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1 Introduction

For many interesting �nancial econometric models, the characteristic function (CF) is
available in closed form while the likelihood function is not, for example stable distribu-
tions and discretely sampled continuous time processes. Exceptionally, a discrete sample
from a square root di¤usion model admits a closed form conditional likelihood expression.
Unfortunately, this expression takes the form of an in�nite sum that must be truncated
in practice. Certain discrete time models (e.g. the variance gamma model) also have
known closed form likelihood functions that are not convenient for numerical optimiza-
tion. In these situations, the use of the CF for inference is an attractive alternative. In
fact, two random variables have the same distribution if and only if their CF coincides on
the whole real line. This suggests that an inference method that adequately exploits the
information content of the CF has the potential to achieve the same level of e¢ciency as a
likelihood-based approach. One such inference method proposed by Carrasco and Florens
(2000) for IID models exploits the whole continuum of moment conditions based on the
di¤erence between the empirical and theoretical characteristic functions. Carrasco et al.
(2007a) extend the method to deal with Markov and dependent models. Other leading
works in this area include Singleton (2001), Knight and Yu (2002), Knight, Satchell and
Yu (2002) and Chacko and Viceira (2003). A good review of this literature is provided
by Yu (2004).
The goal of this paper is to make the Generalized Method of Moments with a contin-

uum of moments conditions (CGMM) based on the CF accessible to applied researchers.
Our focus will be on the approach proposed by Carrasco and Florens (2000) and its ex-
tension by Carrasco et al. (2007a). First of all, we review the theory underlying the
CGMM. We recall the main assumptions that are useful for the consistency and asymp-
totic normality of the CGMM estimator. Next, we discuss in detail the important steps
of the implementation of the CGMM in practice. Finally, we provide a simulation study
with the stable distribution and an empirical application with the autoregressive variance
gamma model.
The stable distribution has been introduced in �nance to �t the asymmetry and fat

tails observed empirically in the distributions of assets returns (Mandelbrot, 1963, or
McCulloch, 1986). In its common parameterization, it has a stability parameter B 2 (0; 2],
a skewness parameter C 2 [�1; 1], a scale parameter � > 0 and a location parameter
� 2 R. The moments of order larger than B do not exist for the stable distribution when
B < 2. When B = 2, all the moments exist but the asymmetry parameter C is no longer
identi�able. Closed form expressions for stable densities are available only in a few cases.
For example, the case B = 2 reduces to a normal distribution N (B; 2�20). When B = 1
and C0 = 0, we obtain the Cauchy distribution whereas the case B = 1=2 and C0 = 1
results in to the so-called Levy distribution. An identity established by Zorotalev (1986)
and commented in Weron (1996) allows one to deduce the density of the case B = 1=2
and C0 = �1 from the previous one. But as pointed out by Nolan (2009), the knowledge
of the likelihood function at isolated values of the parameter space is not helpful when
one is trying to �t the model to real data. This di¢culty has often led researchers to rely
on numerical approximations of the likelihood of the stable distribution. For example,
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McCulloch (1998) discusses an approximate maximum likelihood procedure for symmetric
stable distributions while Nolan (1997) proposes alternative numerical procedures for
B > 0:1. Mittnik et al. (1999) and Paolella (2007) propose Fast Fourier Transform
algorithms to approximate the likelihood function. An alternative quantile based approach
is also discussed in McCulloch (1986).
In the current paper, a CGMM procedure that can be used without imposing any

restriction on the parameter space is presented. Monte Carlo simulations show that the
CGMM outperforms the standard GMM that uses a �nite number of moment conditions
based on the CF. However, the variance of the estimators cannot be computed analytically
when the vector of parameters is close to the non-identi�cation region (that is, when B is
close to 2). One then has to rely on Monte Carlo simulations to build con�dence intervals.
As the primary goal of the current paper is to illustrate the implementation of the CGMM,
we leave the simulation comparison of the latter with the likelihood-based approaches for
future investigations.
The fact that the asymmetry and fat-tailedness of the stable distribution vanish when

its variance exists (B = 2) limits its use for the purpose of modeling assets returns. A
simple way to circumvent this limitation consists in modeling the variance of the returns
as a Gamma variable. This yields the variance gamma models. The symmetric variance
gamma model has been proposed by Madan and Seneta (1990). Madan, Carr and Chang
(1998) extend the basic model to include asymmetry. These two models unfortunately
assume that the variance is IID. Here we relax this assumption by assuming that the vari-
ance follows the autoregressive gamma process studied in Gourieroux and Jasiak (2005).
The resulting model for assets returns is termed the �autoregressive variance gamma
model�. We propose an estimation strategy in two steps. In the �rst step, we �t the au-
toregressive gamma model to a consistent estimator of the daily integrated variance used
as a proxy for the true daily variance. Next, we estimate a relationship between returns
and volatility that allows us to disentangle the risk premium from the leverage e¤ect. An
empirical application with the Alcoa stock listed in the Dow Jones Industrials shows that
investors require a positive premium for bearing expected risk while a negative premium
is attached to unexpected risk.
The rest of the paper is organized as follows. The next section reviews the main

theoretical results on the CGMM. In section 3, we discuss the numerical aspects of its
implementation. In section 4, we present a simulation study of the performance of the
CGMM to estimate the stable distribution. In section 5, we present and estimate the
autoregressive variance gamma model both with simulated and real data. Section 6
concludes. Some technical derivations are left in the appendix.

2 The CGMM: a Brief Theoretical Review

In this section, we present the theoretical framework underlying the CGMM estimation.
The �rst subsection reviews the IID framework while the second subsection deals with
the dependent case. In the third subsection, we discuss the assumptions needed for the
CGMM estimator to have good asymptotic properties.
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2.1 The CGMM in the IID Case

Let (x1; : : : ; xT ) be an IID sample of an m�dimensional vector process whose CF is
given by E�0

�
ei�

0xt
�
= '(� ; �0), where �0 is a �nite dimensional parameter that fully

characterizes the distribution of fxtg and � 2 Rm is the Fourier transformation variable.
By de�nition of '(� ; �0), the following set of moment functions can be considered for the
purpose of estimating the parameter �0:

ht (� ; �0) = e
i� 0xt � '(� ; �0); for all � 2 Rm. (1)

Note that these moment functions are indexed by � 2 Rm, and hence we have a continuum
of moment conditions. Since the CF contains the same information as the likelihood
function, an e¢cient use of the whole continuum of moment conditions permits us to
achieve the maximum likelihood e¢ciency (see Carrasco and Florens, 2000).
As in Feuerverger and McDunnough (1981b), Singleton (2001) or Chacko and Viceira

