �2j
:
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Recall that as K is a compact operator, its largest eigenvalue �1 is bounded. We need to �nd an

equivalent to

sup
0����1

�C�1
B

B+ �2j
= sup
0����21

�
C�1
2

�
1� 1

B=�+ 1

�
(8)

Case where 1 � C � 3: We apply another change of variables x = B=�: sup
x�0

BC=2�1=2

xC=2�1=2

�
x
1+x

�
. An

equivalent to (8) is BC=2�1=2 provided that 1
xC=2�1=2

�
x
1+x

�
is bounded on R+. Note that g (x) � x(3�C)=2

1+x

is continuous and therefore bounded on any interval of (0;+1). It goes to 0 at +1 and its limit at 0

also equals 0 for 1 � C < 3. For C = 3, we have: g (x) � 1
1+x . Then g (x) goes to 1 at x = 0 and to 0

at +1.
Case where C > 3: We rewrite the left hand side of (8) as

�C�1j

B

B+ �2j
= B�C�3j

�2j
B+ �2j| {z }
2(0;1)

� B�C�31 = O (B) :

To summarize, we have for f 2 �C : (4)= O
�
Bmin(1;

C�1
2
)
�
:

Finally, we consider (5). We have:

(5) =
X

j

 
1

�j
�

�j
�2j + B

!
A
f; �j

B2
=
X

j

 
1�

�2j
�2j + B

! A
f; �j

B2

�j

=
X

j

�2C�1j

 
1�

�2j
�2j + B

! A
f; �j

B2

�2Cj
�
X

j

A
f; �j

B2

�2Cj
sup
���1

�2C�1
B

�2 + B
:

For C � 3=2, we have: sup���1 �
2C�1 B

�2+B
� B�2C�31 = O (B). For C < 3=2, we apply the change of

variables x = B=�2 and obtain supx�0
x
1+x

�
B
x

� 2C�1
2 = O

�
B
2C�1
2

�
, as f (x) = x

1+xx
� 2C�1

2 is bounded on

R
+. Finally: (5)= O

�
Bmin(1;

2C�1
2
)
�
:�

Lemma 15 Suppose we have a particular function f(�) 2 �C for some C > 1, and a sequence of

functions fT (�) 2 �C such that sup
�2�

kfT (�)� f(�)k = Op(T�1=2): Then as B goes to zero, we have

sup
�2�

DDDK�1=2
BT fT (�)�K�1=2f(�)

DDD = Op(B�1T�1=2) +O
�
Bmin(1;

C�1
2
)
�
.

Proof of Lemma 15.

sup
�2�

DDK�1
BT fT (�)�K�1f(�)

DD � B1 +B2;

with

B1 = sup
�2�

DDK�1
BT fT (�)�K�1

BT f(�)
DD and B2 = sup

�2�

DD�K�1
BT �K�1

�
f(�)

DD :
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We have

B1 �
DDK�1

BT

DD sup
�2�

kfT (�)� f(�)k

�
DDD
�
BT +K

2
T

��1=2DDD
| {z }

�B
�1=2
T

DDD
�
BT +K

2
T

��1=2
KT

DDD
| {z }

�1

sup
�2�

kfT (�)� f(�)k
| {z }

=Op(T�1=2)

= Op(B
�1=2
T T�1=2):

On the other hand, Lemma 14 implies that:

B2 =
DD�K�1

BT �K�1
�
f(�)

DD

�
DD�K�1

BT �K�1
B

�
f(�)

DD+
DD�K�1

B �K�1
�
f(�)

DD

= Op

�
B�1T�1=2

�
+O

�
Bmin(1;

C�1
2
)
�
:

Hence, B1 is negligible with respect to B2 and the result follows.�

Lemma 16 For all nonrandom functions (u; v) ; we have:

E

�D
u;bhT (:; �)

ED
v;bhT (:; �)

E�
=
1

T
hu;Kvi

Proof of Lemma 16. We have:

E

�D
u;bhT (:; �)

ED
v;bhT (:; �)

E�
= E

��Z
u (�)bhT (� ; �)� (�) d�

��Z
v (�)bhT (� ; �)� (�) d�

��

= E

�Z Z
bhT (�1; �)bhT (�2; �)u (�1) v (�2)� (�1)� (�2) d�1d�2

�

=

Z Z
E
h
bhT (�1; �)bhT (�2; �)

i
u (�1) v (�2)� (�1)� (�2) d�1d�2:

Because the hts are uncorrelated, we have:

E
h
bhT (�1; �)bhT (�2; �)

i
=
1

T
E
h
ht(�1; �)ht(�2; �)

i
=
1

T
k (�1; �2) ;

we have

E

�D
u;bhT (:; �)

ED
v;bhT (:; �)

E�

=
1

T

Z �Z
k (�1; �2)v (�2)� (�2) d�2

�

| {z }
Kv(�1)

u (�1)� (�1) d�1 =
1

T
hu;Kvi :

�
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Lemma 17 Let S be a neighborhood of b�, such that e� � b� = Op(T�1=2) for all e� 2 S, where b� solves:
D
K�1
BT
bGT (:;b�);bhT (:;b�)

E
= 0

and bGT (:; �) = @bhT (:;�)
@� . We have:

Im
D
K�1
BT
bGT (:;e�);bhT (:;e�)

E
= Op

�
T�1

�
for all e� 2 S:

Proof of Lemma 17. Note that S contains �0 and:

e� � �0 = e� � b�| {z }
Op(T�1=2)

+ b� � �0| {z }
Op(T�1=2)

= Op

�
T�1=2

�
:

Hence, a �rst order Taylor expansion of bhT (:;e�) around �0 yields:

bhT (:;e�) = bhT (:; �0) + bGT (:; �0)
�
e� � �0

�
+Op

�
T�1

�
:

Likewise, a �rst order Taylor expansion of bGT (:;e�) around �0 yields:

bGT (:;e�) = bGT (:; �0) +
qX

j=1

bHj;T (:; �0)
�
e�j � �j;0

�
+Op

�
T�1

�
:

Hence, we have:

D
K�1
BT
bGT (:;e�);bhT (:;e�)

E
=

D
K�1
BT
bGT (:; �0);bhT (:; �0)

E

+
D
K�1
BT
bGT (:; �0); bGT (:; �0)

E�
e� � �0

�
+Op

�
T�1

�
:

Note that the term
D
K�1
BT
bGT (:; �0); bGT (:; �0)

E�
e� � �0

�
is real. At the particular point e� = b� (and for

�xed B):

0 =
D
K�1
BT
bGT (:; �0);bhT (:; �0)

E
+
D
K�1
BT
bGT (:; �0); bGT (:; �0)

E�
b� � �0

�
+Op

�
T�1

�
:

Hence, the imaginary part of
D
K�1
BT
bGT (:; �0);bhT (:; �0)

E
is Op

�
T�1

�
, and so is the imaginary part of

D
K�1
BT
bGT (:;e�);bhT (:;e�)

