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A curse of dimensionality arises when using the Continuum-GMM procedure to estimate large dimensional models. Two solutions are proposed, both of which convert the high dimensional model into a continuum of reduced information sets. Under certain regularity conditions, each reduced information set can be used to produce a consistent estimator of the parameter of interest. An indirect CGMM estimator is obtained by optimally aggregating all such consistent estimators. The simulation results suggest that the indirect CGMM procedure makes an e¢cient use of the information content of moment restrictions.

Introduction

In the nancial econometrics literature, many models are specied directly in terms of their characteristic function (CF) because their densities are unknown. Typical examples include the stable distributions and discretely sampled continuous time processes. A discrete sample from a square root di¤usion is an exception [START_REF] Singleton | Estimation of A¢ne Pricing Models Using the Empirical Characteristic Function[END_REF]. Its transition density is of the same form as for an autoregressive Gamma model, being an innite mixture of Gamma densities with Poisson weights (See [START_REF] Gourieroux | Autoregressive Gamma Processes[END_REF]. Unfortunately, innite mixtures have to be truncated in practice for the sake of feasibility. The challenge raised by the estimation of such models has motivated the use of various instances of the CF based GMM. See e.g. [START_REF] Carrasco | Generalization of GMM to a continuum of moment conditions[END_REF], [START_REF] Jiang | Estimation of Continuous Time Processes via the Empirical Characteristic Function[END_REF], [START_REF] Knight | The empirical characteristic function in time series estimation[END_REF], [START_REF] Yu | Empirical Characteristic Function Estimation and Its Applications[END_REF], [START_REF] Taufer | Characteristic function estimation of Ornstein Uhlenbeck-based stochastic volatility models[END_REF] and [START_REF] Li | A spectral estimation of tempered stable stochastic volatility models and option pricing[END_REF].

In fact, two random variables have the same distribution if and only if their CFs coincide on their whole domain. This suggests that an inference procedure that adequately exploits the information content of the CF has the potential to be as e¢cient as a likelihood-based approach. The continuum-GMM (CGMM) proposed by [START_REF] Carrasco | Generalization of GMM to a continuum of moment conditions[END_REF] permits an e¢cient use of the whole continuum of moment conditions obtained by taking the di¤erence between the theoretical CF of an IID random variable and its empirical counterpart. Carrasco, Chernov, Florens and Ghysels (2007) extend the use of the CGMM to Markov and weakly dependent models. However, the scope of the CGMM goes beyond models specied in terms of their CF. To see this, let us consider an economic model summarized by a conditional moment restriction (CMR) of the type E (g( 0 ; y t )jX t ) = 0, where y t 2 4, X t 2 4 d and 0 is the parameter of interest. This type of CMR is quite prevalent in the macroeconomic and asset pricing literature (e.g., rst order conditions of DSGEs or Euler Equations) and it is equivalent to the innite set of unconditional moment restrictions given by: E (g( 0 ; y t )A(X t )) = 0 for all possible functions A(X t ). [START_REF] Dominguez | Consistent Estimation of Models dened by Conditional Moment Restriction[END_REF] show that using a small number of unconditional moment restrictions selected from the previous innite set may not warrant the identication of 0 . They show that identication and GMM-e¢ciency are achieved by exploiting the continuum of unconditional moment restrictions given by E (g( 0 ; y t )1(X t < )) = 0; 2 4 d . [START_REF] Bierens | Consistent Model Specication Tests[END_REF] showed that the CMR E (g( 0 ; y t )jX t ) = 0 is also equivalent to the continuum of unconditional moment restrictions E (g( 0 ; y t ) exp(i X t )) = 0; 2 4 d . The latter continuum shares some similarities with the one used to design the CGMM and it has also been used by [START_REF] Lavergne | Smooth minimum distance estimation and testing with conditional estimating equations: uniform in bandwidth theory[END_REF] to derive smoothed minimum distance estimators.

The CGMM builds on the same philosophy as the GMM of [START_REF] Hansen | Large Sample Properties of Generalized Method of Moments Estimators[END_REF]. Both are based on the minimization of a quadratic form associated with some scalar product. The scalar product of the GMM is dened on a nite dimensional vector space while the one used to design the CGMM is dened on an innite dimensional Hilbert space. An example of scalar product between two functions h( ) and g( ) in a complex Hilbert space is given by the integral of h( )g( ) against a continuous measure 5( )d , where g( ) is the complex conjugate of g( ). The norm of h( ) associated with this scalar product is given by the integral of h( )h( ) against 5( )d . Hence the multiplicity of the integral is determined by the dimensionality of . In [START_REF] Carrasco | Generalization of GMM to a continuum of moment conditions[END_REF], h( ) h ( ; 0 ) is the di¤erence between the theoretical CF of a random variable and its empirical counterpart where the Fourier transformation index and 0 a nite dimensional parameter.

Typically, one chooses 5( ) to be a multivariate Gaussian measure on 4 d so as to be able to use Gauss-Hermite quadratures. This approach produces satisfactory results when the index is either one-dimensional or two-dimensional [START_REF] Kotchoni | Applications of the Characteristic Function Based Continuum GMM in Finance[END_REF]; however, the complexity of the numerical integration grows exponentially with the dimensionality of . For instance, if 10 quadrature points deliver a given precision in numerically evaluating a one dimensional integral, approximately 10 d quadrature points would be required to obtain an equivalent precision for a d-dimensional integral. This curse of dimensionality is well-known in computational elds. Possible solutions to address this problem include reducing the number of quadrature points or removing quadrature points that have very low weights. Unfortunately, neither of these solutions provides a substantial numerical e¢ciency gain without jeopardizing the accuracy of the overall estimation procedure.

In an e¤ort to circumvent the aforementioned problem, two approaches are explored in this paper. The rst approach consists of converting the multivariate model into a continuum of univariate models. To begin, one draws a vector from a continuous distribution dened on a standardized subset 3 of 4 d (e.g. the unit sphere or the unit hypercube). Next, one denes the set of all moment functions along the vector line as h ;t (u; 0 ) h t (u ; 0 ), u 2 4. Under certain regularity conditions, a consistent estimator b CGM M ( ) is obtained by minimizing a norm of h ;t (u; 0 ); which is a function of a one dimensional index u for a given . A nal estimator that does not depend on is obtained by integrating b CGM M ( ) against a measure ( ) d on 3. Unfortunately, some parameters that could be identied from the full information set 8 h t ( ; 0 ) ; 2 4 d 9 may no longer be identiable from the reduced information set fh ;t (u; 0 ); u 2 4g. This leads us to consider a second approach that relies on a discrete subset of the full information set for the estimation of 0 . Here, one draws a set of n indices 1 ; :::; n independently from a continuous distribution on 4 d , where n is large enough to ensure the identication of from fh t ( i ; 0 ) ; i = 1; :::; ng. A consistent estimator b GM M (e ) is then obtained by minimizing a norm of 1 T P T t e h t (e ; 0 ), where e = ( 1 ; :::; n ) and e h t (e ; 0 ) is the n-vector of relevant moment conditions. A nal estimator that does not depend on e is obtained by integrating b GM M (e ) against a measure e 5 (e ) de on 0 4 d 1 n . In either case, the nal estimator consists of the aggregation of estimators obtained from samples of type fy ;t = x t g T t=1 generated from the frequency domain of the distribution of x t and thus, it has the avour of one obtained by a resampling method. It is also reminiscent of an indirect estimator because the underlying procedure converts a high dimensional model into a continuum of reduced information sets. As such, we refer to this estimator as the indirect CGMM (henceforth, ICGMM) estimator.

Three major issues are addressed regarding the ICGMM procedure. The rst issue is related to the identication of 0 from the reduced information sets. The second issue involves the choice of the aggregating measure that warrants minimum variance for the ICGMM estimator. It appears that the optimal weighting scheme is closely related to the inverse of the covariance operators associated with the random element b CGM M ( ) and b GM M (e ). The third issue concerns the implementation of the e¢cient ICGMM. We propose an implementation strategy that relies on a combination of time domain and frequency domain resampling and we show that the feasible e¢cient ICGMM estimator converges in probability to its theoretical counterpart.

We perform two sets of Monte Carlo experiments that are aimed at comparing the performance of the ICGMM estimator to that of feasible benchmarks (e.g., Maximum Likelihood, CGMM or Smoothed Minimum Distance). The rst set of experiments is based on a bivariate Gaussian IID model. We use this simple framework as a pretext to introduce a non-technical summary of the implementation steps of the ICGMM estimator. The second simulation study is based on an enriched version of a linear heteroscedastic model used in [START_REF] Cragg | More e¢cient estimation in the presence of heteroscedasticity of unknown form[END_REF]. We summarize this model into a CMR that is turned into a continuum of unconditional moment restrictions for the purpose of applying the ICGMM procedure. The simulation results suggest that the ICGMM procedure compares favorably to the benchmarks and makes an e¢cient use of the information content of moment restrictions.

The remainder of the paper is organized as follows. Section 2 presents the general framework for implementing the ICGMM and introduces the necessary assumptions. Section 3 discusses the properties of standard CGMM estimators. Section 4 presents the derivation of the optimal aggregating weight for the ICGMM estimator. In Section 5, a feasible version of the e¢cient ICGMM estimator is presented and its asymptotic optimality established. For sake of clarity, we focus on IID models in Sections 2 to 5. The extension of the ICGMM to CMR, Markov and weakly dependent models is discussed in Section 6. Section 7 presents the Monte Carlo simulations and Section 8 concludes. The proofs of the propositions are gathered in the appendix.

The General Framework

This section introduces the ICGMM estimation in IID models along with the assumptions underlying the procedure.

The ICGMM estimators

Let x t 2 4 d be an IID random variable and assume that the distribution of x t is fully characterized by a nite dimensional parameter 0 2 4

q . Let us consider the function h t ( ; ) given by:

h t ( ; ) = exp (i x t ) 0 ' ( ; ) ; 2 4 d ; (1) 
where ' ( ; ) = E [exp (i x t )] and E is the expectation operator. As E [h t ( ; 0 )] = 0 for all 2 4 d , the function h t ( ; ) denes a continuum of valid moment conditions that can be used to estimate 0 from observed data.