(2003), one may choose to estimate �0 using GMM based on a discrete subset of the
continuum (1). More precisely, let fht (� k; �0)gqk=1 be a discrete subset of q moments
conditions drawn from (1), and de�ne the vector gt (�0) by:

gt (�0) = (Reht (� 1; �0) ; :::;Reht (� q; �0) ; Imht (� 1; �0) ; :::; Imht (� q; �0))
0 :

The standard GMM estimator of �0 is computed as:

b�GMM = argmin
�
bg (�0)0 bS�1bg (�0) ;

where bg (�0) = 1
T

PT
t=1 gt (�0), bS = 1

T

PT
t=1 gt

�
b�1
�
gt

�
b�1
�0
and b�1 is a �rst step estimator

of �0. See Hansen (1982) for the properties of this estimator.
Feuerverger and McDunnough (1981b) claim that the asymptotic variance of the re-

sulting estimator can be made arbitrarily close to the Cramer-Rao bound by selecting the
grid (� 1; :::; � q) su¢ciently re�ned and extended in Rm. This con�rms that the maximum
likelihood e¢ciency can be achieved only by using the whole continuum of the moment
function. However, as one re�nes and extends the grid of values of � , the discrete set of
moment conditions converges to the continuous moment function ht(� ; �) = ei�

0xt�'(� ; �),
� 2 Rm, while the covariance matrix cW converges to the covariance operator associated
with that moment function. Moreover, one should note that 2q � T is a necessary condi-
tion for the covariance matrix cW to be invertible.
Di¤erent methods that continuously match the empirical CF to its theoretical coun-

terpart has been proposed as far back as in Press (1972) and Paulson et al. (1975), but
the ideal objective function has been introduced more recently by Carrasco and Florens
(2000). That objective function is given by a quadratic form:

Q =
D
K�1=2bhT (:; �); K�1=2bhT (:; �)

E
; (2)

where h : ; : i is a scalar product on the Hilbert space of square integrable functions,
bhT (� ; �) = 1

T

PT
t=1 ht(� ; �) and K is a linear operator.
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To be more precise, let � be an arbitrary �nite measure on Rm and L2(�) denote the
Hilbert space of complex valued functions that are square integrable with respect to �,
that is:

L
2(�) = ff : Rm ! C such that

Z
f(�)f(�)�(�)d� <1g;

where z is the complex conjugate of z for all z 2 C. Interestingly, the CF-based moment
function ht(� ; �) is always bounded in modulus for all random variables, and thus belongs
to L2(�) for all � 2 � and any choice of �. In the objective function (2), the scalar
product h:; :i may thus be de�ned as:

hf; gi =
Z
f(�)g(�)�(�)d� :

Note that � is an arbitrary measure that has nothing to do with the data generating
process of xt. In practice, it is customary to set �(�) = exp (�� 0�) in order to be able to
compute (2) using Hermitian quadratures.
Carrasco and Florens (2000) show that the maximum likelihood e¢ciency is achieved

when K is the asymptotic covariance operator associated with the moment function
ht (� ; �0). For any function f 2 L2(�), we have Kf (�) =

R
k(s; �)f (s) � (s) ds where:

k(s; �) = E
h
ht(s; �)ht(� ; �)

i
: (3)

The function k(s; �) is known as the �kernel of K� in the literature on linear operators. It
can be shown that Kf 2 L2(�) for all f 2 L2(�). Some basic properties of the covariance
operatorK are given in Appendix A. It is shown in Section 3.1 that Hermitian quadratures
can be used to obtain a matrix approximation of K.
In practice, one has to use the empirical counterpart KT of K. The operator KT is the

one obtained by replacing the kernel k(s; �) by a consistent estimator. An estimator of
k(s; �) is obtained by replacing the expectation operator in (3) by an empirical average:

bkT (s; � ;b�
1
) =

1

T

TX

t=1

ht(s;b�
1
)ht(� ;b�

1
); (4)

where b�1 is any consistent �rst step estimator of �0. An example of a �rst step estimator
is given by:

b�1 = argmin
�

D
bhT (:; �);bhT (:; �)

E
:

In the speci�c case of IID data, an estimator of the kernel that does not use a �rst step
estimator is given by:

bkT (s; �) =
1

T

TX

t=1

�
eis

0xt � b'T (s)
�
(ei� 0xt � b'T (�)); (5)

where b'T (s) = 1
T

PT
t=1 e

is0xt. Carrasco and Florens (2000) show that both (4) and (5) are
consistent for k(s; �).
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Unfortunately, Carrasco and Florens (2000) point out that KT is not invertible on the
whole L2(�) space, mainly because the inverse of its theoretical counterpart K exists only
on a dense subset of L2(�). They show that one way to circumvent this problem is to
work with the Tikhonov-type generalized inverse:

K�1
T;� =

�
K2
T + �T IT

��1
KT ;

where IT is the identity operator and �T 2 [0; 1] is a regularization parameter that is a
function of the sample size T . Other types of regularized inverse can also be used (e.g.
spectral cut-o¤, Landweber-Friedman). The Tikhonov scheme is preferred here because it
applies a smooth transformation to the spectrum of KT . The feasible CGMM estimator
is given by:

b�T (�T ) = argmin bQT;�; (6)

where bQT;� =
D
K
�1=2
T;�

bhT (:; �); K�1=2
T;�

bhT (:; �)
E
. It is shown in Carrasco and Florens (2000)

that the maximum likelihood e¢ciency is achieved when �T converges to zero at a certain
rate as the sample size diverges to in�nity. The assumptions underlying these results
are reviewed in Section 2.3. Throughout this paper, � without the subscript denotes
the regularization parameter viewed as a variable with respect to which we may want to
minimize the mean square error (MSE) of b�T (�) while �T denotes the optimal � for a
given sample size T . Finally, the subscript is sometimes removed for notational simplicity,
for example when we write K�1

T;� instead of K
�1
T;�T

.