E
for all e� 2 S:�

Proof of Theorem 1. The proof follows the same steps as that of Proposition 3.2 in CCFG

(2007). However, we now exploit the fact Er�ht (�) 2 �C with C � 1. The consistency follows from

Lemma 15 provided BT 1=2 ! 1 and B ! 0. For the asymptotic normality to hold, we need to �nd a
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bound for the term B.10 of CCFG (2007). We have:

jB:10j =
CCC
D
K�1
BTr�ĥT

�
�̂T

�
�K�1E

�
r�ĥT (�0)

�
;
p
T ĥT (�0)

ECCC

�
DDDK�1=2

BT r�ĥT
�
�̂T

�
�K�1=2E

�
r�ĥT (�0)

�DDD
DDD
p
T ĥT (�0)

DDD
| {z }

=Op(1)

= Op

�
B�1=2T�1=2

�
+O

�
Bmin(1;

C�1
2
)
�
:

Hence the asymptotic normality requires the same conditions as the consistency, that is, BT 1=2 !1 and

B! 0. The asymptotic e¢ciency follows from the fact that K�1
BT ! K�1 under the same conditions.�

B.2 Stochastic expansion of the CGMM estimator: IID case

The objective function is

b� = argmin
�

n
QBT (�) =

D
K�1
BT
bhT (:; �);bhT (:; �)

Eo
:

where bhT (� ; �) = 1
T

PT
t=1

�
ei�

0xt � '(� ; �)
�
. The optimal b� solves:

@QBT

�
b�
�

@�
= 2Re

D
K�1
BTG(:;

b�);bhT (:;b�)
E
= 0 (9)

where G(:; �) = �@'(�;�)
@� .

A third order expansion gives

0 =
@QBT (�0)

@�
+
@2QBT (�0)

@�@�0

�
b� � �0

�
+

qX

j=1

�
b�j � �j;0

� @3QBT
�
��
�

@�j@�@�
0

�
b� � �0

�
;

where �� lies between b� and �0. The dependence of b� on BT is hidden for convenience. Let us de�ne

Gj(:; �) = �
@'(� ; �)

@�j
; H(:; �) = �@

2'(� ; �)

@�@�0
; Hj(:; �) = �

@2'(� ; �)

@�@�j
; Lj = �

@3'(� ; �)

@�j@�@�
0 :

and

	T (�0) = Re
D
K�1
BTG(:; �0);

bhT (:; �0)
E
;

WT (�0) =
A
K�1
BTG(:; �0); G(:; �0)

B
+Re

D
K�1
BTH(:; �0);

bhT (:; �0)
E
;

Bj;T (��) = 2Re
A
K�1
BTG(:;

��); Hj(:; ��)
B
+Re

D
K�1
BTLj(:;

��);bhT (:; ��)
E

+Re
A
K�1
BTH(:;

��); Gj(:; ��)
B
:
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Then we can write:

0 = 	T (�0) +WT (�0)
�
b� � �0

�
+

qX

j=1

�
b�j � �j;0

�
Bj;T (��)

�
b� � �0

�
:

Note that the derivatives of the moment functions are deterministic in the IID case. We decompose

	T (�0), WT (�0) and Bj;T (��) as follows:

	T (�0) = 	T;0(�0) + 	T;B(�0) + e	T;B(�0);

where

	T;0(�0) = Re
D
K�1G;bhT

E
= Op

�
T�1=2

�

	T;B(�0) = Re
D�
K�1
B �K�1

�
G;bhT

E
= Op

�
Bmin(1;

C�1
2
)T�1=2

�

e	T;B(�0) = Re
D�
K�1
BT �K�1

B

�
G;bhT

E
= Op

�
B�1T�1

�

where the rates of convergence are obtained using the Cauchy-Schwarz inequality and the results of

Lemma 14. Similarly, we decompose WT (�0) into various terms with distinct rates of convergence:

WT (�0) =W0(�0) +WB(�0) +fWB(�0) +WT;0(�0) +fWT;B(�0);

where

W0(�0) =
A
K�1G;G

B
= O(1);

WB(�0) =
A�
K�1
B �K�1

�
G;G

B
= O

�
Bmin(1;

2C�1
2
)
�
;

fWB(�0) =
A�
K�1
BT �K�1

B

�
G;G

B
= Op

�
B�1T�1=2

�
;

WT;0(�0) = Re
D
K�1H(:; �0);bhT (:; �0)

E
= Op

�
T�1=2

�
;

fWT;B(�0) = Re
D�
K�1
BT �K�1

�
H(:; �0);bhT (:; �0)

E
= Op

�
B�1T�1

�
:

We consider a simpler decomposition for Bj;T (��):

Bj;T (��) = Bj(��) +
�
Bj;T (��)�Bj(��)

�

where

Bj(��) = 2Re
A
K�1G(:; ��); Hj(:; ��)

B
+Re

A
K�1H(:; ��); Gj(:; ��)

B
= O(1);

Bj;T (��) = Bj(��) +O
�
Bmin(1;

C�1
2
)
�
+Op

�
B�1T�1=2

�
:
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By replacing these decompositions into the expansion of the FOC, we can solve for b�� �0 to obtain:

b� � �0 = �W�1
0 (�0)	T;0(�0)

�W�1
0 (�0)

h
	T;B(�0) +WB(�0)

�
b� � �0

�i

�W�1
0 (�0)

h
e	T;B(�0) +fWB(�0)

�
b� � �0

�i

�W�1
0 (�0)WT;0(�0)

�
b� � �0

�

�
qX

j=1

�
b�j � �j;0

�
W�1
0 (�0)Bj(��)

�
b� � �0

�

�
qX

j=1

�
b�j � �j;0

�
W�1
0 (�0)(Bj;T (��)�Bj(��))

�
b� � �0

�
:

To complete the expansion, we replace b� � �0 by �W�1
0 (�0)	T;0(�0) in the higher order terms:

b� � �0 = �1 +�2 +�3 +�4 +�5 + bR;

where bR is a remainder that goes to zero faster than the following terms:

�1 = �W�1
0 (�0)	T;0(�0);

�2 = �W�1
0 (�0)

�
	T;B(�0)�WB(�0)W

�1
0 (�0)	T;0(�0)

�
;

�3 = �W�1
0 (�0)

h
e	T;B(�0)�fWB(�0)W

�1
0 (�0)	T;0(�0)

i
;

�4 = W�1
0 (�0)WT;0(�0)W

�1
0 (�0)	T;0(�0)

�
qX

j=1

�
W�1
0 (�0)	T;0(�0)

�
j
W�1
0 (�0)Bj(��)W

�1
0 (�0)	T;0(�0);

�5 = �
qX

j=1

�
W�1
0 (�0)	T;0(�0)

�
j
W�1
0 (�0)(Bj;T (��)�Bj(��))W�1

0 (�0)	T;0(�0):

To obtain the rates of these terms, we use the fact that jAf j � kAk jf j. This yields immediately:

�1 = Op

�
T�1=2

�
; �2 = Op

�
Bmin(1;

2C�1
2
)T�1=2

�
, �3 = Op

�
B�1T�1

�
; �4 = Op

�
T�1

�
,

�5 = O
�
Bmin(1;

C�1
2
)T�1

�
+Op

�
B�1T�3=2

�
:

To summarize, we have:

b� � �0 = �1 +�2 +�3 + op
�
B�1T�1

�
+ op

�
Bmin(1;

C�1
2
)T�1=2

�
: (10)
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B.3 Stochastic expansion of the CGMM estimator: Markov case

The objective function here is given by:

b� = argmin
�

n
QBT (�) =

D
K�1
BT
bhT (:; �);bhT (:; �)

Eo
:

where bhT (� ; �) = 1
T

PT
t=1

�
eis

0xt+1 � '(s; �; xt)
�
eir

0xt and � = (s; r) 2 R2p. The optimal b� solves

@QBT

�
b�
�

@�
= 2Re

D
K�1
BT
bGT (:;b�);bhT (:;b�)

E
= 0 (11)

where bGT (� ; �) = � 1
T

PT
t=1

@'(s;�;xt)
@� eir

0xt .

The third order Taylor expansion of (11) around �0 yields:

0 =
@QBT (�0)

@�
+
@2QBT (�0)

@�@�0
(b� � �0) +

qX

j=1

�
b�j � �j;0

� @3QBT
�
��
�

@�j@�@�
0 (
b� � �0);

where �� lies between b� and �0.
Let us de�ne:

bHT (� ; �) = � 1
T

TX

t=1

@2'(s; �; xt)

@�@�0
eir

0xt ; bGj;T (� ; �) = �
1

T

TX

t=1

@'(s; �; xt)

@�j
eir

0xt ;

bHj;T (� ; �) = � 1
T

TX

t=1

@2'(s; �; xt)

@�j@�
eir

0xt ; bLj;T (� ; �) = �
1

T

TX

t=1

@3'(s; �; xt)

@�j@�@�
0 e

ir0xt ;

and

b	T (�0) = Re
D
K�1
BT
bGT (:; �0);bhT (:; �0)

E
;

cWT (�0) =
D
K�1
BT
bGT (:; �0); bGT (:;0 )

E
+Re

D
K�1
BT
bHT (:; �0);bhT (:; �0)

E
;

bBj;T (��) = 2Re
D
K�1
BT
bGT (:; ��); bHj;T (:; ��)

E
+Re

D
K�1
BT
bHT (:; ��); bGj;T (:; ��)

E

+Re
D
K�1
BT
bLj;T (:; ��);bhT (:; ��)

E
:

Then the expansion of the FOC becomes:

0 = b	T (�0) +cWT (�0)
�
b� � �0

�
+

qX

j=1

�
b�j � �j;0

�
bBj;T (��)

�
b� � �0

�
;
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Unlike in the IID case, the derivatives of the moment function are not deterministic. We thus de�ne:

G(� ; �) = p lim
T!1

bGT (� ; �); H(� ; �) = p lim
T!1

bHT (� ; �);

Gj(� ; �) = p lim
T!1

bGj;T (� ; �); Hj(� ; �) = p lim
T!1

bHj;T (� ; �):

It follows from Assumption 3 and Markov�s inequality that:

G(� ; �)� bGT (� ; �) = Op

�
T�1=2

�
; H(� ; �)� bHT (� ; �) = Op

�
T�1=2

�
;

Gj(� ; �)� bGj;T (� ; �) = Op

�
T�1=2

�
; Hj(� ; �)� bHj;T (� ; �) = Op

�
T�1=2

�
:

We have the following decomposition for b	T (�0):

b	T (�0) = 	T;0(�0) + 	T;B(�0) + e	T;B(�0) + b	T;B(�0) + be	T;B(�0):

By using the fact that kAfk � kAk kfk, we obtain the following the rates:

	T;0(�0) = Re
D
K�1G;bhT (:; �0)

E
= Op

�
T�1=2

�
;

	T;B(�0) = Re
D�
K�1
B �K�1

�
G;bhT (:; �0)

E
= Op

�
Bmin(1;

C�1
2
)T�1=2

�
;

e	T;B(�0) = Re
D�
K�1
BT �K�1

B

�
G;bhT (:; �0)

E
= Op

�
B�1T�1

�
;

b	T;B(�0) = Re
D
K�1
B

�
bGT �G

�
;bhT (:; �0)

E
= Op

�
B�1=2T�1

�
;

be	T;B(�0) = Re
D�
K�1
BT �K�1

B

� � bGT �G
�
;bhT (:; �0)

E
= Op

�
B�3=2T�3=2

�
:

The di¤erence between the above decomposition of b	T (�0) and the one in the IID case only comes from
the additional higher order terms b	T;B(�0) and be	T;B(�0). Hence we can write b	T (�0) as:

b	T (�0) = 	T;0(�0) + 	T;B(�0) + e	T;B(�0) +R	;

where R	 = op
�
B�1T�1

�
+ op

�
Bmin(1;

C�1
2
)T�1=2

�
.

We have a similar decomposition for cWT (�0):

cWT (�0) = W0(�0) +WB(�0) +fWB(�0) +cWB(�0) +
cfWB(�0)

+W1(�0) +W1;B(�0) +fW1;B(�0) +cW1;B(�0) +
cfW 1;B(�0);

where

W0(�0) =
A
K�1G;G

B
= O(1);

WB(�0) =
A�
K�1
B �K�1

�
G;G

B
= O

�
Bmin(1;

2C�1
2
)
�
;
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fWB(�0) =
A�
K�1
BT �K�1

B

�
G;G

B
= Op

�
B�1T�1=2

�
;

cWB(�0) =
D
K�1
B

�
bGT �G

�
; G
E
= Op

�
B�1=2T�1=2

�
;

W1(�0) = Re
D
K�1H;bhT

E
+
D
K�1G; bGT �G

E
= Op

�
T�1=2

�
;

W1;B(�0) =
D�
K�1
BT �K�1

B

� � bGT �G
�
; G
E
= Op

�
B�3=2T�1

�
:

cfW 1;B(�0) = Re
D�
K�1
B �K�1

�
H;bhT

E
+
D�
K�1
B �K�1

�
G; bGT �G

E
= O

�
Bmin(1;

C�1
2
)T�1=2

�
;

fW1;B(�0) = Re
D�
K�1
BT �K�1

B

�
H;bhT

E
+
D�
K�1
BT �K�1

B

�
G; bGT �G

E
= Op

�
B�1T�1

�
;

cW1;B(�0) = Re
D
K�1
B

�
bHT �H

�
;bhT

E
+
D
K�1
B

�
bGT �G

�
; bGT �G

E
= Op

�
B�1=2T�1

�
and

RW;1 = Re
D�
K�1
BT �K�1

B

� � bHT �H
�
;bhT

E
+
D�
K�1
BT �K�1

B

� � bGT �G
�
; bGT �G

E
= Op

�
B�3=2T�3=2

�
:

For the purpose of �nding the optimal B, it is enough to consider the shorter decomposition:

cWT (�0) =W0(�0) +WB(�0) +fWB(�0) +cWB(�0) +W1(�0) +W1;B(�0) +RW;

with

RW � cfW 1;B(�0) +fW1;B(�0) +cW1;B(�0) +RW;1 = Op
�
B�1T�1

�
+O

�
Bmin(1;

C�1
2
)T�1=2

�
:

Finally, we consider again a simpler decomposition for Bj;T (��):

Bj;T (��) = Bj(��) +
�
Bj;T (��)�Bj(��)

�

where

Bj(��) = 2Re
A
K�1G(:; ��); Hj(:; ��)

B
+Re

A
K�1H(:; ��); Gj(:; ��)

B
= O(1) and

Bj;T (��) = Bj(��) +O
�
Bmin(1;

C�1
2
)
�
+Op

�
B�1T�1=2

�
:

We replace these decompositions into the expansion of the FOC and solve for b� � �0 to obtain:

b� � �0 = �W�1
0 (�0)	T;0(�0)

�W�1
0 (�0)

h
	T;B(�0) +WB(�0)

�
b� � �0

�i

�W�1
0 (�0)

h
e	T;B(�0) +fWB(�0)

�
b� � �0

�i
�W�1

0 (�0)cWB(�0)
�
b� � �0

�

�W�1
0 (�0)W1(�0)

�
b� � �0

�
�

qX

j=1

�
b�j � �j;0

�
W�1
0 (�0)Bj(��)

�
b� � �0

�

�W�1
0 (�0)W1;B(�0)

�
b� � �0

�

�
qX

j=1

�
b�j � �j;0

�
W�1
0 (�0)(Bj;T (��)�Bj(��))

�
b� � �0

�

�W�1
0 (�0)RW

�
b� � �0

�
�W�1

0 (�0)R	:
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Next, we replace b� � �0 by �W�1
0 (�0)	T;0(�0) = Op

�
T�1=2

�
in the higher order terms. This yields:

b� � �0 = �1 +�2 +�3 + bR1 + bR2 + bR3 + bR4;

where

�1 = �W�1
0 (�0)	T;0(�0) = Op

�
T�1=2

�
;

�2 = �W�1
0 (�0)

�
	T;B(�0)�WB(�0)W

�1
0 (�0)	T;0(�0)

�
= Op

�
Bmin(1;

2C�1
2
)T�1=2

�
;

�3 = �W�1
0 (�0)

h
e	T;B(�0)�fWB(�0)W

�1
0 (�0)	T;0(�0)

i
= Op

�
B�1T�1

�
;

bR1 = W�1
0 (�0)cWB(�0)W

�1
0 (�0)	T;0(�0) = Op

�
B�1=2T�1

�
;

bR2 = W�1
0 (�0)W1(�0)W

�1
0 (�0)	T;0(�0)

�
qX

j=1

�
W�1
0 (�0)	T;0(�0)

�
j
W�1
0 (�0)Bj(��)W

�1
0 (�0)	T;0(�0) = Op

�
T�1

�
;

bR3 = W�1
0 (�0)W1;B(�0)W

�1
0 (�0)	T;0(�0) = Op

�
B�3=2T�3=2

�
;

and

bR4 = �W�1
0 (�0)R	 +W

�1
0 (�0)RWW

�1
0 (�0)	T;0(�0)

�
qX

j=1

�
W�1
0 (�0)	T;0(�0)

�
j
W�1
0 (�0)(Bj;T (��)�Bj(��))W�1

0 (�0)	T;0(�0);

= op
�
B�1T�1

�
+ op

�
Bmin(1;

C�1
2
)T�1=2

�
:

In summary, we have:

b� � �0 = �1 +�2 +�3 + op
�
B�1T�1

�
+ op

�
Bmin(1;

C�1
2
)T�1=2

�
; (12)

which is of the same form as in the IID case.

B.4 Proof of Theorem 2.

Using the expansions given in (10) and (12), we obtain:

b� � �0 = �1 +�2 +�3 +Op
�
T�1

�
:

Lemma 17 ensures that all terms that are slower than Op
�
T�1

�
in the expansion above are real. Hence

the Re symbol may be removed from the expression of �1, �2 and �3.
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Asymptotic Variance

The asymptotic variance of b� is given by

TV ar (�1) = TW�1
0 E

�
	T;0(�0)	T;0(�0)

0
�
W�1
0

= TW�1
0 E

�D
K�1G;bhT

ED
K�1G;bhT

E0�
W�1
0 =W�1

0

A
K�1G;G

B
W�1
0 ;

where the last equality follows from Lemma 16. Hence,

TV ar (�1) =W
�1
0

A
K�1G;G

B
W�1
0 =W�1

0 :

Higher Order Bias

The terms �1 and �2 have zero expectations. Hence, the bias comes from �3:

Bias � E
h
b� � �0

i
= E [�3]

where �3 = �W�1
0
e	T;B + W�1

0
fWBW

�1
0 	T;0. As W�1

0 is a constant matrix, we focus on e	T;B +
fWBW

�1
0 	T;0.

We �rst consider the term e	T;B. By applying Cauchy-Schwarz twice, we obtain:
DDDE
�
e	T;B

�DDD =
DDDE
D�
K�1
BT �K�1

B

�
G;bhT

EDDD

� E
�DD�K�1

BT �K�1
B

�
G
DD
DDDbhT

DDD
�
�
s
E
�DD�K�1

BT �K�1
B

�
G
DD2
�
E

�DDDbhT
DDD
2
�
:

Using the fact that ht (� ; �) is a martingale di¤erence sequence and is bounded, we obtain:

E

�DDDbhT
DDD
2
�

= E

�Z
bhT (� ; �)bhT (� ; �)� (�) d�

�
(13)

=
1

T
E

�Z
ht (� ; �)ht (� ; �)� (�) d�

�
= O(T�1):

Next, using (6) and (7), we obtain:

E
�DD�K�1

BT �K�1
B

�
G
DD2
�

� E
�DD�K�1

BT �K�1
B

�
K
DD2
�DDK�1G

DD2

� E
�DD(K2

T + BI)
�1 (KT �K)K

DD2
�DDK�1G

DD2 (14)

+E
�DD(K2

T + BI)
�1 � (K2 + BI)�1

DD2
�
kKk4

DDK�1G
DD2 : (15)

Hence:

(14) = E
�DD(K2

T + BI)
�1 (KT �K)K

DD2
�DDK�1G

DD2

� B�2E
�
kKT �Kk2

�
kKk2

DDK�1G
DD2 = O(B�2T�1);
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where E
�
kKT �Kk2

�
= O(T�1) follows from Carrasco and Florens (2000, Theorem 4, p. 825). For

(15), we use the fact that A�1 �B�1 = A�1 (B �A)B�1 to obtain:

(15) = E
�DD(K2

T + BI)
�1 � (K2 + BI)�1

DD2
�
kKk4

DDK�1G
DD2

� E
�DD(K2

T + BI)
�1
DDDDK2

T �K2
DD2 DD(K2 + BI)�1

DD
�
kKk4

DDK�1G
DD2

� B�2E
�DDK2

T �K2
DD2
�
kKk4

DDK�1G
DD2

� B�2E
�
kKT �Kk2 kKT +Kk2

�
kKk4

DDK�1G
DD2

By the triangular inequality, kKT +Kk � kKT k+ kKk. Hence:

(15) � B�2E
h
kKT �Kk2 (kKT k+ kKk)2

i
kKk4

DDK�1G
DD2 :

From (1) in Appendix A, we know that jk(�1; �2)j2 � 4. Similarly, bkT (�1; �2;b�
1
) is bounded such thatCCCbkT (�1; �2;b�

1
)
CCC
2
� 4. Hence:

kKk �
sZ Z

jk(�1; �2)j2 � (�1)� (�2) d�1d�2 � 2

kKT k �
sZ Z CCCbkT (�1; �2;b�

1
)
CCC
2
� (�1)� (�2) d�1d�2 � 2

Consequently:

(15) � 16B�2E
�
kKT �Kk2

�
kKk4

DDK�1G
DD2 = O(B�2T�1):

Finally, DDDE
�
e	T;B

�DDD =
p
O(B�2T�1)�O(T�1) = O(B�1T�1): (16)

We now consider the term fWBW
�1
0 	T;0. Again, using Cauchy-Schwarz twice leads to:

DDDE
�
fWBW

�1
0 	T;0

�DDD � E
�DDDfWB

DDD
DDW�1

0 	T;0
DD
�
�
s
E

�DDDfWB

DDD
2
�
E
�DDW�1

0 	T;0
DD2
�
:

We have:

E
�DDW�1

0 	T;0
DD2
�

= E

�DDDW�1
0

D
K�1G;bhT (:; �0)

EDDD
2
�
� E

�DDW�1
0

DD2 DD�K�1G
�DD2

DDDbhT (:; �0)
DDD
2
�

=
DDW�1

0

DD2 DD�K�1G
�DD2E

�DDDbhT (:; �0)
DDD
2
�
= O(T�1);

where E

�DDDbhT (:; �0)
DDD
2
�
= O(T�1) follows from (13). Next:
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E

�DDDfWB

DDD
2
�

= E
�DDA�K�1

BT �K�1
B

�
G;G

BDD2
�
� E

�DD�K�1
BT �K�1

B

�
G
DD2 kGk2

�

= kGk2E
�DD�K�1

BT �K�1
B

�
G
DD2
�
= O(B�2T�1);

where the rate follows from (14) and (15). Hence, by the Cauchy-Schwarz inequality,

DDDE
�
fWBW

�1
0 	T;0

�DDD �
s
E

�DDDfWB

DDD
2
�
E
�DDW�1

0 	T;0
DD2
�

=
p
O(B�2T�1)O(T�1) = O(B�1T�1): (17)

By putting (16) and (17) together, we �nd E [�3] = Op
�
B�1T�1

�
so that the squared bias satis�es:

TBias:Bias0 = O
�
B�2T�1

�
:

Higher Order Variance

The dominant terms in the higher order variance are

Cov (�1;�2) + V ar (�2) + Cov (�1;�3) :

We �rst consider Cov (�1;�2):

Cov (�1;�2) =W
�1
0 E

�
	T;0	T;B(�0)

0
�
W�1
0 �W�1

0 E
�
	T;0	

0
T;0

�
W�1
0 WBW

�1
0 :

From Lemma 16, we have:

E
�
	T;0	

0
T;B

�
=
1

T

A�
K�1
B �K�1

�
G;G

B
=WB:

and E
h
	T;0	

0
T;0

i
=W0. Hence,

Cov (�1;�2) =
1

T
W�1
0 WBW

�1
0 � 1

T
W�1
0 W0W

�1
0 WBW

�1
0 = 0:

Now we consider the term Cov (�1;�3):

Cov (�1;�3) =W
�1
0 E

�
	T;0e	0T;B

�
W�1
0 �W�1

0 E
�
	T;0	

0
T;0W

�1
0
fWB

�
W�1
0 :
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We �rst consider E
h
	T;0e	0T;B

i
. By the Cauchy-Schwarz inequality:

DDDE
�
	T;0e	0T;B

�DDD �
s
E
�
k	T;0k2

�
E

�DDDe	0T;B
DDD
2
�

=

s
E

�DDD
D
K�1G;bhT

EDDD
2
�
E

�DDD
D�
K�1
BT �K�1

B

�
G;bhT

EDDD
2
�

Hence we have:

E

�DDD
D
K�1G;bhT

EDDD
2
�
�
DDK�1G

DD2E
�DDDbhT

DDD
2
�
= O(T�1)

Also,

E

�DDD
D�
K�1
BT �K�1

B

�
G;bhT

EDDD
2
�

= E

�DD�K�1
BT �K�1

B

�
G
DD2
DDDbhT

DDD
2
�

�
s
E
�DD�K�1

BT �K�1
B

�
G
DD4
�
E

�DDDbhT
DDD
4
�

We �rst consider
DDDbhT

DDD
4
:

DDDbhT
DDD
4
=

�Z
bhTbhT� (�) d�

�2
=
1

T 4

0
@
Z TX

t=1

htht� (�) d� +

Z TX

t6=s

hths� (�) d�

1
A
2

=
1

T 4

 
TX

t=1

Z
htht� (�) d�

!2
+
1

T 4

0
@

TX

t6=s

Z
hths� (�) d�

1
A
2

+2

 
1

T 2

TX

t=1

Z
htht� (�) d�

!0
@ 1

T 2

TX

t6=s

Z
hths� (�) d�

1
A

Consider the �rst squared term of
DDDbhT

DDD
4
:

E

2
4 1
T 4

 
TX

t=1

Z
htht� (�) d�

!23
5 =

T

T 4
E

"�Z
htht� (�) d�

�2#
+
T (T � 1)
T 4

�
E

�Z
htht� (�) d�

��2

= O(T�2)
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The second squared term leads to:

E

2
4 1
T 4

0
@

TX

t6=s

Z
hths� (�) d�

1
A
23
5

= E

2
4 1
T 4

TX

t6=s

�Z
hths� (�) d�

�2
3
5+ E

2
4 1
T 4

TX

t6=s;l 6=j;(t;s) 6=(l;j)

�Z
hths� (�) d�

��Z
hlhj� (�) d�

�3
5

=
T (T � 1)
T 4

E

"�Z
hths� (�) d�

�2#
= O(T�2); for t 6= s:

As the hts are uncorrelated, the cross-term is equal to zero:

2
4
 
1

T 2

TX

t=1

Z
htht� (�) d�

!0
@ 1

T 2

TX

t6=s

Z
hths� (�) d�

1
A
3
5 = 0

In total, we obtain: E

�DDDbhT
DDD
4
�
= O(T�2).