Let 5( ) denote a probability distribution function on 4 d and L 2 (5) be the Hilbert space of complex valued functions that are square integrable with respect to 5( ), i.e.:

L 2 (5) = ff : 4 d ! + such that Z f ( )f ( )5( )d < 1g:
A scalar product h:; :i on L 2 (5) 2 L 2 (5) is given by:

hf; gi = Z f ( )g( )5( )d ; ( 2 
)
where z is the complex conjugate of z.

The moment function h t ( ; 0 ) is bounded in modulus and hence, belongs to L 2 (5) for any nite measure 5( ). Taking advantage of this, [START_REF] Carrasco | Generalization of GMM to a continuum of moment conditions[END_REF] dene the objective function of the CGMM by means of the quadratic form associated with the scalar product above. They use:

Q T () = D K 01=2 b h T (:; ); K 01=2 b h T (:; ) E ; (3) 
where b h T ( ; ) = 1 T P T t=1 h t ( ; ) and K is the covariance operator associated with the moment function. This operator satises:

Kf ( 1 ) = Z k ( 1 ; 2 ) g ( 2 ) 5 ( 2 ) d 2 ;
for any function f 2 L 2 (5), where the kernel k ( 1 ; 2 ) is given by:

k ( 1 ; 2 ) = E 0 h h t ( 1 ; )h t ( 2 ; ) i : (4) 
The CGMM estimator is dened as the particular value of that minimizes the objective function Q T (). Note that the CGMM estimation algorithm requires the iterative numerical evaluation of the multiple integrals involved in the expression of Q T (). Hence, as the dimensionality of x t grows, a curse of dimensionality arises and the CGMM estimator becomes numerically unfeasible.

We explore two possible approaches to circumvent this problem. In the rst approach, we consider the normalized set 3 dened by:

3 = 8 2 4 d : k k E = 1 9 ; (5) 
where kk E is the Euclidian norm on 4 d (One may also choose 3 to be the hypercube [0; 1] d ). For any particular 2 3, the set of all moment functions along the vector line generated by is given by:

h ;t (u; ) h t (u ; 0 ) ; u 2 4; (6) 
As a function of u, h ;t (u; ) is a univariate mapping from 4 to +. Under certain regularity conditions discussed below, a consistent CGMM estimator of 0 is given by:

b CGM M ( ) = arg min Q ;T () = Z b h ;T (u; ) b h ;T (u; )! (u) du ; (7) 
where ! (:) is a continuous and positive weighting function on 4, b h ;T (u; ) = 1 T P T t=1 h ;t (u; ) and the dependence of b CGM M ( ) on ! (:) is hidden for simplicity. In order to make the nal estimator independent of the direction , we dene the ICGMM estimator as:

b ICGM M 1 = Z b CGM M ( ) ( ) d ; (8) 
where (:) is a continuous measure on 3. An e¢cient ICGMM estimator is obtained by selecting (:) so as to minimize the variance of b ICGM M 1 .

In the second approach to solve the dimensionality problem, we consider estimating 0 from the reduced information set fh t ( i ; 0 ) ; i = 1; :::; ng, where 1 ; :::; n are independent draws from a distribution e ( ) on 4 d and n dim ( 0 ). If 0 is identiable from the full information set 8 h t ( ; 0 ) ; 2 4 d 9 and n is large enough, then a consistent estimator of 0 is given by:

b GM M (e ) = arg min 1 T T X t e h t (e ; 0 ) ! 1 T T X t e h t (e ; 0 ) ! ; (9) 
where e h t (e ; 0 ) = (h t ( 1 ; 0 ) ; :::; h t ( n ; 0 )) and e = ( 1 ; :::; n ). Note that b GM M (e ) is the standard rst step GMM estimator of [START_REF] Hansen | Large Sample Properties of Generalized Method of Moments Estimators[END_REF]. An ICGMM estimator that does not depend on e is obtained by aggregating the estimators b GM M (e ) ; e 2 0 4 d 1 n as follows:

b ICGM M 2 = Z b GM M (e ) e
5 (e ) de ; [START_REF] Hansen | Large Sample Properties of Generalized Method of Moments Estimators[END_REF] where e 5 (e ) = e ( 1 ):::e ( n ). An e¢cient ICGMM estimator is obtained by selecting e ( ) so as to minimize the variance of b ICGM M 2 .

Both b CGM M ( ) and b GM M (e ) could be used as rst step estimators to build e¢cient second step estimators based on the reduced information sets. In the rst approach, we have:

b (2) CGM M ( ) = arg min Q (2) ;T () = Z K 01 b h ;T (u; ) b h ;T (u; )! (u) du ; ( 11 
)
where K is the covariance operator associated with h ;t (u; ). This operator satises K f

(u 1 ) = R k (u 1 ; u 2 ) g (u 2 ) ! (u 2
) du 2 for any g that is square integrable with respect to !(:), where:

k (u 1 ; u 2 ) = E h ;t (u 1 ; 0 )h ;t (u 2 ; 0 ) ; (12) b (2) 
CGM M ( ) is e¢cient among the CGMM estimators based on h ;t (u; ); u 2 4 and its asymptotic distribution is independent of !(:) (See [START_REF] Carrasco | Generalization of GMM to a continuum of moment conditions[END_REF]. In the second approach, b

GM M ( ) is the second step GMM estimator given by: b 

where e K is the asymptotic covariance matrix of e h t (e ; 0 ), that is, e K = E e h t (e ; 0 ) e h t (e ; 0 ) . b

GM M ( ) is e¢cient among the GMM estimators based on fh t ( i ; 0 ) ; i = 1; :::; ng (See [START_REF] Hansen | Large Sample Properties of Generalized Method of Moments Estimators[END_REF]. However, we have preferred to design the ICGMM estimators using the rst step estimators b CGM M ( ) and b GM M (e ) for reasons that are presented in Section 4.3. The discussions on the choice of the weighting function ! (:) to use for b ICGM M 1 and the number of discretization points n to use for b ICGM M 2 are also postponed until that section.

The Assumptions

With no loss of generality, we study the theoretical properties of the ICGMM estimator by assuming that it is given by Equation [START_REF] Dufour | Some impossibility theorems in econometrics, with applications to structural and dynamic models[END_REF]. Indeed, the alternate ICGMM approach is based on a standard GMM estimator whose properties are well-known in the literature. Hence from here until Section 5, it is assumed that b = b ICGM M 1 . The following assumptions are posited.

Assumption 1: The pdf !(u) is strictly positive on 4 and has nite moments at any order. Assumption 2: For all 2 3n@, the equation E 0 [h ;t (u; )] = 0 for all u 2 4; ! 0 almost everywhere, has a unique solution 0 which is an interior point of a compact set 2, where @ is a null set with respect to (:) and E 0 denotes the expectation with respect to the distribution of the data at = 0 . Assumption 3: p T b h ;T (u; 0 ) ! N (0; K ), where K is the covariance operator associated with the moment function h ;t (:; 0 ). Assumption 4: For all 2 3n@, h ;t (u; ) is twice continuously di¤erentiable with respect to . Assumption 5: h ;t (u; ) is at least twice continuously di¤erentiable with respect to in 3n@. Assumption 6: At any such that @Q ;T @ = 0, we have: (i)

@ 2 Q ;T
@@ is positive denite and (ii)

@ 2 Q ;T
@@ is of full rank for all 2 3n@. Assumption 7: The measure (:) on 3 satises: R ( ) d = 1.

The rst assumption ensures that 0 < E

!(u) f (u)f (u) < 1 for all f 6 = 0.
Assumption 2 must be interpreted in two steps. First, for any given in 3n@, there might exist a subset A of 4 such that the solution to E 0 [h ;t (u; )] = 0 is not unique for all u 2 A. However, Assumption 2 requires that A be a null set with respect to the measure !. Second, Assumption 2 requires that @ (i.e., the set of all such that 0 is not identiable from h ;t (u; )) be a null set with respect to the continuous measure on 3. For instance, if d = 2 and x t = (x 1;t ; x 2;t ) , choosing = ( 1 ; 0) is equivalent to relying on the marginal distribution of x 1;t for the estimation of 0 . In this case, the parameters that characterize the dependence between x 1;t and x 2;t cannot be identied from the distribution of y ;t = 1 x 1;t . However, the set of all = ( 1 ; 2 ) such that 1 = 0 or 2 = 0 is a null set with respect to any continuous measure on 4 2 . To assess the strength of Assumption 2, assume that x t = (x 1;t ; x 2;t ) is IID bivariate normal:

x t N 1 2 ; 2 1 1 2 1 2 2 2 ; (14) 
This joint distribution is indexed by ve parameters: = ( 1 ; 2 1 ; 2 ; 2 2 ; ). Let us focus on the estimation of by assuming that ( i ; 2 i ) = (0; 1); i = 1; 2. It can be shown that the MLE of based on the joint distribution ( 14) solves the xed-point relation:

b = b 3 0 b 2 1 T P x 1;t x 2;t 0 1 T P x 1;t x 2;t 1 0 1 T P x 2 1;t 0 1 T P x 2 2;t : (15) 
Now, consider the distribution of y ;t = 1 x 1;t + 2 x 2;t , with = ( 1 ; 2 ). We have:

y ;t = 1 x 1;t + 2 x 2;t N 0 0; 2 1 + 2 1 2 + 2 2 1 : (16) 
The MLE of based on the distribution ( 16) is:

b ( ) = 1 2 1 2 1 T X y 2 ;t 0 2 1 0 2 2 : (17) 
For almost all , the estimator b ( ) is unbiased for and is consistent. Hence, is identiable from the reduced information set consisting of the distribution of y ;t and the weights 1 and 2 . The reduced information set is strictly included in the joint distribution of (z 1;t ; z 2;t ), but it is larger than the sole knowledge of the marginal distribution of y ;t .