2.2 The CGMM with Dependent Data

When fxtg is Markov instead of being IID, it may not be possible to identify �0 from the
marginal CF. In this case, Carrasco et al. (2007a) propose to use the moment function
based on the conditional CF:

ht(� ; �) =
h
ei�

0

1
xt+1 � '(�; � 1; xt)

i
ei�

0

2
xt ; (7)

where '(� 01; �; xt) = E�(ei�
0

1
xt+1 jxt), � = (� 01; �

0

2)
0 2 R2m. In the above expression, the

manifold fei� 02xt ; � 2 2 Rmg is used as an instrument. Carrasco et al. (2007a) show that
these instruments are optimal given the Markov assumption.
There also exist many interesting situations where the process fxtg is mixing instead

of being Markov or IID. In a typical stochastic volatility model for instance, the joint
process of the observed return and the latent variance is Markov but the return process
alone is not. In that case, the idea is to use the moment function built from the joint CF:

ht(� ; �) = e
i� 0Yt � E�(ei� 0Yt); � 2 Rmp; (8)

where Yt = (x0t; x
0

t�1; :::; x
0

t�p+1)
0. In theory, the larger the p the more e¢cient the estima-

tor. However in practice, the quest for e¢ciency must be balanced with the computing
cost. For more discussion on this point, see Feuerverger (1990), Carrasco and Florens
(2002), Jiang and Knight (2002), Yu (2004) and Carrasco et al. (2007a).
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The objective function of the CGMM for Markov and dependent models has the same
expression as in (2), except that the kernel of the asymptotic covariance operator K
associated with the moments conditions is now given by:

k(s; �) = E
h
ht(s; �)ht(� ; �)

i
(9)

+

1X

j=1

E
h
ht(s; �)

�
ht�j(� ; �) + ht+j(� ; �)

�i
:

Note that the moment function (1) of the IID model is also IID while the moment function
(7) of the Markov model is a martingale di¤erence sequence. By de�nition, a martingale
di¤erence sequence is uncorrelated at all lags. Because of this, k(s; �) reduces to (3) in
the Markov case and can thus be estimated by (4). On the other hand, the moment
conditions described by (8) are autocorrelated even if the process fxtg is Markov. In
the latter case, k(s; �) may be estimated as in Newey and West (1987) or Andrews and
Monahan (1992) using the Bartlett kernel:

bkT (s; � ;b�
1
) =

1

T

TX

t=1

ht(s;b�
1
)ht(� ;b�

1
)

+

JTX

j=1

�
1� j � 1

JT

� TX

t=1

ht(s;b�
1
)

�
ht�j(� ;b�

1
) + ht+j(� ;b�

1
)

�
;

where b�1 is a consistent �rst step estimator of �0 and JT is a bandwidth that is increasing
in T . Again, the operator KT with kernel bkT (s; � ;b�

1
) is not invertible on the whole

reference space, and the feasible CGMM estimator is de�ned in the same fashion as in
(6). We refer the reader to Carrasco et al. (2007a) for a comprehensive discussion on the
CGMM with dependent data.
In the sequel, we shall focus on the IID and Markov cases and use the generic notation

ht(� ; �); � 2 Rd, where d = m for moment conditions of type (1) and d = 2m for moment
conditions of type (7).

2.3 Basic Assumptions of the CGMM

To derive the theoretical properties of the CGMM estimator, we assume the same regu-
larity conditions as in Carrasco and Kotchoni (2010a).
Assumption 1: The measure � involved in the de�nition of the scalar product h : ; : i

is strictly positive on Rd and admits all its moments.
Assumption 2: The equation

E�0 [ht(� ; �)] = 0 for all � 2 Rd,

holds � almost everywhere, where E�0 denotes the expectation with respect to the dis-
tribution of xt for � = �0, and has a unique solution �0 which is an interior point of a
compact set �.
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Assumption 3: The moment function ht(� ; �) is three times continuously di¤eren-
tiable with respect to �.
Assumption 4: For all �, E�0 [hT (:; �)] and its �rst three derivatives with respect to

� belong to the range of KC for some C � 1=2.
Assumption 5: The random variable xt is stationary and satis�es xt = x (�0; "t; Zt�1)

where x (:; "t; Zt�1) is three times continuously di¤erentiable with respect to �0, "t is IID
white noise whose distribution is known and does not depend on �0, and Zt�1 can only
contain lagged values of xt.
Assumption 1 ensures that the norm associated with the scalar product h:; :i is well

de�ned while Assumption 2 is a global identi�cation requirement. The CGMM estimator
is still well de�ned if Assumption 3 is weaker, for example if ht(� ; �) is only once con-
tinuously di¤erentiable, but the derivation of some of the asymptotic properties of the
estimator becomes di¢cult. Assumption 4 ensures that the limit of the objective function
as T goes to in�nity is well de�ned. The real number C in this assumption is the level of
regularity of E�0 [hT (:; �)] with respect to the operator K; that is, the largest real number
such that

DDK�CE�0 [hT (:; �)]
DD <1.

Under assumptions 1 and 2, the estimator of the covariance operator satis�es in the
IID and Markov case:

kKT �Kk = Op
�
T�1=2

�
;

where the notation XT = Op
�
T�b

�
means that the random sequence T bXT have a non-

degenerate limiting distribution. The regularized inverse K�1=2
T;� has the property that for

any function f in the range of K1=2, K�1=2
T;� f converges to K

�1=2f as T goes to in�nity
and �T goes to zero at some rate. In the IID and Markov case, assumptions 1 to 4 ensure
that the CGMM estimator satis�es:

T 1=2
�
b�T (�T )� �0

�
! N(0; I�1�0 );

as T and �2TT go to in�nity and �T goes to zero, where I
�1
�0
denotes the inverse of the

Fisher Information Matrix.
Assumption 5 is not crucial for the good properties of the CGMM. It has been used

in Carrasco and Kotchoni (2010a) to derive the properties of the optimal sequence of
regularization parameters �T . A similar assumption is also used in Gourieroux, Monfort
and Renault (1993) to derive the properties of indirect inference estimators.

3 The CGMM in Practice

In this section, we discuss two numerical methods to evaluate the objective function of
the CGMM. The �rst method is based on Gauss-Hermite quadratures while the second
uses Monte Carlo integration. We discuss how to compute the variance of the CGMM
estimator and review the simulation based selection of the regularization parameter �T .
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3.1 Computing the Objective Function by Quadrature Method

In implementing the CGMM procedure, the main challenge is the accurate computation
of the multiple integrals embedded in its objective function:

bQT;� =
Z

Rd

K
�1=2
T;�

bhT (� ; �)K�1=2
T;�

bhT (� ; �)�(�)d� :