We now consider E
�DD�K�1

BT �K�1
B

�
G
DD4
�
. Using the same decomposition as in (14) and (15) leads

to:

E
�DD�K�1

BT �K�1
B

�
G
DD4
�

� E
�DD�K�1

BT �K�1
B

�
K
DD4
�DDK�1G

DD4

� E
�DD(K2

T + BI)
�1 (KT �K)K

DD4
�DDK�1G

DD4 (18)

+E
�DD(K2

T + BI)
�1 � (K2 + BI)�1

DD4
�
kKk8

DDK�1G
DD4 ; (19)

Hence:

(18) = E
�DD(K2

T + BI)
�1 (KT �K)K

DD4
�DDK�1G

DD4 � B�4E
�
kKT �Kk4

�
kKk4

DDK�1G
DD4

For (19), we use A�1 �B�1 = A�1 (B �A)B�1 to obtain:

(19) = E
�DD(K2

T + BI)
�1 � (K2 + BI)�1

DD4
�
kKk8

DDK�1G
DD4

� E
�DD(K2

T + BI)
�1
DD2 DDK2

T �K2
DD4 DD(K2 + BI)�1

DD2
�
kKk8

DDK�1G
DD4

� B�4E
�DDK2

T �K2
DD4
�
kKk8

DDK�1G
DD4

� B�4E
�
kKT �Kk4 kKT +Kk4

�
kKk8

DDK�1G
DD4
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By the triangular inequality:

(19) � B�4E
�
kKT �Kk4 (kKT k+ kKk)4

�
kKk8

DDK�1G
DD4

� 256B�4E
�
kKT �Kk4

�
kKk8

DDK�1G
DD4 ;

due to kKT k � 2 and kKk � 2.
The rates of (18) and (19) depend on the rate of E

�
kKT �Kk4

�
.

kKT �Kk2 �
Z Z CCCCC

1

T

TX

t=1

�t(�1; �2)

CCCCC

2

� (�1)� (�2) d�1d�2

=
1

T 2

TX

t=1

Z Z
j�t(�1; �2)j2 � (�1)� (�2) d�1d�2 (20)

+
1

T 2

TX

t6=l

Z Z
�t(�1; �2)�l(�1; �2)� (�1)� (�2) d�1d�2 (21)

where �t(�1; �2) = kt(�1; �2;
b�1)� k(�1; �2). Hence

E
�
kKT �Kk4

�
� E

�
[(20)]2

�
+ 2E ([(20)] [(21)]) + E

�
[(21)]2

�

Because E ([(20)] [(21)]) �
r
E
�
[(20)]2

��
E [(21)]2

�
, we only need to check the rates of the squared

terms. We have:

E
�
[(20)]2

�
= T

T 4
E

��R R
j�t(�1; �2)j2 � (�1)� (�2) d�1d�2

�2�

+T (T�1)
T 4

E
h�R R

j�t(�1; �2)j2 � (�1)� (�2) d�1d�2
��R R

j�l(�1; �2)j2 � (�1)� (�2) d�1d�2
�i
; for l 6= t:

Hence E
�
[(20)]2

�
= O(T�2). Next:

E
�
[(21)]2

�

=
1

T 4

TX

t6=l

E

"�Z Z
�t(�1; �2)�l(�1; �2)� (�1)� (�2) d�1d�2

�2#

+
1

T 4

TX

t6=l;n6=j;(t;l) 6=(n;j)

E

��Z Z
�t�l� (�1)� (�2) d�1d�2

��Z Z
�n�j� (�1)� (�2) d�1d�2

��

with �t � �t(�1; �2). Due to the m.d.s property, the last term has expectation zero. Hence:

E
�
[(21)]2

�
=
T (T � 1)
T 4

E

"�Z Z
�t(�1; �2)�l(�1; �2)� (�1)� (�2) d�1d�2

�2#
= O(T�2):
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By putting these together, we obtain E
�
kKT �Kk4

�
= O(T�2) so that:

E
�DD�K�1

BT �K�1
B

�
G
DD4
�

� (18)+(19) = O
�
B�4T�2

�
and

E

�DDD
D�
K�1
BT �K�1

B

�
G;bhT

EDDD
2
�

�
s
E
�DD�K�1

BT �K�1
B

�
G
DD4
�
E

�DDDbhT
DDD
4
�

=
p
O (B�4T�2)�O (T�2) = O

�
B�2T�2

�

In total:

DDDE
�
	T;0e	0T;B

�DDD �
s
E

�DDD
D
K�1G;bhT

EDDD
2
�
E

�DDD
D�
K�1
BT �K�1

B

�
G;bhT

EDDD
2
�

=
p
O(T�1)�O (B�2T�2) = O

�
B�1T�3=2

�

We now check the rate of the second term of Cov (�1;�3):

DDDE
�
	T;0	

0
T;0W

�1
0
fWB

�DDD �
s
E

�DDD	T;0	0T;0
DDD
2
�
E

�DDDW�1
0
fWB

DDD
2
�

We �rst consider E

�DDD	T;0	0T;0
DDD
2
�
. By the Cauchy-Schwarz inequality:

E
�DD	T;0	0T;0

DD2
�
= E

 DDDD
D
K�1G;bhT

ED
K�1G;bhT

E0DDDD
2
!
�
DDK�1G

DD4E
�DDDbhT

DDD
4
�
= O(T�2)

For the second term, we have:

E

�DDDW�1
0
fWB

DDD
2
�

= kW0k�2E
�DDA�K�1

B �K�1
�
G;G

BDD2
�

� kW0k�2 kGk2E
�DD�K�1

B �K�1
�
G
DD2
�
= O(B�2T�1);

according to (14)-(15). Hence,

DDDE
�
	T;0	

0
T;0W

�1
0
fWB

�DDD �
p
O(T�2)�O(B�2T�1) = O(B�1T�3=2)

It now remains to �nd the rate of V ar (�2). We recall that �2 = �W�1
0 	T;B +W

�1
0 WBW

�1
0 	T;0.