Note that all ve parameters ( 1 ; 2 1 ; 2 ; 2 2 ; ) cannot be identied from the reduced information set unless some restrictions are imposed (e.g., by letting 2 1 , 2 and 2 2 be known functions of 1 and focusing on the estimation of ( 1 ; )). In this respect, Assumption 2 is quite strong. However, this shortcoming is compensated by the generality of the approach to derive the e¢cient ICGMM estimator presented in Section 4 and the procedure for its implementation presented in Section 5. Indeed, the results derived for b ICGM M 1 in Sections 4 and 5 are easily extended to b ICGM M 2 (i.e., the ICGMM estimator based on b GM M (e )) upon adapting the assumptions above. Furthermore, b ICGM M 2 has the advantage of being exempt from the identication issue raised previously for b ICGM M 1 . In a more complicated model, it might not be possible to detect all identication issues at glance. In such a case, one may construct bootstrap condence sets as a means to diagnose the model. Indeed, poor bootstrap condence set coverage strongly suggest that some of the parameters of interest are (almost) unidentied (See [START_REF] Dufour | Some impossibility theorems in econometrics, with applications to structural and dynamic models[END_REF].

The remaining assumptions are quite mild. Assumption 3 is satised if x t is IID (See [START_REF] Carrasco | Generalization of GMM to a continuum of moment conditions[END_REF]. The consistency of the CGMM estimator b CGM M ( ) can be shown under a weaker condition than Assumption 4, e.g. that h ;t (u; ) is once continuously di¤erentiable. However, twice continuous di¤erentiability is required along with Assumptions 5 and 6 to ensure that b CGM M ( ) is a smooth function of . Assumption 6 further implies that b CGM M ( ) is unique. Indeed, there is no guaranty that a CGMM objective function computed from an arbitrary small sample will have a unique minimizer. However, for reasonable sample sizes and if the model underlying the moment function is identied, we can expect b CGM M ( ) to be unique for almost all , which is enough for the goals pursued in this paper. Finally, the measure (:) to which Assumption 7 refers could be any continuous pdf on 3.

Properties of CGMM Estimators

The CGMM estimator b CGM M ( ) is based on the reduced information set fh ;t (u; ); u 2 4g. The objective function that it minimizes does not use the inverse of the covariance operator K as metrics. Hence, it is not the most optimal estimator that can be obtained from this reduced information set. However, its consistency is established by the following proposition.

Proposition 1 Under Assumptions 1 to 4, b CGM M ( ) is consistent for 0 . It is asymptotically normal and we have:

p T b CGM M ( ) 0 0 ! N 0 0; W 01 hG (:; 0 ); K G (:; 0 )i W 01 1 ;
as T! 1 and for all 2 3n@, where G (:; 0 ) = P lim @h;t(u 1 ; > CGM M ( ))

@

, W = hG (:; 0 ); G (:; 0 )i and K is the covariance operator associated with h ;t (u; ).

A more general version of this result is stated in Carrasco, Chernov, Florens and Ghysels (2007, Proposition 3.1). Proposition 1 will be used later to prove the consistency and asymptotic normality of the ICGMM estimator. Another property of b CGM M ( ) established below warrants attention.

Proposition 2 Under Assumptions 1 to 6, b CGM M ( ) is unique and continuously di¤erentiable with respect to , for all 2 3n@.

The result given by Proposition 2 allows us to consider the use of a continuous pdf (:) as weighting functions for the ICGMM estimator. Later on, we will attempt to derive the optimal weighting function 3 (:).

If one wishes to compute the second step CGMM b

(2) CGM M ( ), an estimate of the covariance operator K is needed. A natural estimator of K is given by the linear empirical operator K ;T with kernel:

b k (u 1 ; u 2 ) = 1 T T X t=1 h ;t (u 1 ; b CGM M ( ))h ;t (u 2 ; b CGM M ( )); (18) 
where b CGM M ( ) is used as rst step estimator. In IID models, the rst step estimator may be bypassed by considering:

b k (u 1 ; u 2 ) = 1 T T X t=1 0 e iu 1 y;t 0 b ' ;T 1 0 e iu 1 y;t 0 b ' ;T 1 ; (19) 
where b ' ;T = 1 T P T t=1 e iu 1 y;t . The operator K has an innite and discrete spectrum. By letting l ;i be its eigenvalue associated with the eigenfunction ;i and assuming that l ;i is decreasing in i, we have: (i) l ;1 < 1, (ii) l ;i > l ;i+1 > 0 for all i, and (iii) lim i l ;i = 0. By contrast, the empirical operator K ;T has a degenerate spectrum. If we let b l ;i be an eigenvalue of K ;T associated with the eigenfunction b

;i , then it is always possible to label b l ;i and b

;i so that: (i) b l ;1 < 1, (ii) b l ;i > b l ;i+1 0 for all i, and (iii) b l ;i = 0 for all i > T , where T is the sample size. As a result, K ;T is not invertible on L 2 (!). See Carrasco, Florens and Renault (2007) for more details.

To estimate K 01 , the following generalized inverse is used:

K 01 ;T;B = 0 K 2 ;T + BI 1 01 K ;T :
With the same notation as above, it can be veried that b ;i is an eigenfunction of K 01 ;T;B associated with the eigenvalue > l ;i > l 2 ;i +B . Under Assumptions 1 and 2, we have:

kK ;T 0 Kk = O p 0 T 01=2 1 :
where K is the covariance operator dened in equation ( 3). The regularized inverse K 01 ;T;B has the property that for any function f in the range of K 1=2 ;T , the function K 01=2 ;T;B f converges to K 01=2 f as T goes to innity and B goes to zero. Under Assumptions 1 to 4 and an additional regularity condition on the moment function h ;t (u; ) (See e.g. [START_REF] Carrasco | Generalization of GMM to a continuum of moment conditions[END_REF], replacing K 01=2 by K 01=2 ;T;B in the objective function [START_REF] Jiang | Estimation of Continuous Time Processes via the Empirical Characteristic Function[END_REF] yields a second step estimator that satises:

p T b (2) CGM M ( ) 0 0 ! N (0; I 01 ; 0 ); (20) 
as T and BT 1=2 go to innity and B goes to zero, where I 01 ; 0 is the asymptotic variance of the MLE based on the reduced information set.

The E¢cient ICGMM Estimator

In Equation ( 8), we have dened the ICGMM estimator as the weighted sum of a continuum of p T -consistent estimators indexed by , that is:

b = Z b CGM M ( ) ( ) d ;
where (:) is a continuous measure on 3 that sums to one. We have the following consistency result.

Proposition 3

The ICGMM estimator b is consistent and asymptotically normal for any continuous pdf (:) on 3. We have:

p T b 0 0 ! N (0; A ) ;
as T! 1, where:

A = Z Z 2 W 01 1 hG 1 (:; 0 ); K 1 ; 2 G 2 (:; 0 )i W 01 2 3 ( 1 ) ( 2 ) d 1 d 2 ;
and K 1 ; 2 is the linear operator with kernel:

k 1 ; 2 (u; v) = lim T Cov p T b h 1 ;T (u; 0 ); p T b h 2 ;T (v; 0 ) ;
and G (:; 0 ) = P lim @h;t(u; 0 ) @ and W = hG (:; 0 ); G (:; 0 )i for any .

Below, we derive the optimal weighting function 3 (:).

Approximate Solution to the Exact Problem

We consider selecting the optimal weighting function (:) by minimizing the variance of p T b , for some 2 4 q :

V ar

p T b = Z Z g ( 1 ; 2 ) ( 1 ) ( 2 ) d 1 d 2 ; (21) where g ( 1 ; 2 ) = Cov p T b ( 1 ) ; p T b ( 2 )
. Clearly, the solution of this minimization depends on . In practice, should be set according to the particular hypothesis one wishes to test on 0 . For example, b is the sum of the coordinates of b when = (1; :::; 1) , b selects the rst coordinate of b when = (1; 0; :::; 0) , and so on.

The ideal measure 3 (:) solves:

3 = arg min Z Z g ( 1 ; 2 ) ( 1 ) ( 2 ) d 1 d 2 , ( 22 
) subject to R ( ) d = 1.
The Lagrangian for this problem is given by:

L () = Z Z g ( 1 ; 2 ) ( 1 ) ( 2 ) d 1 d 2 + 1 0 Z ( 1 ) d 1 ;
Let V be the asymptotic covariance operator associated with b CGM M ( ). The operator V is linear and its kernel is given by g ( 1 ; 2 ). It is also compact if we have:

Z 3 Z 3 [g ( 1 ; 2 )] 2 d 1 d 2 < 1:
This condition is met here because 3 is a bounded set while g ( 1 ; 2 ) is nite and continuous at all ( 1 ; 2 ). The compactness of V ensures that it has a discrete spectrum (See Carrasco, Florens and Renault, 2007). If we let ;j ( ) denote the eigenfunction of V associated with the eigenvalue ;j , then we have ;j 0 and ;i ( ) and ;j ( ) are orthogonal for all i 6 = j. The rst order condition of the minimization problem above is:

V ( ) = J ( ) ;
where is a Lagrange multiplier and J ( ) = 1 for all .

An exact solution to this problem exists only if the constant function J ( ) lies entirely in the range of V . To our knowledge, it cannot be proved that this is the case. Hence, we target an approximate solution that exploits the projection of J ( ) onto the range of V . This approximate solution coincides with the exact solution if J ( ) lies entirely in the range of V . The function J ( ) is decomposed as:

J ( ) = J 0 ( ) + e J ( ) ;
where

J 0 ( ) = X j=1 Z ;j ( 1 ) d 1 ;j ( ) ;
is the projection of J ( ) onto the range of V and the residual of the projection e J ( ) = 1 0 J 0 ( ) lies in the null space of V . The following proposition characterizes the approximate solution to our optimization problem.