To start with, let us consider in the univariate case (d = 1) an arbitrary function f (� ; �)
that is continuously di¤erentiable up to order 2n. Then f (� ; �) can be approximated well
by a polynomial function of � , that is:

f (� ; �) =
2n�1X

k=0

ak (�) �
k + " (� ; �) ;

where the residual " (� ; �) is negligible for large n. In that case, the weighting function
� (s) = exp (�s2) is quite convenient to work with. As shown by Carrasco and Florens
(2000), the choice of the weighting function is irrelevant for the asymptotic properties of
the CGMM estimator. However, the function � (s) = exp (�s2) has the nice feature that
it puts little weight on extreme values of ht(s; �), which is a desirable feature in a �nite
sample. More importantly, this choice of � (s) allows one to approximate the objective
function using Gauss-Hermite quadratures.
Let us �rst consider the computation of KT ĥT (� ; �). We have:

KT ĥT (� ; �) =

Z
bkT (� ; s) ĥT (s; �) exp

�
�s2

�
ds: (10)

The Gauss-Hermite quadrature amounts to �nding n points (s1; :::; sn) and weights (!1; :::; !n)
such that: Z

P (s) expf�s2gds =
nX

k=1

!kP (sk);

for any polynomial function P (:) of order smaller or equal to 2n � 1. See e.g. Liu and
Pierce (1994). For the function f (� ; �), we have:

CCCCC

Z
f(s) expf�s2gds�

nX

k=1

!kf(sk)

CCCCC =
CCCC
Z
" (� ; �) exp

�
�s2

�
ds

CCCC :

If KT ĥT (� ; �) is analytic as a function of � , the residual
CCR " (� ; �) exp (�s2) ds

CC can be
made arbitrarily small by increasing the number of quadrature points n. Note that the
choice of the quadrature points and weights does not depend on the particular function
f (� ; �). The quadrature points and weights are determined by solving:

Z
sl expf�s2gds =

nX

k=1

!ks
l
k for all l = 1; :::; 2n� 1:
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Applying this quadrature method to (10) yields:

KT
bhT (�) � cWT

bhT (�) ; (11)

where cWT is the matrix with (j; k) elements Wjk = !kbkT (sj; sk), and:

bhT (�) =
�
bhT (s1; �) ; :::;bhT (sn; �)

�0
:

For any given level of precision, the matrix cWT can be looked at as the best �nite dimen-
sional reduction of the operator KT . The resulting approximation of K

�1=2
T;� is:

K
�1=2
T;� �

�
cW 2
T + �T I

��1=2cW 1=2
T ;

that is:

K
�1=2
T;�

bhT (�) �
�
cW 2
T + �T I

��1=2cW 1=2
T
bhT (�) : (12)

Substituting for K�1=2
T;�

bhT (�) in the objective function of the CGMM yields:

bQT;� �
nX

k=1

!k

h
K
�1=2
T;�

bhT (sk; �)
i h
K
�1=2
T;�

bhT (sk; �)
i
; (13)

where K�1=2
T;�

bhT (sk; �) is the kth element of the vector K�1=2
T;�

bhT (�) given in (12). It is
important to note that K�1=2

T;� is estimated using a �rst step estimator b�1 whose presence
in the formulas is hidden for simplicity.
In theory, the extension of the above quadrature method to the multivariate case is

straightforward. When � 2 Rd, the d�dimensional set of multivariate quadrature points
is given by the Cartesian product:

D =
�
� = (� (1); :::; � (d)) : � (i) 2 fs1; :::; sng for all i = 1 to d

	
;

where fs1; :::; sng is the set of n univariate quadrature points with weights f!1; :::; !ng,
and � (i) is the ith coordinate of � . Associated with each � 2 D is the weight:

! (�) = ! (� 1)! (� 2) :::! (� d) ;

where ! (� i) = !k if � (i) = sk, i = 1; :::; d.
The multivariate Gauss-Hermite quadrature has the undesirable feature thatCard(D) =

nd. This raises a �curse of dimensionality� because the size of the matrix cWT is precisely
nd while we need to take n quite large (n � 10) to accurately evaluate the objective
function of the CGMM. Because cWT must be inverted at each iteration of the optimiza-
tion algorithm, the CGMM becomes virtually infeasible by the quadrature method when
d � 3. We shall thus limit ourselves to the case d � 2 in the sequel, leaving the discussion
on the large d case for further research.
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3.2 Computing the Objective Function by Monte Carlo Inte-

gration

This approach relies on the alternative formula of the CGMM objective function provided
in Carrasco et al. (2007a):

bQT;� = v(�)0
h
�T IT + bC2T

i�1
v(�); (14)

where bCT � bCT
�
b�1
�
is the square matrix of size T with (t; l) element ct;l=(T � dim(�)),

IT is the identity matrix of size T , and v(�) = (v1; :::; vT )
0 with:

vt =

Z
ht(� ;b�

1
)hT (� ; �)� (�) d� and

ct;l =

Z
ht(� ;b�

1
)hl(� ;b�

1
)� (�) d� :

The main drawback of the above expressions lies in that it involves the inverse of the
matrix bCT which has size T . However, this should be balanced by at least one compu-
tational advantage: the integrals embedded in vt and ct;l can be approximated by Monte
Carlo. If we set � (�) to be the multivariate standard normal density and

�
� (1); :::; � (M)

�

be M values of � simulated according to � (�), the Monte Carlo approximations of vt and
ct;l are:

evt � 1

M

MX

k=1

ht(� (k);b�
1
)hT (�

(k); �) and

ect;l � 1

M

MX

k=1

ht(� (k);b�
1
)hl(�

(k);b�1):

For numerical e¢ciency, it is recommended to simulate the set
�
� (1); :::; � (M)

�
only once

at the beginning of the estimation process and supply this as a �xed array to the code
that evaluates the objective function of the CGMM.
A comparison between the performance of the Monte Carlo integration and that of

the Hermitian quadrature is not a trivial task. In fact, this requires us to de�ne how one
balances the computing cost against the statistical e¢ciency. For the models considered
in this paper, the quadrature method is preferred because it requires inverting a matrix of
smaller size. This feature is favored because we want to be able to replicate the estimation
procedure several times at a moderate cost.