We have

V ar (�2) = W�1
0 E

�
	T;B	

0
T;B

�
W�1
0 �W�1

0 E
�
	T;B	

0
T;0

�
W�1
0 WBW

�1
0

�W�1
0 WBW

�1
0 E

�
	T;0	

0
T;B

�
W�1
0 +W�1

0 WBW
�1
0 E

�
	T;0	

0
T;0

�
W�1
0 WBW

�1
0 :

Replacing E
h
	T;0	

0
T;B

i
= 1

TWB and E
h
	T;0	

0
T;0

i
= 1

TW0, we see immediately that the last two terms
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cancel out so that

V ar (�2) =W
�1
0 E

�
	T;B	

0
T;B

�
W�1
0 �W�1

0 WBW
�1
0 WBW

�1
0 :

For the �rst term of V ar (�2), we use Lemma 16 to obtain:

E
�
	T;B	

0
T;B

�
= E

hD�
K�1
B �K�1

�
G;bhT

ED�
K�1
B �K�1

�
G;bhT

Ei

=
1

T

A�
K�1
B �K�1

�
G;
�
K�1
B �K�1

�
KG

B
=
X

j

 
�j

�2j + B
� 1

�j

!2
�j
A
G;�j

B2

=
X

j

 
�j

�2j + B
� 1

�j

!2
�2C+1j

A
G;�j

B2

�2Cj
�
X

j

A
G;�j

B2

�2Cj
sup
���1

�
�

�2 + B
� 1

�

�2
�2C+1:

We focus on the square-root of
�

�
�2+B

� 1
�

�2
�2C+1, namely:

sup
���1

�
1

�
� �

�2 + B

�
�(2C+1)=2 = sup

���1

�
1� �2

�2 + B

�
�C�1=2:

Case where C � 5=2

sup
���1

�
1� �2

�2 + B

�
�C�1=2 = B sup

���1

�C�1=2

�2 + B
� B sup

���1

�C�5=2 � B�C�5=21 :

Case where C < 5=2

We apply the change of variable x = B=�2 and obtain

sup
���1

�
1� �2

�2 + B

�
�C�1=2 = sup

x�0

�
1� 1

1 + x

��B
x

�C�1=2
2

= B
2C�1
4 sup

x�0

x

1 + x
x�

2C�1
4 :

The function f (x) = x
1+xx

� 2C�1
4 is continuous and hence bounded for x away from 0 and in�nity. When

x goes to in�nity, f (x) goes to zero because 2C � 1 > 0: When x goes to zero, f (x) = x
5�2C
4

1+x goes to

zero because 5 � 2C > 0. Hence, f (x) is bounded on R+. In conclusion, the rate of convergence of

E
�
	T;B	

0
T;B

�
is given by: Bmin(2;

2C�1
2 )T�1: Note that this rate is an equivalent, not a big O.

For the second term of V ar (�2), we use the fact thatWB = O
�
Bmin(1;

2C�1
2
)
�
according to Equation

(5) in Lemma 14:

1

T
W�1
0 WBW

�1
0 WBW

�1
0 =

1

T
�O (1)�O

�
Bmin(1;

2C�1
2
)
�
�O (1)�O

�
Bmin(1;

2C�1
2
)
�
�O (1)

= O
�
Bmin(2;2C�1)T�1

�
:
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Optimal Rate for B

Note that the bias term TBias � Bias0 = O
�
B�2T�1

�
goes to zero faster than the covariance

term TCov (�1;�3) = O
�
B�1T�1=2

�
. Hence the optimal B is the one that achieves the best trade-o¤

between TV ar (�2) � Bmin(2;C�
1
2
) which is increasing in B and TCov (�1;�3) which is decreasing in

B. We have

Bmin(2;C�
1
2
) = B�1T�1=2 ) B� = T

�max( 1
6
; 1
2C+1

)
:

Note that this rate satis�es B�1T�1=2 = o(1):

C Consistency of bBTM
�
b�1
�

We �rst prove the following lemma.

Lemma 18 :Under Assumptions 1 to 5, b�T (B; �0) is once continuously di¤erentiable with respect to B
and twice continuously di¤erentiable with respect to �0 and BT (�0) is a continuous in �0.

Proof of Lemma 18: The objective function bQT (B; �) involves the following operator:

K�1
BT
bhT (:; �) =

TX

j=1

b�j
B+ b�2j

D
bhT (:; �); b�j

E
b�j

where b�j is the eigenfunction of KT associated with the eigenvalue b�j . By assumption 3, the moment
function bhT (:; �) is three times continuously di¤erentiable with respect to �; the argument with respect
to which we minimize the objective function of the CGMM. By assumption 5, xt = x (xt�1; �0; "t) where

r is three times continuously di¤erentiable with respect to �0 (the true unknown parameter) and "t is

an IID white noise whose distribution does not depend on �0. Thus as an exponential function of xt; the

moment function is also three times continuously di¤erentiable with respect to �0: Thus Assumptions

3 and 5 imply that the objective function of the CGMM is three times continuously di¤erentiable with

respect to � and �0. Now we turn our attention toward the di¤erentiability with respect to B. It is easy

to check that
@3K�1

BT
bhT (:; �)
@B3

= eKBTbhT (:; �)

where eKBT � �
�
K2
T + BT I

��2
KT which is well de�ned on L

2 (�) for BT �xed. When BT goes to zero,

we have to be more careful. We check that
CCC
D
eKBTbhT (:; �);bhT (:; �)

ECCC is bounded. We have

CCC
D
eKBTbhT (:; �);bhT (:; �)

ECCC �
DDD eKBTbhT (:; �)

DDD
DDDbhT (:; �)

DDD �
DDD
�
K2
T + BT I

��2
KT

DDD
DDDbhT (:; �)

DDD
2

=
DDD
�
K2
T + BT I

��3=2DDD
| {z }

�B
�3=2
T

DDD
�
K2
T + BT I

��1=2
KT

DDD
| {z }

�1

DDDbhT (:; �)
DDD
2

| {z }
=Op(T�1)

= Op

�
B
�3=2
T T�1

�
= op (1) ;
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where the last equality follows from Theorem 2(ii). This shows that bQT (B; �) is once continuously
di¤erentiable with respect to B and three times continuously di¤erentiable with respect to �. By

the implicit function theorem, b�T (B; �0) = argmin
�

bQT (B; �) is once continuously di¤erentiable with

respect to B and twice continuously di¤erentiable w.r.t. �0. The MSE b�T (B; �0) is an expectation of
a quadratic function in b�T (B; �0). Hence �T (B; �0) is also once continuously di¤erentiable w.r.t. B
and twice continuously di¤erentiable w.r.t. �0: Finally, the Maximum theorem implies that BT (�0) =

argmin
B2[0;1]

�T (B; �0; �) is continuous w.r.t. �0:�

Proof of Theorem 3: Using Assumption 6, we see that BT (b�
1
)

BT (�0)
= c(b�

1
)

c(�0)
. Moreover by Lemma

18, BT (�) and hence c (�) are continuous functions of �. Since b�
1
is a consistent estimator of �0; the

continuous mapping theorem implies that c(
b�
1
)

c(�0)

P! 1 as T !1.�
Proof of Theorem 4: Here, we consider the expression of the MSE given by (15) but the same

proof can be easily adapted to the expressions given by (16) and (17). Consider b�TM (B; �0; �) =
T

(1��)M

PM
j=1 �j;T (B) 1

�
�jT (B) < bn�;TM

�
where �j;T (B) � �j;T (B; �0) is IID (across j) and continuous

in B. We have:

b�TM (B; �0; �)� �T (B; �0; �)

=
T

(1� �)M

MX

j=1

�
�j;T (B) 1

�
�jT (B) < bn�;TM

�
� E

�
�j;T (B) 1

�
�jT (B) < n�;T

���
;

where n�;T = lim
M!1

n�;TM .