Proposition 4

The approximate solution of (22) with minimal norm is given by: ; is given by:

3 ( ) = 3 X j=1 1 ;j Z ;j ( 1 ) d 1 ;j ( ) ; (23) 
V ar p T b 3 = 3 : (24)
This approximate solution is the one with minimal norm because 3 ( ) + e f ( ) solves the same rst order condition as 3 (:) for any e f ( ) that belongs to the null space of V . More compact expressions than those provided in Proposition (4) are given by:

3 = Z V 01 J 0 ( ) d 01 ; 3 ( ) = 3 V 01 J 0 ( ) and b 3 = 3 Z 2 V 01 J 0 ( ) 3 b CGM M ( ) d :
We now consider an alternative approach to derive the optimal weights.

Exact Solution to an Approximate Problem

The presence of the inverse of the eigenvalues of V in the expression of 3 (:) makes this solution ill-posed. This means that a small perturbation in the eigenvalues of V may create large changes in the behavior of 3 (:). A well-behaved solution can be found by adding a Ridge penalization to the Lagrangian. This yields:

L () = Z Z g ( 1 ; 2 ) ( 1 ) ( 2 ) d 1 d 2 + 1 0 Z ( 1 ) d 1 (25) +B Z ( 1 ) 2 d 1 ;
The rst order optimality condition for this approximate problem is:

(V + BI) ( ) = J ( ) ;
where I stands for the identity operator. Interestingly, the null space of the operator V + BI reduces to the null function. Hence, an exact solution can be derived as:

3 ;B ( ) = (V + BI) 01 J ( ) : Using the constraint 1 0 R 3 ;B ( ) d = 0
, we nd the Lagrange multiplier as:

3 ;B = Z (V + BI) 01 J ( ) d 01 : (26) 
The exact solution to the regularized problem is given by:

3 ;B ( ) = 3 ;B (V + BI) 01 J ( ) : (27) 
Finally, the optimal ICGMM estimator based on 3 ;B ( ) is given by:

b 3 ;B Z 3 ;B ( ) b CGM M ( ) d = 3 ;B Z (V + BI) 01 b CGM M ( ) d ; (28) 
and the variance of b 3 ;B is given by 3 ;B . The solution based on the penalized Lagrangian (25) suggests a family of regularized solutions given by:

3 ;B = Z V 01 ;B J ( ) d 01 , 3 ;B ( ) = 3 ;B V 01 ;B J ( ) and b 3 ;B = 3 ;B Z V 01 ;B b CGM M ( ) d ;
where V 01 ;B is a regularized inverse of the covariance operator. Subsequently, we advocate the following regularization scheme:

V 01 ;B = 0 V 2 + BI 1 01 V : (29) 
This choice leads to a solution 3 ;B that lies entirely in the range of V and that converges to the approximate solution of the exact problem as B goes to zero. 

GM M (e ). We rst consider b ICGM M 1 and the choice of ! (:). Recall that the rst step CGMM estimator b CGM M ( ) solves:

b CGM M ( ) = arg min Z b h ;T (u; ) b h ;T (u; )! (u) du ;
where ! is a continuous univariate measure on 4. Thus, let us make the dependence of everything on ! explicit (in this section only). The E¢cient ICGMM estimator consists of a summation of b CGM M ( ) b CGM M ( ; !) along the index and hence, it also depends on !. The approximate solution to the exact problem implies an e¢cient ICGMM estimator of the form:

b 3 (!) = 3 (!) Z 3 ( ; !) b CGM M ( ; !) d ;
where 3 (!) and 3 ( ; !) depend on !(:) via the covariance operator V V ;! . The asymptotic variance of b 3 (!) is given by:

3 (!) = " X j=1 1 ;j (!) Z ;j ( ; !) d 2 # 01 ; (30) 
where ;j ( ; !) is the eigenfunction of V ;! associated with the eigenvalue ;j (!). Thus, minimizing the asymptotic variance of b 3 (!) amounts to minimizing the eigenvalues ;j (!) while maximizing the squared integrals of the eigenfunctions 0R ;j ( ; !) d 1 2 ; j = 1; :::; 1.

To gain additional insights, let us base our reasoning on the sum of the eigenvalues, P j=1 2 ;j (!),

and the sum of the squared integrals,

P j=1 0R ;j ( 1 ; !) d 1 1 2 .
First, observe that:

Z 3 Z 3 [g ( 1 ; 2 ; !)] 2 d 1 d 2 = Z 3 X j=1 ;j (!) Z g ( 1 ; 2 ; !) ;j ( 2 ; !) d 2 ;j ( 1 ; !) ! d 1 ; = Z 3 X j=1 2 ;j (!) 2 ;j ( 1 ; !) ! d 1 = X j=1 2 
;j (!):

Hence, P j=1 2 ;j (!) is made small by selecting the measure !(:) so as to minimize the variance of each b CGM M ( ; !) for any . Second, note that

P j=1 0R ;j ( 1 ; !) d 1 1 2 is the norm of J 0 ( ),
that is, the projection of the function J ( ) = 1; 2 4 d onto the range of V ;! . This norm is increased if the subspace of L 2 spanned by the eigenfunctions of V ;! captures a larger part of J ( ), or alternatively, if the part of J ( ) that falls into the null space of V ;! is made as small as possible (L 2 is the set of square integrable function f : 3 ! 4 with respect to the Lebesgue measure). This is achieved if the functions b CGM M ( ; !) are scattered along more and more dimensions in L 2 as varies in 3 (it helps to think of these dimensions as being identied by the elements of a complete orthonormal sequence in L 2 ). The rst condition for the optimality of !(:) (i.e., minimization of the eigenvalues of V ;! ) concerns the variability of b CGM M ( ; !) across all possible random samples of size T . The second condition (i.e., maximization of the norm of J 0 ( )) is related to the dimensionality of the subset of L 2 given by n b CGM M ( ; !) ; 2 3 o . These two conditions are likely to be met by an estimator that is consistent and at the same time quite sensitive to variations in . Arguably, V ;! has larger eigenvalues compared to the covariance operator associated with b 

CGM M ( ) may be less sensitive to variations in than b CGM M ( ; !). This suggests that an e¢cient ICGMM designed as a linear combination of rst step CGMM estimators and based on a reasonable choice of !(:) (e.g. the normal density of 4) can be as e¢cient as one using the second step estimator. These heuristic arguments are supported by the simulation results presented in Section 7 where the ICGMM is compared to maximum likelihood. Furthermore, the computation of b CGM M ( ; !) does not require the estimation of the covariance operator associated with the moment conditions and hence, it is obtained in a shorter length of time and with a lesser computational burden than b

(2) CGM M ( ).

We now discuss the choice of the number of discretization points when computing b ICGM M 2 . Let b GM M (e ; n) and b

(2) GM M (e ; n) denote a rst step and a second step GMM estimators based on n discretization points. In principle, n = dim( 0 ) distinct discretization points should be enough for identication. However, the discretization points are being randomly drawn from a continuum and chances are that two of them be arbitrarily close for a given draw. Furthermore, for some data generating processes, the identiability of 0 from the full information set might be rather weak. For these reasons, caution dictates to set n as large as possible. Let now assume that 0 is strongly identiable from (almost) all reduced information sets consisting of n moment conditions. Our discussion above on the choice of the measure !(:) suggests that for a given n, an ICGMM2 estimator based on the rst step estimator b GM M (e ; n) is not necessarily more e¢cient that one based the second step estimator b

(2) GM M (e ; n). Likewise, although b GM M (e ; n 2 ) is expected to be more e¢cient that b GM M (e ; n 1 ) for n 2 > n 1 , an ICGMM2 procedure based on b GM M (e ; n 2 ) is not necessarily more e¢cient than one based on b GM M (e ; n 1 ). The simulation results suggest that the performance of b ICGM M 2 is not very sensitive to the choice of n (see Section 7). In practice, the ICGMM2 estimator can be ne-tuned by trying di¤erent values of n and selecting the one that delivers the smallest bootstrap RMSE.

The Feasible E¢cient ICGMM

Our goal is to compute the estimator b 

3 ;B ' 1 S S X i=1 3 ;B ( i ) b ( i ) ; (31) 
where i ; i = 1; :::; S are independent draws from the uniform distribution on 3. The formula (31) can be implemented upon knowing how to estimate 3 (:). The remainder of this section is devoted to the derivation of an estimator b 3 (:) of the optimal weighting function 3 (:). Let i ; i = 1; :::; S be S draws from the multivariate uniform distribution on 3 and assume that we can draw samples from the data generating process of x t . Further let ; l = 1; :::; L, one may also resort to a standard time domain resampling to generate bootstrap copies b ( i ; l) ; l = 1; :::; L of b ( i ). We have the following convergence result for b V .

; i) element of b V is: b g ( i ; j ) = T SL L X l=1 b ( i ; l) 0 b ( i ; l) b ( j ; l) 0 b ( j ; l) ; (34 
Proposition 5 Let f = (f ( 1 ) ; :::; f ( S )) where 1 ; :::; S are S draws from the multivariate uniform distribution on 3 and f is continuous. Then as L and S go to innity, we have:

b V f i 0 V f ( i ) = O p 0 L 01=2 1 + O p 0 S 01=2 1 ;
for all i , where b V f i is the i th element of the vector b V f .