3.3 Computing the Variance of the CGMM Estimator

The asymptotic variance of the optimal CGMM estimator is derived in Carrasco and
Florens (2000):

AV ar
�
b�
�
= V ar

hp
T
�
b� � �0

�i

=
D
K�1=2E

�
bGt(:; �)

�
; K�1=2E

�
bGt(:; �)

�E�1
; (15)
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where bGt(� ; �) = @bht(�;�)
@�

is a column vector of length q whose ith element is bGt;i(� ; �) =
@bht(�;�)
@�i

, and for every two vector functions f and g, we have: hf; gii;j = hfi; gji. The
asymptotic variance (15) is consistently estimated by:

\AV ar
�
b�
�
=
D
K
�1=2
T;�

bGT (� ;b�); K�1=2
T;�

bGT (� ;b�)
E�1

; (16)

where bGT (� ;b�) = 1
T

PT
t=1
bGt(� ;b�). The above formula is convenient to work with when

the scalar products are evaluated by quadrature methods. De�ne:

bGT;i(�) =
�
bGT;i (� 1; �) ; :::; bGT;i (�N ; �)

�0
and

K
�1=2
�T

bGT;i(�) =
�
K
�1=2
T;�

bGT;i (� 1; �) ; :::; K�1=2
T;�

bGT;i (�N ; �)
�0
;

where N = nd and bGT;i(� ;b�) = 1
T

PT
t=1
bGt;i(� ;b�). Then we have:

K
�1=2
T;�

bGT;i(�) =
�
cW 2
T + �T I

��1=2cW 1=2
T
bGT;i(�);

where cW is de�ned in (11). The (i; j) element of \AV ar
�
b�
��1

can then be computed as:

�
\AV ar

�
b�
��1�

i;j

=

NX

k=1

!k

�
K
�1=2
T;�

bGT;i(�)
�
k

�
K
�1=2
T;�

bGT;j(�)
�
k
;

where
�
K
�1=2
T;�

bGT;i(�)
�
k
is the kth coordinate of K�1=2

T;�
bGT;i(�).

Carrasco et al. (2007a) establish the following alternative expression for \AV ar
�
b�
�
:

\AV ar
�
b�
�
=

�
1

T � dim(�)V (
b�)0
h
�T IT + bC2T

i�1
V (b�)

��1
; (17)

where bC is the same square matrix as in (14), V (b�) is the (T; q) matrix with (t; i) element:

Vt;i =

Z
ht(� ;b�) bGT;i(� ;b�)� (�) d� ;

Formula (17) is best suited when the Monte Carlo integration is used to evaluate the
scalar products. In this case, Vt;i is approximated by:

eVt;i �
1

M

MX

k=1

ht(� (k);b�) bGT;i(� (k);b�);

where
�
� (1); :::; � (M)

�
are M values of � simulated according to the multivariate normal

density � (�).
For the optimization algorithm to converge, it is crucial to simulate the set

�
� (1); :::; � (M)

�

only once at the beginning of the estimation process and supply this as a �xed array to
the code that evaluates the objective function of the CGMM.
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3.4 Data-driven Selection of the Regularization Parameter

The CGMM estimator is consistent for any reasonable choice of the regularization para-
meter �T . In most applications, an arbitrary choice of �T between 10�6 and 10�2 works
quite well. However, if the spectrum of the empirical covariance operator is severely dis-
continuous, such an arbitrary choice is not advised. To get close to the optimal CGMM
in the MSE sense, Carrasco and Kotchoni (2010a) propose two simulation based methods
to select the �T . The �rst method uses the higher-order closed form approximation of the
MSE whereas the second method relies on the Monte Carlo simulations of the MSE. We
brie�y review the second method here.
Let �T (�0) be the optimal value of the regularization parameter when �0 is the true

parameter of interest and T is the sample size. We de�ne �T (�0) as:

�T (�0) = argmin
�2[0;1]

E

�DDDb�T (�; �0)� �0
DDD
2
�
; (18)

where we note that the expected squared 2-norm E

�DDDb�T (�; �0)� �0
DDD
2
�
is the trace of

the MSE matrix of b�T (�; �0), and b�T (�; �0) is the CGMM estimator computed from an
arbitrary sample of size T generated from the true distribution, and using � as the reg-
ularization parameter. To approximate this MSE, assume that we can draw samples of

size T from the true data generating process of fxtg, and let b�
j

T (�; �0) denote the CGMM
estimator of �0 computed using the jth independently simulated sample. A good estimator

of E
�DDDb�T (�; �0)� �0

DDD
2
�
is given by:

1

M

MX

j=1

DDDb�
j

T (�; �0)� �0
DDD
2

:

For a su¢ciently large value of M , the Law of Large Numbers ensures that this criterion
converges to its expectation.
If �0 were feasible, (18) would suggest an estimator of �T (�0) of the form:

b�TM (�0) = argmin
�2[0;1]

1

M

MX

j=1

DDDb�
j

T (�; �0)� �0
DDD
2

: (19)

Since �0 is not known, a feasible Monte Carlo approach simply consists of replacing �0 with
a consistent �rst step estimator b�1 in (19), that is, choosing the optimal regularization
parameter according to:

b�TM
�
b�1
�
= argmin

�2[0;1]

1

M

MX

j=1

DDDb�
j

T (�;
b�1)� b�1

DDD
2

: (20)
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Carrasco and Kotchoni (2010a) establish under Assumption 1 to 5 that as M and T go
to in�nity, we have:

b�TM(b�
1
)

�T (�0)
� 1 = Op(T�1=2) +Op(M�1=2):

Finally, the optimal feasible CGMM estimator is b�(2)T = b�T (b�
�

TM ; �0), that is, the
second step estimator of �0 computed with the actual data by using the point estimate
of the optimal regularization parameter b��TM = b�TM

�
b�1
�
. In practice, the MSE must

be simulated using common random numbers to ensure the comparability of the results
across di¤erent values of the regularization parameter.
In the sequel, we propose two illustrative implementations of the CGMM.

4 Estimating the Stable Distribution by CGMM: a

Simulation Study

In econometrics, the stable distribution is a way to depart from the usual normality
assumption in case the latter seems too restrictive. This family is rich enough to capture
heavy tails as well as asymmetry, as pointed out by Mandelbrot (1963) or McCulloch
(1986). However, the stable distribution does not admit a closed form likelihood function.
This has led researchers to investigate alternative inference methods. CF based inference
has been used in Paulson, Holcomb and Leitch (1975) and Feuerverger and McDunnough
(1981a), while a regression-based approach is presented in Koutrouvelis (1980). Garcia,
Renault and Veredas (2006) have resorted to indirect inference. Cornea and Davidson
(2009) proposed a re�ned bootstrap method for hypothesis testing.
The stable distribution has been represented under di¤erent parameterizations in the

literature. The most widely advocated parameterization is presented in the next subsec-
tion.