If we can show that there exists a function bT > 0 independent of B such that

DDDD
@�j;T (B)

@B

DDDD < bT ; (22)

and E (bT ) <1; then, by Lemma 2.4 of Newey and McFadden (1994), we would have

sup
B2[0;1]

CCCb�TM (B; �0; �)� �T (B; �0; �)
CCC = Op

�
M�1=2

�
:

and it would follow from Theorem 2.1 of Newey and McFadden (1994) that bBTM (�0) � BT (�0) =
Op
�
M�1=2

�
. This would imply that bBTM (�0)

BT (�0)
� 1 = Op

�
M�1=2

�
, given that BT (�0) is bounded away

from zero when T is �xed.

Let �T be any of the �j;T ; j = 1; :::;M . To prove inequality (22), we �rst compute:

@�T (B)

@B
= 2

@b�T (B; �0)
@B

0 �
b�T (B; �0)� �0

�
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where by the implicit function theorem:

@b�T (B; �0)
@B

= �
 
@2 bQT (B; �)
@�@�0

!�1
@2 bQT (B; �)
@�@B

:

The expressions involved are:

@2 bQT (B; �)
@�@�0

=
D
K�1
BT
bGT (:; �0); bGT (:; �0)

E
+
D
K�1
BT
bHT (:; �0);bhT (:; �0)

E
;

@2 bQT (B; �)
@�@B

=
D
K�
BT
bGT (:; �0);bhT (:; �0)

E
+
D
K�
BT
bhT (:; �0); bGT (:; �0)

E

and K�
BT � �

�
K2
T + BI

��2
KT . Next recall that for �xed T , BT (�0) is bounded away from zero so

that there exists a sequence BT such that BT (�0) �BT for all T .
Hence, the minimization problem for the selection of Bmay be re-written as B (�0) = argmin

B2[BT ;1]
�T (B; �0; �);

so that �T (B; �0; �) is a bounded function of B on the choice set. Because
@2 bQT (B;�;�0)

@�@�0
and @2 bQT (B;�;�0)

@�@B

are continuous with respect to B, @�T (B)@B is also continuous with respect to B. Hence, we indeed have

kbT (BT )k =
DDD@�T (BT )@B

DDD <1 where BT = arg sup
B2[BT ;1]

DDD@�T (B)@B

DDD :�

Proof of Theorem 5: We �rst make the following decomposition

bBTM (b�
1
)

BT (�0)
� 1 =

 
BT (b�

1
)

BT (�0)
� 1
!
+

 
BT (b�

1
)

BT (�0)
� 1
! 

bBTM (b�
1
)

BT (b�
1
)
� 1
!
+

 
bBTM (b�

1
)

BT (b�
1
)
� 1
!
:

By �rst letting M go to in�nity, we obtain the result of Theorem 4 which has been proved for �x T :
bBTM (�0)
BT (�0)

�1 = Op(M
�1=2). Next, we let T go to in�nity in order to obtain the result of Theorem 3:

BT (b�
1
)

BT (�0)
� 1 = Op(T�1=2). The product of

�
BT (b�

1
)

BT (�0)
� 1
�
and

�
bBTM (b�

1
)

BT (b�
1
)
� 1
�
is negligible with respect to

either of the other terms. Thus, it follows that bBTM (
b�
1
)

BT (�0)
� 1 = Op(T�1=2) +Op(M�1=2).�

Proof of Theorem 6: The mean value Theorem yields:

b� (bBTM )� b� (BT ) =
@b� (B)
@B

(bBTM � BT ) ;

where B lies between bBTM and BT and BT is bounded away from zero, i.e., 9 BT > 0 : BT � BT � 1; 8
T . From the proof of Theorem 4, we know that b� (B) is continuously di¤erentiable with respect to B.
This implies that: DDDDD

@b� (B)
@B

DDDDD < sup
B2[BT ;1]

DDDDD
@b� (B)
@B

DDDDD = Op(1):
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Consequently, the rate of b� (bBTM )� b� (BT ) is determined by the rate at which bBTM � BT converges to
zero. We have:

bBTM � BT = BT
�bBTM
BT

� 1
�
= c (�0)T

�g(C)

�bBTM
BT

� 1
�
= Op(T

�g(C)�1=2);

provided that M � T: Hence:

p
T
�
b� (bBTM )� b� (BT )

�
=
@b� (B)
@B

p
T (bBTM � BT ) = Op(T�g(C)) = op(1);

which shows that
p
T
�
b� (bBTM )� �0

�
and

p
T
�
b� (BT )� �0

�
have the same asymptotic distribution.

D Numerical algorithms: Computing the objective function of the

CGMM

The moment function ht (�; �) 2 L2 (�) for any �nite measure �. Hence, we can take � (�) to be the
standard normal density up to a multiplicative constant: � (�) = exp f�� 0�g : We have:

KT ĥT (�; �) =

Z

Rd

bkT (s; �)bhT (�; s) exp
�
�s0s

	
ds:

This integral can be well approximated numerically by using the Gauss-Hermite quadrature. This

amounts to �nd m points s1; s2; :::sm and weighs !1; !2; :::!m such that:

Z

Rd
P (s) expf�s0sgdx =

mX

k=1

!kP (sk)

for any polynomial function P (:) of order smaller than or equal to 2m � 1. See for example Liu and
Pierce (1994).

If f is di¤erentiable at any order (for example an analytic function), it can be shown that for any

positive " arbitrarily small, there exist m such that:

CCCCC

Z

Rd
f(s) expf�s0sgdx�

mX

k=1

!kf(sk)

CCCCC < ":

The choice of the quadrature point does not depend on the function f . The quadrature points and

weights are determined by solving:

Z
sl expf�s2gds =

nX

k=1

!ks
l
k for all l = 1; :::; 2n� 1
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Applying that method to evaluate the above integral, we get

KTbhT (�; �) �
mX

k=1

!kbkT (sk; �)bhT (�; sk) :

Let bhT (�) denote the vector
�
bhT (�; sk) ;bhT (�; sk) ; :::;bhT (�; sk)

�0
and cWT denote the matrix with ele-

ments: Wjk = !kbkT (sk; sj). Thus we can simply write:

KTbhT (�) � cWT
bhT (�) :

For any given level of precision, the matrix cWT can be looked at as the best �nite dimensional reduction

of the operator KT . From the spectral decomposition of K�1
BT ; it is easy to deduce the approximation:

K�1
BT
bhT (�) �

�
cW 2
T + BI

��1cWT
bhT (�) � ehT (�) :

Finally, the objective function of the CGMM is computed as:

D
K�1
BT
bhT (�; :);bhT (�; :)

E
=

Z CCCK�1=2
BT

bhT (�; �)
CCC
2
exp

�
�� 0�

	
d� �

mX

k=1

!k

CCCehT (�; sk)
CCC
2

where ehT (�; sk) is the kth component of ehT (�).
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