We estimate the optimal weighting function 3 ;B by:

b 3 ;B = 0 b 3 ;B ( 1 ) ; :::; b 3 ;B ( S ) 1 = S b V 01 ;B 01 b V 01 ;B ; (35) 
where is a vector of ones and b V 01 ;B is a regularized inverse inspired by (29):

b V 01 ;B = b V 2 + BI 01 b V , B 2 (0; 1). (36) 
The following convergence result holds for b V 01 ;B . Proposition 6 Let f = (f ( 1 ) ; :::; f ( S )) where 1 ; :::; S are S draws from the multivariate uniform distribution on 3 and f is continuous. Then, under Assumptions 1 to 7, we have:

D D D b V 01 ;B f 0 V 01 ;B f D D D = O p 0 B 03=2 L 01=2 1 + O p 0 B 03=2 S 01=2 1 ; ( 37 
)
where

V 01 ;B = 0 V 2 ;B + BI 1 V .
Hence, b V 01 ;B f is consistent for V 01 ;B f provided that B 3 L ! 1 and B 3 S ! 1. In particular, we have:

D D D b V 01 ;B 0 V 01 ;B J D D D = D D D b V 01 ;B 0 V 01 ;B J 0 D D D ; = O p 0 B 03=2 L 01=2 1 + O p 0 B 03=2 S 01=2 1 ;
where is a vector of ones, J ( ) = 1 for all and J 0 is the projection of J onto the range of V . Now, we need to nd the rate at which V 01 ;B J 0 converges to V 01 J 0 , where:

V 01 J 0 ( ) = X j=1 1 ;j Z ;j ( 1 ) d 1 ;j ( ) :
Note that the expression above is proportional to 3 (:) (See Proposition 4). If J 0 belongs to the range of V 3

, then we could write:

0 V 01 ;B 0 V 01 1 f 0 (V 2 + BI) 01 V 0 V 01 1 f; = 0B 2 (V 2 + BI) 01 V 2 3 2 V 03 f 0 3 : This would imply that D D V 03 J 0 D D = O(1) and k(V 2 + BI) 01 V 2 k = O(1)
, and thus

0 V 01 ;B 0 V 01 1 J 0 = O(B) as B ! 0.
Unfortunately, the requirement that J 0 belongs to the range of V 3 might be too restrictive. The following proposition allows for more generality.

Proposition 7 Let J ( ) = 1 for all and J 0 be the projection of J onto the range of V . Then, under Assumptions 1 to 7, we have:

D D 0 V 01 ;B 0 V 01 1 J 0 D D = O B min(1; F01 2 ) : (38) 
where F the maximum real number such that J 0 belongs to the range of V F .

The lower bound of F is equal to one because J 0 belongs to the range of V by construction. Hence b

V 01 ;B is consistent for V 01 J 0 provided that F is strictly larger than 1 and B is selected wisely. Also note that 0

V 01 ;B 0 V 01 1 f 0 = O(B) as B ! 0 if F 3.
By putting Proposition 6 and 7 together, we have:

D D D b V 01 ;B 0 V 01 J 0 D D D D D D b V 01 ;B 0 V 01 ;B J 0 D D D + D D 0 V 01 ;B 0 V 01 1 J 0 D D = O p 0 B 03=2 L 01=2 1 + O p 0 B 03=2 S 01=2 1 + O B min(1; F01 2 ) :
We compute the feasible optimal ICGMM estimator as: where 1 ; :::; S are S draws from the multivariate uniform distribution on 3. Under Assumptions 1 to 7, we have:

b 3 ;B = 1 S S X i=1 b 3 ;B ( i ) b ( i ) ; (39) 
1 S S X i=1 b 3 ;B ( i ) b ( i ) 0 Z 3 ( ) b CGM M ( ) d = O p 0 B 03=2 L 01=2 1 + O p 0 B 03=2 S 01=2 1 + O B min(1; F01 2 ) ;
as L and S go to innity.

Proposition 8 establishes that the feasible optimal ICGMM estimator converges in probability to the unfeasible one. This implies that both estimators are asymptotically equivalent.

Using the l th sample, we can compute the following estimator: 

Extensions of the ICGMM to CMR, Markov and Weakly Dependent Models

Let us consider the following CMR model:

E [g( 0 ; y t )jX t ] = 0; t = 1; :::; T; ( 42 
)
where y t 2 4, X t 2 4 d and g( 0 ; y t ) 2 4. For simplicity, assume that the observations are uncorrelated across t. This CMR is to E [g( 0 ; y t )A(X t )] = 0 for all possible functions A(X t ). Thus, let A( ; X t ) = exp(i X t ) so that:

h t ( ; ) = g(; y t ) exp(i X t ); 2 4 d : (43) 
The parameter 0 can be e¢ciently estimated by CGMM from the continuum of unconditional moment restrictions (43). In particular, one may resort to the ICGMM when d is large. Note that the design (43) has also been used in [START_REF] Lavergne | Smooth minimum distance estimation and testing with conditional estimating equations: uniform in bandwidth theory[END_REF] and [START_REF] Antoine | Conditional moment models under weak identication[END_REF].

Let us now consider a Markov process x t 2 4 d for which the conditional CF is known. For this case, Carrasco, Chernov, Florens and Ghysels (2007) recommend designing the moment function as:

h t ( ; ) = (exp (is 0 x t ) 0 ' t (s 0 ; )) exp p X k=1 is k x t0k ! ; ( 44 
)
where p is the order of the Markov process, ' t ( 0 ; ) = E (exp (is 0 x t ) j fx t0k g p k=1 ) ; s 2 4 d is the conditional CF of x t and = (s 0 ; :::s p ) 2 4 d(p+1) .

Finally, let us assume that x t 2 4 d is a weakly dependent process for which the joint CF of an arbitrary number of consecutive observations is known in closed form. For this case, Carrasco, Chernov, Florens and Ghysels (2007) propose writing h t ( ; ) as:

h t ( ; ) = e i Yt 0 ' t ( ; ) ; ( 45 
)
where Y t = (x t ; x t01 ; :::; x t0p ) ; 2 4 d(p+1) and ' t ( ; ) = E (e i Yt ) is the CF of Y t . Here, p must be large enough to ensure identication.

In either of the above cases, the objective function of the CGMM is of the same form as in Equation ( 3). However, the denitions of the scalar product h:; :i need to be adapted to each situation (i.e., h:; :i must be dened on L 2 (5) 2 L 2 (5); where 5 ( ) is a probability measure on 4 dim( ) ). Also, note that the general expression of the kernel function k ( 1 ; 2 ) is given by:

k( 1 ; 2 ) = E h t ( 1 ; )h t ( 2 ; ) (46) + X j=1 E h t ( 1 ;
) h t0j ( 2 ; ) + h t+j ( 2 ; ) :

This expression reduces to k( 1 ; 2 ) = E h t ( 1 ; )h t ( 2 ; ) when h t ( 1 ;
) is given by either (42) or (44). Under weak dependence, k( 1 ; 2 ) may be estimated as in Newey and West (1987) or Andrews and Monahan (1992) using the Bartlett kernel:

b k T ( 1 ; 2 ) = 1 T T X t=1 h t ( 1 ; b 1 )h t ( 2 ; b 1 ) + J T X j=1 1 0 j 0 1 J T T X t=1 h t ( 1 ; b 1 ) h t0j ( 2 ; b 1 ) + h t+j ( 2 ; b 1 ) ;
where b 1 is a consistent rst step estimator of 0 and J T is a bandwidth that is increasing in T .

See [START_REF] Carrasco | E¢cient estimation of general dynamic models with a continuum of moment conditions[END_REF]. The approach presented in Section 2.1 to tackle the curse of dimensionality that arises when implementing the CGMM requires turning the full information set 8 h t ( ; ); 2 4 d 9 into the reduced information set fh ;t (u; ); u 2 4g for a given 2 3. However, it is not always possible to identify 0 from such a reduced information set. This is particularly true in CMR, Markov and weakly dependent models. In CMR models for instance, trying to identify 0 from the previous reduced information set amounts to trying to estimate 0 based on only one instrument. Interestingly, the second approach which consists of discretizing the full information set into fh t ( i ; ); i = 1; :::; ng does not su¤er from identication problems if a large enough n is chosen. Finally, note that the method described in Section 5 for the implementation of the feasible e¢cient ICGMM applies here with no change as it does not depend on the data generating process.

Monte Carlo Simulations

This section presents two simulation studies. The rst study is based on a bivariate Gaussian IID model and is aimed at presenting a non-technical description of the implementation of the ICGMM estimator. The second set of experiments is based on a CMR model that we turn into a continuum of unconditional moment conditions.

Simulation study 1

We base this simulation study on a bivariate Gaussian IID model specied as follows:

x t = x 1;t x 2;t N ; 1 1 : (47) 
The vector of parameters of interest is = (; ), with 0 = (0; 0:5) being the true value. The CF of x t is given by:

' ( ; ) = exp i 0 1 2 2 ; 2 4 d ; (48) 
where

= ( 1 + 2 ) and 2 = 2 1 + 2 1 2 + 2 2 .
We choose this simple model because it accommodates at least ve approaches to estimate 0 : (i) the standard maximum likelihood estimator (MLE), (ii) the standard CGMM estimator, (iii) the indirect maximum likelihood based on the distribution of y ;t = x t (IMLE), (iv) the ICGMM estimator based on the distribution of y ;t = x t , and (v) the ICGMM estimator based on a discrete subset of the continuum of moment conditions given by:

h t ( ; ) = exp (i x t ) 0 exp i 0 1 2 2 ; 2 4 2 ; (49) 
where

= ( 1 + 2 ) and 2 = 2 1 + 2 1 2 + 2 2 .
Our goal is to compare these ve estimators in a context where they are all feasible.

The MLE of based on the joint distribution (47) (denoted b M LE ) solves the following xedpoint problem:

b M LE = 1 2T X (x 1;t + x 2;t ) and b M LE = b 3 M LE 0 b 2 M LE 1 T P (x 1;t 0 b M LE ) (x 2;t 0 b M LE ) 0 1 T P (x 1;t 0 b M LE ) (x 2;t 0 b M LE ) 1 0 1 T P (x 1;t 0 b M LE ) 2 0 1 T P (x 2;t 0 b M LE ) 2 :
The MLE of based on the distribution of y ;t = x t ; 2 [0; 1] 2 (denoted b M LE ( )) is given by:

b M LE ( ) = 1 T ( 1 + 2 ) X y ;t and b M LE ( ) = 1 2 1 2 1 T X (y ;t 0 ( 1 + 2 ) b M LE ( )) 2 0 2 1 0 2 2 :
The IMLE of , b IM LE , is obtained by integrating b M LE ( ) against an estimated optimal measure on [0; 1] 2 . The standard CGMM estimator of (denoted b CGM M ) is based on the continuum of moment conditions (49). The rst step CGMM estimator based on the distribution of y ;t = x t ; 2 [0; 1] 2 (denoted b CGM M ( )) is obtained through the following moment function:

h ;t (u; ) = exp (iuy ;t ) 0 exp iu 0 1 2 u 2 2 ; u 2 4: (50) 
where

= ( 1 + 2 ) and 2 = 2 1 +2 1 2 + 2 2 .
The CGMM objective function is evaluated using 10 quadrature points. An ICGMM estimator, b ICGM M;1 , is obtained by integrating b CGM M ( ) against an estimated optimal measure on [0; 1] 2 .