4.1 Parameterization and Simulation of the Stable Distribution

The standard stable distribution has two parameters: a stability parameter B 2 (0; 2],
and a skewness parameter C 2 [�1; 1]. A random variable Z is said to follow the standard
stable distribution if and only if its CF is given by:

E [exp (i�Z)] = exp f� j� jB [1 + iC0sign (�) g (� ; B)]g ;

where g(� ; B) = � tan B�
2
if B 6= 1 and g (� ; B) = 2

�
ln j� j if B = 1. A random variable X

follows an B-stable distribution if and only if it is linked to the standard variable Z by:

X =

�
�Z + �0; B 6= 1
�Z + �0 +

2
�
C0� ln �; B = 1

:

The CF of X is given by:

E [exp (i�X)] = exp fi�0� � �B0 j� jB [1 + iC0sign (�) g (� ; B)]g ; (21)
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where �0 is a location parameter and �0 is the scale parameter. The notation X �
SB (C0; �0; �0) is often used to mean that the random variable X has a B�stable distrib-
ution with CF (21).
A method to simulate from SB (C0; �0; �0) is explained in Weron (1996). To start with,

one draws two independent uniforms v and w in [0; 1] and calculates V = � (u� 1=2) and
W = � lnw. Then Z � S0B (C0; 1; 0) and X � SB (C0; �0; �0) are obtained as follows:
If B 6= 1; one computes:

Z = SB;C0
sin
�
BV + BBB;C0

�

(cosV )1=B

 
cos
�
(1� B)V � BBB;C0

�

W

!�1+1=B
; (22)

where BB;C0 =
arctan(C0 tan B�

2 )
B

and SB;C0 =
�
1 + C20 tan

2 B�
2

� 1

2B . Then we have

X = �0Z + �0 � SB (C0; �0; �0) :

If B = 1, one computes instead:

Z =
2

�

���
2
+ C0V

�
tanV � C log

�
W cosV
�
2
+ C0V

��
; (23)

which means:
X = �0Z + �0 +

2

�
C0�0 ln �0 � S1 (C0; �0; �0) :

As our inferences are based on Monte Carlo simulation, we review other existing
parameterizations and their simulation strategies in Appendix B.

4.2 Monte Carlo Comparison of GMM and CGMM

With a method to simulate data from the stable distribution in hand, we can now evaluate
by Monte Carlo the ability of the CGMM to identify the true parameters from a �nite
sample. The implementation of the CGMM is quite involved, compared to the standard
GMM which is straightforward to implement and easy to understand. Hence to convince
the �nance practitioner to use the CGMM rather than the GMM with a �nite number
of moment conditions, we need to provide evidence showing that the former signi�cantly
outperforms the latter. To this end, we consider a stable AR(1) model speci�ed as:

yt = �0 + �1yt�1 + "t; (24)

where "t � SB (C0; �0; 0) is IID. Note that this amount to say that yt � SB (C0; �0; �t)
with �t = �0+�1yt�1. The parameters of the model are gathered in � = (�0; �1; B; C0; �0)

0.
To estimate �, the following continuum of moment conditions is considered:

ht (� ; �) =
�
ei�1yt � 't (� 1; �)

�
ei�2yt�1 ; (25)

where � = (� 1; � 2) 2 R2 and:

't (� 1; �) = exp
n
i(�0 + �1yt�1)� 1 � �B j� 1jB

h
1� iCsign (� 1) tan

B�

2

io
: (26)
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Indeed, we impose in advance that B > 1, which forces the �rst moment of "t to be �nite.
We consider the following two vectors of true parameters in our simulations: �01 =

(0; 0:1; 1:5; 0; 0:5) and �02 = (0; 0:1; 1:95; 0; 0:5), the speci�city of �02 being that it is quite
close to the non-identi�cation region of C0. To ease the numerical optimizations, the
following transformations are imposed on the parameter space:

B0 = 1 +
exp (eB0)

1 + exp (eB0)
2]1; 2] for all eB0 2 R;

C0 =
2 exp

�
eC0
�

1 + exp
�
eC0
� � 1 2 [�1; 1] for all eC0 2 R and

�0 = exp(e�0) > 0 for all e�0 2 R:

After these transformations, the new objective function of the CGMM is written in terms
of the unconstrained parameters eB, eC, e�0 and �0.
The Monte Carlo experiments are conducted in two steps for the CGMM. First, we

run a small scale simulation (100 replications) for the purpose of estimating the optimal �
as in (20). In this small scale simulation, we compute the objective function with N = 64
Hermitian quadrature points in R2. The �rst simulated sample is used to compute the
following �rst step CGMM estimator:

b�1T = argmin
�

DDDbhT (:; �)
DDD
2

: (27)

For each �k and each simulated sample, we compute the second step CGMM estimator
as:

b�(j)T (�k) = argmin
�

DDDK�1=2
T;�k

bhT (:; �)
DDD
2

;

where:

K
�1=2
T;�k

�
b�1T
�
=
�
K2
T

�
b�1T
�
+ �kI

��1=2
K
1=2
T

�
b�1T
�
;

for �k 2 f10�7; 5� 10�7; :::; 5� 10�4g. The selection of �k is based on the criterion:

�T = argmin
�k

1

M

XDDDb�
(j)

T (�k)� b�
1

T

DDD
2

:

Panel 1 shows the plot of the empirical MSE as a function of �k. On the grid that we
consider, the MSE is minimized at �T = 5� 10�7.

[Fig. 1 about here]
Fig. 1. MSE of b�T (�k)of as function of �k.
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In the second step, the selected �T is used in a larger scale simulation to assess the
performance of the CGMM. We draw M = 1000 samples of size T = 500 and estimate
�0i; i = 1; 2. To speed up the simulations, we reduce the number of quadrature points to
N = 36.
To implement the standard GMM, we also consider 36 moment conditions computed

on an evenly spaced grid of � = (� 1; � 2) lying within the range (�3; 3) � (�3; 3) � R2.
We avoid the decomposition of the moment conditions between their real and imaginary
part by using the same scalar product as for the CGMM. More precisely, we de�ne the
vector gt (�0) by:

gt (�0) = (ht (� 1; �0) ; :::; ht (� 36; �0))
0 ;

and compute the GMM estimator of �0 as:

b�GMM = argmin
�
bgT (�0)0 bS�1T

�
b�(1)
�
bgT (�0);

where

bgT (�0) =
1

T

TX

t=1

gt (�0) ;

bST
�
b�(1)
�
=

1

T

TX

t=1

gt

�
b�(1)
�
gt

�
b�(1)
�0
;

and b�(1) is the �rst step GMM estimator of �0 given by:

b�(1) = argmin
�
bgT (�0)0 bgT (�0):

Finally, the variance of the GMM estimator is estimated by:

V ar
�
b�GMM

�
=

0
B@
@bgT

�
b�GMM

�

@�

0

bS�1T
�
b�GMM

� @bgT
�
b�GMM

�

@�

1
CA

�1

: (28)

In principle, one can consider a more re�ned grid on an extended range but this
quickly results in a badly scaled or singular covariance matrix bST . Also, note that the 36
Hermitian quadrature points used for the CGMM fall within the considered range. The
following table shows some statistical properties of b�T (�T ) when the true parameter is
�01 = (0; 0:1; 1:5; 0; 0:5).
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�0 �1 B0 C0 �0
True Values 0 0:1 1:5 0 0:5

CGMM Mean Bias 0:0044 �0:0032 0:0072 0:0075 �0:0033
Median Bias 0:0007 �0:0026 0:0066 0:0078 �0:0038
Emp. Std. Dev. 0:0869 0:0482 0:1033 0:2133 0:0305
Ana. Std. Dev. 0:1137 0:0496 0:1027 0:2597 0:0243
Root-MSE 0:0870 0:0483 0:1035 0:213 4 0:0306
IC1(95%) �0:0032 0:0925 1:4982 �0:0112 0:4940
IC2(95%) 0:0120 0:1010 1:5163 0:0262 0:4993

GMM Mean Bias 0:0025 �0:0048 0:1200 0:0263 �0:0221
Median Bias 0:0027 �0:0077 0:1236 0:0281 �0:0226
Emp. Std. Dev. 0:0612 0:0415 0:0988 0:2179 0:0252
Ana. Std. Dev. 0:0525 0:0246 0:0693 0:2144 0:0210
Root-MSE 0:0613 0:0418 0:1555 0:2195 0:0335
IC1(95%) �0:0029 0:0916 1:6114 0:0072 0:4757
IC2(95%) 0:0078 0:0988 1:6287 0:0454 0:4801

Table 1: Simulation Results for the Stable Distribution with B = 1:5 (far from 2).
M = 1000 replications, T = 500.

In this table, �Emp. Std. Dev� is the standard deviation of the simulated empirical
distribution of b�T (�T ), while �Ana. Std. Dev.� is the average standard deviation com-
puted according to the analytical formulas (17) and (28). The expressions of the gradients
involved in this formula are given in Appendix C. Interestingly, the standard deviations
computed in these two ways are quite close. IC1(95%) and IC2(95%) are respectively the
lower and upper bound of the 95% con�dence interval for the true mean of the empirical
distribution, assuming normality for the empirical mean of the estimates:

IC1(95%) = b�i � 1:96 � bsb�i=
p
M and

IC2(95%) = b�i + 1:96 � bsb�i=
p
M;

where b�i is the ith element of b�, b�i and bsb�i are respectively the empirical mean and standard
deviation of b�i and M is the number of independently simulated copies of b�i. Indeed, the
graphs of Panel 2 suggest that the distributions of the estimators are close to normality
when the true vector of parameters is �01.
By looking at Table 1, we see that the GMM displays larger estimation biases but

smaller variances compared to the CGMM. The bias is quite large for the GMM esti-
mator of B0 while being non-negligible for the corresponding estimators of C0 and �0.
Accordingly, the MSEs of the GMM estimators are smaller only for the parameters that
govern the linear part of the stable AR(1) model, that is, �0 and �1. The superiority
of the CGMM over the GMM clearly shows up when one compares the 95% con�dences
intervals. Indeed, the con�dence regions drawn from the CGMM estimates contain the
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true values for all the parameters except for �0 which is very slightly biased downward.
By contrast, only the con�dence interval of �0 encompasses the true value for the GMM.

[Fig. 2 about here]
Fig. 2. Estimation of Stable Distribution by GMM and CGMM. Empirical distributions of the

estimators for 1000 Monte Carlo replications when the true parameter is
�01=(0; 0:1; 1:5; 0; 0:5) :

The following table displays the Monte Carlo statistics when the true parameter is
�02 = (0; 0:1; 1:95; 0; 0:5).

�0 �1 B C0 �0
True Values 0 0:1 1:95 0 0:5

CGMM Mean Bias 0:0020 �0:0043 0:0081 �0:0516 �0:0011
Median Bias 0:0023 �0:0020 0:0366 �0:0146 �0:0019
Emp. Std. Dev. 0:0383 0:0583 0:0536 0:5752 0:0211
Root-MSE 0:0383 0:0 584 0:0542 0:577 2 0:0211
IC1(95%) �0:0014 0:0906 1:9534 �0:1019 0:4971
IC2(95%) 0:0054 0:1008 1:9628 �0:0012 0:5008

GMM Mean Bias �0:0110 �0:0284 0:0421 0:2452 �0:0399
Median Bias �0:0108 �0:0275 0:0500 0:9357 �0:0396
Emp. Std. Dev. 0:0364 0:0375 0:0132 0:8900 0:0186
Root-MSE 0:0380 0:0470 0:0441 0:9232 0:0440
IC1(95%) �0:0142 0:0683 1:9910 0:1673 0:4585
IC2(95%) �0:0078 0:0749 1:9933 0:3232 0:4617

Table 2: Simulation Results for the Stable Distribution with B = 1:95 (close to 2).
M = 1000 replications, T = 500.

Table 2 shows that the GMM estimators are more biased and have smaller variances
compared to the corresponding CGMM estimators for all but one parameter. As a result,
the 95% con�dence intervals associated with the GMM estimates are misleading. For both
procedures, the estimator of C0 is highly volatile due to the fact that the objective function
is unable to identify this parameter when B0 is close to 2. In that region of the parameter
space, the empirical gradient is so badly conditioned that it is not possible to compute
the variance analytically. In conducting inferences in empirical applications, this problem
is circumvented by resorting to Monte Carlo simulations of resampling methods. It is
worth mentioning that compared to the GMM, the CGMM estimator of C is less a¤ected
by this weak identi�cation of C. The CGMM procedure can be made more accurate by
increasing the number of quadrature points used to approximate its objective function.
Unfortunately, increasing the number of moment conditions in the GMM raises numerical
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problems that are not addressed by the standard theory. This allows to conclude that
overall, the CGMM outperforms the standard GMM.
Panels 3 show the graphs of the simulated empirical distributions of the estimators.

The distribution of bB0 is highly skewed to the left due to the fact that B0 is close to the
frontier of the parameter space. Also, the distribution of bC0 is di¤use as a result of C0
being close to the non identi�cation region.