A rst step GMM estimator, b GM M (e ), can be obtained based on the vector of moment conditions given by: e h t (e ; ) = (h t ( 1 ; ) ; :::; h t ( n ; )) ;

where e = ( 1 ; :::; n ) and i 2 4 2 ; i = 1; :::; n. Another ICGMM estimator, b ICGM M;2 , is obtained by integrating b GM M (e ) against an estimated optimal measure on (4 2 ) n . We consider n = 5 and n = 10 in order to gauge the sensitivity of the results to the number of discretization points.

We compare the performance of ve estimators in a small scale, common random numbers Monte Carlo experiment. To start, we simulate L = 500 samples of size T = 250. From each sample indexed by l = 1; :::; L, we compute b

(l) M LE , b (l) 
CGM M , and

n b (l) M LE ( i ) ; b (l) CGM M ( i ) ; b (l) GM M (e i ) o S=125 i=1
.

Each i is drawn independently from the bivariate uniform distribution on [0; 1] 2 and the same i

is used to compute b (l) M LE ( i ) and b (l) CGM M ( i ).
Each array e i = ( i;1 ; :::; i;n ) is built by drawing i;j ; j = 1; :::; n independently from a di¤use bivariate normal distribution (i.e. a distribution that puts almost uniform weights on all elements of 4 2 ). We use:

e i;j N 0 0 ; 25 0 0 25 : Let b 2 be the L 2 S matrix with (l; i) element equal to b E l;i = b (l;i) , where = (1; 1) and b (l;i) ( i ) is either b (l) M LE ( i ) ; b (l) CGM M ( i ) or b (l)
GM M (e i ). Note that the l th row of b 2 is computed from the l th sample while the i th column of b 2 is labelled by either the same i or the same e i . Let us dene:

b V = T SL b 2 0 b 2 b 2 0 b 2 ;
where b 2 contains the means of b 2 column-wise. The optimal aggregating measure is estimated by:

b 3 B = S b V 01 B 01 b V 01 B ;
where b V 01

B = b V 2 + BI 01 b
V for an arbitrary choice B = 10 06 . Finally, the feasible e¢cient indirect estimators from the l th sample are given by: b (l)

IM LE = 1 S S X i=1 b 3 B ( i ) b (l) M LE ( i ) ; l = 1; :::; L; b (l) ICGM M;1 = 1 S S X i=1 b 3 B ( i ) b (l)
CGM M ( i ) ; l = 1; :::; L and b (l)

ICGM M;2 = 1 S S X i=1 b 3 B ( i ) b (l)
GM M (e i ) ; l = 1; :::; L: where b 3 B ( i ) is estimated using the relevant values of b E l;i . The empirical distributions of the estimators are used to produce the results shown in Table 1. First, we note that the properties of the IMLE, ICGMM1 and ICGMM2 estimators do not improve as one increase the number of discretization point from 5 to 10. The results suggest that the point estimates of and can be fairly considered unbiased. All ve methods deliver 90% condence intervals that encompass the true value of the parameters. As expected, the two estimators based on full information (i.e., MLE and CGMM) have similar biases, standard errors and condence intervals. Likewise, the two methods based on the reduced information set fy ;t = x t ; 2 [0; 1] 2 g (i.e., the IMLE and ICGMM1) have similar performance in all respects. In particular, the standard errors of the IMLE and ICGMM1 estimators of are twice as much as those of their MLE and CGMM analogues. This highlights the fact that the CGMM estimator is equivalent to the full MLE while the ICGMM1 estimator is equivalent to the reduced information MLE. The ICGMM2 estimator compares favorably to the MLE and the CGMM estimator. This suggests that the reduced information set on which the ICGMM2 is based is richer than the one pertaining to ICGMM1 for the data generating processes under consideration. Table 1. Comparison of the MLE, CGMM, IMLE and ICGMM by Simulation.

The columns labelled "Mean", "Std. dev." and "RMSE" contain the means, standard errors and root mean square errors of the estimators, respectively. IC5 and IC95 are respectively the 5 th and 95 th percentile of the simulated distribution so that [IC5,IC95] is a 90% condence interval for the true value.

T=250, L=500 and S=125. The second simulation study focuses on a multivariate version of a linear model used in [START_REF] Cragg | More e¢cient estimation in the presence of heteroscedasticity of unknown form[END_REF], [START_REF] Newey | E¢cient estimation of models with conditional moment restrictions[END_REF], and Kitamura, Tripathi and Ahn (2004) and [START_REF] Lavergne | Smooth minimum distance estimation and testing with conditional estimating equations: uniform in bandwidth theory[END_REF]. We assume that: y t = X t 0 + " t ; t = 1; :::; T = 50;

where: 0 = ( 0 ; 1 ; 2 ; 3 ) = (1; 1; 1; 1) ; X t = (1; x 1;t ; x 2;t ; x 3;t ) , ln x i;t N (0; 1) for i = 1; 2; 3; " t jX t N (0; 2 t ) with 2 t = 0:2 + 0:1 (X t ) + 0:05 (X t ) 2 and = (1; 1; 1; 1) : and all observations are independent across t.

Assuming that the distribution of " t and the functional form of its variance is known, 0 can be e¢ciently estimated by feasible generalized least squares (GLS), maximum likelihood or CGMM. The feasible GLS estimator and MLE are quite easy to implement for this model. However, we choose to apply the ICGMM for illustration purposes (although the use of the ICGMM would be more justied if " t were specied as a stable random variable). Assuming that the variance functional form is known, the conditional CF of y t is given by: ' (s; 0 ; C) E 0 e isyt jX t 1 ; s 2 4;

= exp isX t 0 0 1 2 s 2 0 C 0 + C 1 (X t ) + C 2 (X t ) 2 1 :
The suitable moment function based on this condition CF is given by: h

t ( ; ; C) = 0 e isyt 0 ' (s; ; C) 1 exp(ir X t ); (1) 
where r 2 4 4 and = (s; r ) 2 4 5 . One advantage of the ICGMM over the feasible GLS is that the variance parameter C is jointly estimated with 0 . Note that Equation (51) also implies the CMR:

E (" t jX) E (y t 0 X t jX) = 0:
Hence, one may also consider estimating 0 via the continuum of unconditional moment conditions given by: h

t (r; ) = (y t 0 X t ) exp(ir X t ); for all r 2 4 4 :

One possible approach to exploiting the moment function h

(2) t (r; ) is proposed by [START_REF] Lavergne | Smooth minimum distance estimation and testing with conditional estimating equations: uniform in bandwidth theory[END_REF] and it leads to the minimization of the following objective-function:

M T;b () = 1 2n(n 0 1) X 1t$ =lT (y t 0 X t ) (y l 0 X l ) 1 b 3 8 e X t 0 e X l b ! ; (54) 
where 8 (:) is a multivariate kernel, e X t = (e x 1;t ; e x 2;t ; e x 3;t ) and e x i;t is a standardized version of x i;t ; that is: e x i;t = x i;t q 1 T 01 P T l=1 (x i;l 0 x i ) 2

; i = 1; 2; 3 and t = 1; :::; T:

The minimizer of M T;b () is called the smooth minimum distance (SMD) estimator of 0 . Lavergne and Patilea (2008) show that this estimator is consistent and has good small sample properties. They perform a simulation study based on a version of Model (51) that contains only one regressor and nd that the SMD estimator compares favorably to a feasible GLS estimator based on the knowledge of the heteroscedasticity functional form.

It might be useful to note that h

(2)

t (r; ) = @h (1) 
t ( ;;C) @s j s=0 , which indicates that h

(2) t (r; ) contains less information than h

(1) t ( ; ; C). In particular, h

t ( ; ; C) incorporates the information about the heteroscedasticity and higher order moments of y t 0 X t while h

(2) t (r; ) does not. In practice, one attempts to compensate for this information loss by applying a two-step procedure. In the rst step, one obtains an estimator of the conditional variance of h

(2) t (r; 0 ) based on a preliminary consistent estimator e of . The true conditional variance of h

(2) t (r; 0 ) is given by: V ar h

(2)

t (r; 0 ) jX t E h (2) t (r; 0 ) h (2) 
t (r; 0 )jX t

We conduct a last simulation experiment aimed at assessing the sensitivity of the performance of the ICGMM2 estimator to the choice of the number of the discretization points n. Given that h

(1) t ( ; ; C) depends on seven parameters, n = 7 is the minimum number of discretization points that can be used to compare the estimators based on the moment functions h

(2)

t ( ; ), h (3) 
t ( ; ) and h

(1) t ( ; ; C). Table 3 presents the simulation results for n = 7 and n = 10 (see Table 2 for the case n = 13). Overall, there is very little variation in the performance of the ICGMM2 estimators across the di¤erent values of n considered. If one looks at the results under the microscope, we note a slight improvement in the performance of the ICGMM2 estimators based on h t ( ; ; C) as n increases. This suggests that for this particular DGP, the ICGMM2 procedure based on the CF does not required a large n for optimality, unlike the ones based on h 

Conclusion

The CGMM proposed by [START_REF] Carrasco | Generalization of GMM to a continuum of moment conditions[END_REF] generalizes the GMM procedure of [START_REF] Hansen | Large Sample Properties of Generalized Method of Moments Estimators[END_REF] to a continuum of moment conditions and delivers estimators that are as e¢cient as MLE asymptotically. Its objective function is given by the quadratic form R K 01 BT h ( ; ) h ( ; )5( )d , where is a nite dimensional parameter of interest (with true value 0 ), h ( ; ) is the di¤erence between a theoretical CF and its empirical counterpart, is the Fourier transformation index, K 01

BT is a regularized inverse of the empirical covariance operator associated with h ( ; ) and 5( ) is a continuous measure on 4 dim( ) . However, the complexity of the numerical evaluation of this objective function grows exponentially with the dimensionality of , which renders the CGMM estimator roughly unfeasible in high dimensional models.

We propose two methods to tackle this curse of dimensionality. In the rst approach, one converts the multivariate model of interest into a continuum of auxiliary univariate models. Under certain regularity conditions, each of the auxiliary models may be used to obtain a consistent estimator of 0 . An indirect CGMM (ICGMM) estimator of 0 is then recovered as an optimal weighted average of the previous consistent estimators. In the second approach, one draws a large number of sets of n moment conditions from the continuum 8 h ( ; ) ; 2 4 dim( ) 9 . Consistent rst step GMM estimators of 0 are obtained by minimizing the Euclidean norm of the sample average of the vector formed by each set of n moment conditions. Finally, an ICGMM estimator of 0 is obtained by optimally combining the previous rst step estimators.

The rst approach may su¤er from identication issues if the dimensionality reduction leads to a severe information loss. For that reason, this approach should not be used outside IID models. The second approach has a more general scope than the rst and always allows the identication of 0 if n is large enough. We illustrate both versions of the ICGMM with two sets of Monte Carlo experiments. The rst Monte Carlo study is based on a bivariate Gaussian model. The results suggest that the second version of the ICGMM is a viable alternative to the CGMM and maximum likelihood. The second Monte Carlo study focuses on a CMR that is turned into a continuum of unconditional moment restrictions. The simulation results suggest that the ICGMM outperforms the smoothed minimum distance (SMD) estimator of [START_REF] Lavergne | Smooth minimum distance estimation and testing with conditional estimating equations: uniform in bandwidth theory[END_REF]. However, the SMD procedure requires less computational burden than the ICGMM. where K is the covariance operator associated with b h ;t (u; 0 ). If we further let:

G (u; 0 ) = P lim T @ b h ;T (u; b CGM M ( )) @
and W = hG (:; 0 ); G (:; 0 )i , then, the asymptotic covariance matrix of b is given by:

lim T V ar p T b CGM M ( ) = W 01 Z G (u; 0 ) Z k (u; v) G (v; 0 ) ! (v) dv ! (u) du W 01 : where k (u; v) = lim T Cov p T b h ;t (u; 0 ); p T b h ;t (v; 0 )
is the covariance operator K . Hence, according to Assumption 3. Hence:

lim T V ar p T b CGM M ( ) = W 01 1 T Z G (u; 0 ) h K G (u; 0 ) i ! (u) du W 01 = W 01 hG (:; 0 ); K G (:; 0 )i W 01 :
This shows that b CGM M ( ) is p T consistent and asymptotically normal under Assumptions 1 and 44

Proof of Proposition 2: According to Assumptions 4 and 5, Q ;T () is twice continuously di¤erentiable with respect to and . Furthermore, Assumption 6(i) ensures that @ 2 Q ;T @@ is invertible at b CGM M ( ), the unique minimizer of Q ;T . Hence, by the implicit function theorem, b CGM M ( ) is continuously di¤erentiable with respect to and we have:

@ b ( ) @ = 0 2 4 @ 2 Q ;T b CGM M ( ) @@ 3 5 01 @ 2 Q ;T b CGM M ( ) @@ , in the neighbourhood of b CGM M ( ) 4 
Proof of Proposition 3: According to Assumptions 1 to 4, each CGMM estimator b CGM M ( ) is consistent for 0 . Hence for any choice of pdf , Assumption 7 is met and for 2 3n@, we have:

V ar p T b = Z Z Cov p T b ( 1 ) ; p T b ( 2 ) ( 1 ) ( 2 ) d 1 d 2 max h Cov T b CGM M ( ) i Z Z ( 1 ) ( 2 ) d 1 d 2 | {z } =1 ; = max h V ar b CGM M ( ) i ; = O p 0 T 01 1
, for any 2 4 q ; q = dim :

This shows the consistency of b . The asymptotic normality of b follows from the fact that each b CGM M ( ) is asymptotically normal. The covariance matrix of b is given by:

V ar p T b = Z Z Cov p T b ( 1 ) ; p T b ( 2 ) ( 1 ) ( 2 ) d 1 d 2 :
Hence, the asymptotic covariance is:

A lim T V ar p T b = Z Z h lim T Cov p T b ( 1 ) ; p T b ( 2 ) i ( 1 ) ( 2 ) d 1 d 2 : Note that: p T b ( i ) 0 0 ' 0W 01 i Z G i ;T (u; b ) p T b h i ;T (u; 0 )! (u) du; for i = 1; 2:
Hence:

lim T Cov p T b ( 1 ) ; p T b ( 2 ) = W 01 1 Z G 1 (u; 0 ) Z k 1 ; 2 (u; v) G 2 (v; 0 ) ! (v) dv ! (u) du W 01 2 ;
where

k 1 ; 2 (u; v) = lim T Cov p T b h 1 ;t (u; b ); p T b h 2 ;t (v; b )
is the kernel of the cross-covariance operator K 1 ; 2 . Thus:

lim T Cov p T b ( 1 ) ; p T b ( 2 ) = W 01 1 1 T Z G 1 (u; 0 ) h K 1 ; 2 G 2 (u; 0 ) i ! (u) du W 01 2 ; = W 01 1 hG 1 (:; 0 ); K 1 ; 2 G 2 (:; 0 )i W 01 2 :
Finally:

A = Z Z 2 W 01 1 hG 1 (:; 0 ); K 1 ; 2 G 2 (:; 0 )i W 01 2 3 ( 1 ) ( 2 ) d 1 d 2 :
4 Proposition 4: The ideal measure 3 (:) solves:

3 = arg min Z Z g ( 1 ; 2 ) ( 1 ) ( 2 ) d 1 d 2 , subject to: Z ( 1 ) d 1 = 1; where g ( 1 ; 2 ) = Cov b CGM M ( ) ; b CGM M ( )
. The Lagrangian for this problem is given by:

L () = Z Z g ( 1 ; 2 ) ( 1 ) ( 2 ) d 1 d 2 + 1 0 Z ( 1 ) d 1 ;
where is a Lagrange multiplier. The rst order condition for this problem is obtained by di¤erentiating L () with respect to ( 1 ): Z g ( ; 1 ) ( 1 ) d 1 = J ( ) ;

where J ( ) = 1 for all in 3n@. Let V be the linear operator with kernel v ( 1 ; 2 ). The rst order condition becomes:

V ( ) = J ( ) : (57) 
An exact solution to this problem exists only if the constant function J ( ) lies entirely in the range of V . Otherwise, an approximate solution can be constructed based on the projection of J ( ) onto the range of V . As compact a covariance operator, V has a discrete nonnegative spectrum with orthogonal eigenfunctions. Let ;j ( ) be the eigenfunction of V associated with the eigenvalue ;j . Then any function f ( ), can be decomposed as:

f ( ) = X j=1 Z ;j ( 1 ) f ( 1 ) d ;j ( ) + e f ( ) ;
where e f is a residual such that V e f ( ) = 0. Hence, we have J ( ) = J 0 ( ) + e J ( ), where J 0 ( ) = X j=1 Z ;j ( 1 ) d 1 ;j ( ) ; and e J ( ) = 1 0 J 0 ( ) :

The approximate solution of (57) with minimal norm is given by: Because of the linearity of the operator and the bilinearity of the covariance, this convergence result is not sequential. This means that S can go to innity rst and L second or vice versa.4 Proof of Proposition 6: Let f = f 0 + e f , where f 0 is the projection of f onto the range of V . Then, V f = V f 0 and we have:

D D D b V 01 ;B f 0 V 01 ;B f D D D = D D D( b V 2 + BI) 01 b V f 0 (V 2 + BI) 01 V f D D D ; = D D D( b V 2 + BI) 01 b V f 0 ( b V 2 + BI) 01 V f + ( b V 2 + BI) 01 V f 0 (V 2 + BI) 01 V f D D D ; D D D( b V 2 + BI) 01 b V f 0 V f D D D + D D D ( b V 2 + BI) 01 0 (V 2 + BI) 01 V f D D D :
The rst term satises: For the second term, we have:

D D D( b V 2 + BI) 01 b V f 0 V f D D D = D D D( b V 2 + BI) 01
D D D ( b V 2 + BI) 01 0 (V 2 + BI) 01 V f D D D = D D D( b V 2 + BI) 01 V 2 0 b V 2 (V 2 + BI) 01 V f D D D ;
where we used the fact that B 01 0 A 01 = B 01 (A 0 B) A 01 . Hence:

D D D ( b V 2 + BI) 01 0 (V 2 + BI) 01 V f D D D = D D D( b V 2 + BI) 01 D D D | {z } B 01 D D D V 2 0 b V 2 D D D | {z } =Op(L 01=2 )+Op(S 01=2 ) D D (V 2 + BI) 01=2 D D | {z } B 01=2 D D (V 2 + BI) 01=2 V f D D | {z } 1 ; = O p 0 B 03=2 L 01=2 1 + O p 0 B 03=2 S 01=2 1
The second term dominates the rst one. Hence the result.

Proof of Proposition 7: Let J ( ) = 1 for all and J 0 be the projection of J onto the range of V . Assume that J 0 belongs to the range of V F , for some F > 1. We have:

0 V 01 ;B 0 V 01 1 J (V 2 + BI) 01 V J 0 V 01 J; = (V 2 + BI) 01 V J 0 0 V 01 J 0 ; = X j=1 j B + 2 j 0 1 j A J 0 ; j B j ; = X j=1 2 j B + 2 j 0 1 A J 0 ; j B j j :
Next, we take the norm:

D D 0 V 01 ;B 0 V 01 1 J D D = X j=1 2 j B + 2 j 0 1 2 C C A J 0 ; j BC C 2 2 j ! 1=2 ; = X j=1 2F02 j 2 j B + 2 j 0 1 2 C C A J 0 ; j BC C 2 2F j ! 1=2 ; X j=1 C C A J 0 ; j BC C 2 2F j ! 1=2 sup 1j F01 j C C C C 2 j B + 2 j 0 1 C C C C :
Recall that as a compact operator, the largest eigenvalue 1 of V is bounded. We need to nd an equivalent to:

sup 0 1 F01 1 0 2 B + 2 = sup 0 2 1 F01 2 1 0 1 B= + 1 : (58) 
Case where F 3=2: We apply another change of variables x = B= to (58):

sup x0 B F=201=2
x F=201=2 1 0 1 x + 1 :

:

  At the optimum, the variance of b

3

 3 

4. 3

 3 Related Issues: how to choose the weighting measure ! (:) or the number of discretization n? This section discusses the suitable choice of the measure ! (:) to use for the implementation of b ICGM M 1 and the number of discretization points n to use for the implementation of b ICGM M 2 . By the same token, heuristic arguments are put forth to justify our choice to implement b ICGM M 1 and b ICGM M 2 based on the rst step estimators b CGM M ( ) and b GM M (e ) rather than on the second step estimators b (2) CGM M ( ) and b

( 2 )

 2 CGM M ( ) (since the second step CGMM estimator has smaller variance than b CGM M ( ; !)). However, b

3 ; 3 ;

 33 B = R b CGM M ( ) 3 ;B ( ) d .Unfortunately, the expression of3 ;B ( ) is not stated in closed form. To circumvent this di¢culty, we consider approximating b B by the Monte Carlo average:

  b

; l = 1 ;b 2

 12 :::; L be L independent samples of size T simulated from the distribution of interest. For each sample indexed by l and each possible , we compute the univariate samples: b ( ; l) be the rst step CGMM estimator based on the sample n y the CGMM estimator b ( i ; l) ; l = 1; :::; L are IID copies of b ( i ). An estimator of the asymptotic covariance operator associated with b CGM M ( ) is given by the following (S 2 S) matrix: is the matrix with (l; i) element given by b ( i ; l) and b 2 contains the means of the columns of b 2 . The (l

  ) where b ( i ; l) = 1 L P L l=1 b ( i ; l). Given that 0 is unknown, we may use b S = 1 S P S i=1 b ( i ) as a proxy to simulate the independent samples n x (l) t o T t=1 ; l = 1; :::; L. Instead of using Monte Carlo simulations to obtain the samples n x

compares b 3 ;Proposition 8

 38 where b ( i ) ; i = 1; :::; S are computed from the actual data and b = b ( 1 ) ; :::; b ( S ) . The next proposition B with the optimal ICGMM estimator. Let b = b ( 1 ) ; :::; b ( S )

3 ;

 3 B ( i ) b ( i ; l) , l = 1; :::; L: (40) The distribution of b 3(l);B ; l = 1; :::; L inferred by Monte Carlo can be used to perform inferences about 0 . In particular, it can be used to select the regularization parameter B, e.g., by minimizing the following approximate mean square error:

( 3 )

 3 t ( ; ) but a slight deterioration for the one based on h

  t ( ; ) which seem to require larger values of n to achieve their full potential.

  where G ;T (u; ) = @ > h ;T (u;) @ and D G ;T :; b ; G ;T (:; 0 )E = Z G ;T (u; b )G ;T (u; 0 ) ! (u) duis the outer product of the gradient G ;T (u; ) integrated against the measure !(:). According the Assumption 2, D G ;T :; b ; G ;T (:; 0 ) E is invertible for large enough T . Hence: b CGM M ( ) 0 0 ' 0 D G ;T :; b ; G ;T (:; 0 ) E 01 Z G ;T (u; b ) b h ;T (u; 0 )! (u) du: According to Assumption 3, the random element b h ;T (u; 0 ) = 1 T P T t=1 b h ;t (u; 0 ) satises: p T b h ;T (u; 0 ) ! N (0; K ) ;

2 ;; 1 :

 21 with the (i; j) element of b V given by:b g ( i ; j ) = T SL L X l=1 b ( i ; l) 0 b ( i ; l) b ( j ; l) 0 b ( j ; l) ;and f = (f ( 1 ) ; :::; f ( S )) , where b ( i ; l) is IID across l. We have:i ; j ) f ( j ) ; i ; l) 0 b ( i ; l) b ( j ; l) 0 b ( j ; l) ! f ( j ) ; = T L L X l=1 b ( i ; l) 0 b ( i ; l) 1 S S X j=1 b ( j ; l) 0 b ( j ; l) f ( j )!Note that i ; i = 1; :::; S are drawn from the multivariate uniform distribution of 3. By the Law of Large Numbers, as S goes to innity, we have:1 S S X j=1 b ( j ; l) 0 b ( j ; l) f ( j ) ! Z 3 b ( ; l) 0 b ( ; l) f ( ) d : i ; l) 0 b ( i ; l) b ( ; l) 0 b ( ; l)Next, b ( i ; l) is IID across l = 1; :::; L. Hence, a Law of Large Numbers applies as L goes to innity: i ; l) 0 b ( i ; l) b ( ; l) 0 b ( ; l)

  01=2 )+Op(S 01=2 ) ; = O p 0 B 01 L 01=2 1 + O p 0 B 01 S 01=2 1 :
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This conditional variance can be estimated nonparametrically by:

so that each b 2 t is a convex combination of the squared residuals. In the second step, one estimates 0 based on the moment function given by:

exp(ir X t ); for all r 2 4 4 ;

The e¢cient SMD estimator of Lavergne and Patilea follows from (55) and is obtained by minimizing:

Subsequently, the same bandwidth (b = 0:3) is used to evaluate the objective functions (54) and (56). Also, we use the true variance 2 t in Equations ( 55) and (56) in order to assess the full potential of the normalization of h

(2) t (r; 0 ) by its conditional variance. The simulation results appear not to be sensitive to this choice.

Another approach to exploiting the moment functions h

t ( ; ) and h

t (r; ) is by using the version of the ICGMM procedure designed for CMR models (i.e., the ICGMM2). Whether using either h

(1)

t ( ; ) or h (3) t (r; ), the implementation steps of the ICGMM2 are the same. As a reminder, we summarize these steps based on h t (e ; ; C) be the vector of moment conditions given by: e h GM M (e i ) ; l = 1; :::; L are computed using the same e i = ( i;1 ; :::; i;13 ); each e i is formed by drawing i;j from a normal distribution with zero mean and covariance matrix 10I 5 , where I 5 is the identity matrix of 4 5 . Let b 2 be the L 2 S matrix with (l; i) element equal to b E l;i = b (l) GM M (e i ) and:

where b 2 contains the means of b 2 column-wise. The optimal aggregating measure is estimated by b

V and B = 10 06 is chosen more or less arbitrarily. The feasible e¢cient ICGMM2 estimator from the l th sample is:

GM M (e i ) ; l = 1; :::; L:

In total, we have ve estimators for 0 : the basic SMD estimators (based on h

t ( ; )), the e¢cient SMD estimator (based on h 

t ( ; ) and h

(3) t (r; ) respectively. Table 2 summarizes the simulation results.

Table 2. Comparison of the SMD and the ICGMM2 by simulation.

The labels "Mean", "Std. dev." and "RMSE" respectively refer to the means, standard errors and root mean square errors. IC5 and IC95 are respectively the 5 th and 95 th percentile of the simulated distribution so that [IC5,IC95] is a 90% condence interval for the true value. The moment function

t ( ; ) while h First, we note that the RMSEs of all ve estimators are roughly equal to their standard deviations, which indicates the absence of bias. Second, the ICGMM2 estimators have smaller RMSEs compared to SMD estimators. The ICGMM estimator based on h

(1) t ( ; ; C) markedly dominates all other estimators and the second best is the ICGMM estimator based on h

(3) t (r; ). This suggests that the ICGMM makes an e¢cient use of the information content of the CMR. However, it should be emphasized that the computational burden associated with ICGMM is higher compared to the SMD. Note that the e¢cient SMD estimator does not outperform the basic SMD estimator. This stems from the fact that h t ( ; ) conditional on X t . Arguably, the two-step SMD procedure would outperform the basic SMD in the presence of several CMRs as it would permits to exploit the information content of the cross-covariances of the CMRs. Table 3. Assessing the performance of the ICGMM2 as the number of discretization points varies.

The labels "Mean", "Std. dev." and "RMSE" respectively refer to the means, standard errors and root mean square errors. IC5 and IC95 are respectively the 5 th and 95 th percentile of the simulated distribution so that [IC5,IC95] is a 90% condence interval for the true value. The moment function h

(2)

t ( ; ) while h 

Substituting back into the FOC yields:

The Lagrange multiplier is identied using the constraint R ( ) d = 1. This yields:

We substitute this for in 3 ( ) to obtain:

At the solution 3 ( ), we have:

An equivalent to (58) is given by B F=201=2 , provided that sup

is bounded. We study the properties of

Note that g (x) is continuous and therefore bounded on any interval of (0; +1). It goes to 0 at +1 (for any F > 1). For the limit at 0, we apply lHopitals rule and obtain g (x)

provided F < 3=2. For F = 3=2, we have

Case where F > 3=2: We rewrite (58) as

The term (which is bounded because is bounded) and a function of the form

It is easy to show using the lHopitals rule that 0

Hence the rate of (58) is given by B. By putting everything together, we have:

Proof of Proposition 8: Let b = b ( 1 ) ; :::; b ( S ) and 1 ; :::; S be S draws from the multivariate uniform distribution on 3. We have:

According to Propositions 6 and 7, we have: b

2 ) ;

as S and L go to innity. Hence, we have:

2 ) and

The later convergence rate stems from the Law of Large Numbers applied to a uniform distribution. In total, we have:

2 ) :

Similarly, we have:

Putting everything together, we have: The rate of the rst and second term is

2 ) while the third term is of higher order.4