[Fig. 3 about here]
Fig. 3. Estimation of Stable Distribution by GMM and CGMM. Empirical distributions of the

estimators for 1000 Monte Carlo replications when the true parameter is
�02=(0; 0:1; 1:95; 0; 0:5) :

5 Fitting the Autoregressive Variance GammaModel

to Assets Returns

The basic variance gamma model has been proposed by Madan and Seneta (1990). A
random variable rt is said to follow a symmetric variance gamma distribution if:

rtjVt � N(E; �2Vt); with Vt IID� Gamma (1=D; 1=D) :

The density of Vt is given by:

fV (v) =
v1=D�1

D1=D� (1=D)
exp (�v=D) ;

where � (1=D) =
R
1

0
u1=D�1e�udu. It can be easily veri�ed that E (Vt) = 1.

Unlike the stable distribution, all the conditional and unconditional moments of rt
exist. It can be veri�ed that E [rt] = E and E

�
(rt � E)2

�
= �2. The kurtosis of rt is given

by:
E
�
(rt � E)4

�

E
�
(rt � E)2

�2 = 3 (1 + D) ;

which shows that the distribution of rt is more fat-tailed than the normal distribution
whenever D > 0. To introduce skewness into this basic set up, Madan, Carr and Chang
(1998) express the mean of rt as a linear function of Vt:

rtjVt � N(E0 + E1Vt; �2Vt); with Vt � Gamma (1=D; 1=D) ;

where D > 0. If rt is a series of returns, the parameter E1 captures the so-called leverage
e¤ect while E0 measures the risk premium. Note that when E1 = �E0, the leverage e¤ect
o¤sets the risk premium so that the conditional mean of rt is zero, but the skewness is
nonzero unless E1 = 0.
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Many studies have diagnosed patterns like persistence and clustering in the time series
properties of the volatility of assets returns. Unfortunately, the basic Variance Gamma
model assumes that Vt follows an IID process. In an e¤ort to correctly measure the volatil-
ity, Engle (1982) and Bollerslev (1986) introduces respectively the ARCH and GARCH
models that usually have good �ltering properties. Not surprisingly, these models are
among the most popularly used to capture time-varying volatility. Multivariate ARCH
tests statistics are proposed for example in Duchesne (2006) while Bauwens et al. (2010)
use multivariate GARCH models to design a value-at-risk based intradaily dynamic asset
allocation.
In the stochastic volatility literature, the variance is often speci�ed as a latent state

variable that determines the distribution of the returns. For example, Jacquier et al.
(1994) postulate the following model:

rt =
p
Vt"t and

log Vt = a+ b log Vt�1 + ut;

where "t and ut are uncorrelated and rtjVt � N(0; Vt). This model may be viewed as a
discrete time version of Hull and White (1987). It has been extended in Jacquier et al.
(2004) to allow for correlation between "t and ut. Other famous examples in continuous
time include Stein and Stein (1991) and Heston (1993). A class of nonlinear stochastic
volatility models is proposed in Yu et al. (2006).
In the next subsection, we extend the basic variance Gamma model to account for

time dependence in the volatility process.

5.1 The Autoregressive Variance Gamma Model

The Autoregressive Variance Gamma Model (ARVG) is a stochastic volatility model in
which the return process rt is a function of its expected variance E [VtjVt�1] and the
variance innovation Vt � E [VtjVt�1]:

rt = �0 + �1
p
E [VtjVt�1] + E (Vt � E [VtjVt�1]) +

p
Vt"t; (29)

where "t
IID� N(0; 1) is uncorrelated with past, current and future realizations of Vt, �1 � 0

and E � 0. In turn, Vt follows an Autoregressive Gamma process with conditional density:

f (Vtj fVt�kg1k=1) = f (VtjVt�1) (30)

=
1X

j=0

V j+q�1t cj+q

� (j + q)
exp (�cVt) pj (Vt�1) ;

with (�; C; �) > 0, c = 2�
�2(1�e��)

, q = 2�C
�2
and pj (Vt�1) is a Poisson weight given by:

pj (Vt�1) =
(ce��Vt�1)

j

j!
exp

�
�ce��Vt�1

�
:
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The term �1
p
E [VtjVt�1] in the expression of the return aims to capture the premium

that investors require for bearing the expected risk while E (Vt � E [VtjVt�1]) is a penalty
attached to the unexpected risk. Indeed, this model is speci�ed in spirit of French et al.
(1987) who were the �rst to �nd in a famous empirical study that the risk premium on a
�nancial asset is positively related to the expected volatility while the unexpected return
is negatively related to the unexpected volatility.
The postulated distribution for Vt is also known as the non-centered Chi-square. When

2�C > �2, the process Vt can be viewed as discrete observations of the following Square-
Root di¤usion (see Feller, 1951):

dVs = � (C � Vs) ds+ �
p
VsdWs

Its discretized version has been used in Gourieroux and Jasiak (2005) to model for inter-
trade durations. The conditional CF of Vt is given by:

E
�
ei�VtjVt�1

�
=

�
1� i�

c

��q
exp

�
i�e��Vt�1

1� i�
c

�
: (31)

By looking at the expression above, we see that the autoregressive Gamma family nests
the univariate Wishart autoregressive process of Gourieroux et al. (2009). Carrasco et al.
(2007a) use the above conditional CF in a simulation study to estimate the parameters
of the Square-Root di¤usion. Their results show that the CGMM compares favorably
to Maximum Likelihood Estimation, Quasi-Maximum Likelihood Estimation and E¢-
cient Method of Moments. From (30), we note that the likelihood function needs to be
truncated for this model while its evaluation is time consuming.
The expressions of the conditional expectation and variance of Vt are the following:

E [VtjVt�1] = C
�
1� e��

�
+ e��Vt�1 and

V ar [VtjVt�1] =
1

c

�
C
�
1� e��

�
+ 2e��Vt�1

�
:

To assess the potential of the ARVG model to capture asymmetry and fat tails in the
distribution of stock returns, we examine below the third and fourth conditional moments
of rt. We have:

E
�
(rt � E [rtjVt�1])3 jVt�1

�
= E3E

�
(Vt � E [VtjVt�1])3 jVt�1

�
:

As Vt is positively skewed like any Gamma distribution, rt has a time varying negative
skewness whenever E < 0. It is di¢cult to tell whether rt is fat-tailed in general. However,
it can be shown that when E = 0 the conditional kurtosis of rt is:

E
�
(rt � E [rtjVt�1])4 jVt�1

�

V ar [rtjVt�1]2
= 3 +

3V ar [VtjVt�1]
V ar [rtjVt�1]2

:

We present a method to simulate the ARVG model below.
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5.2 A Preliminary Simulation Study

In this subsection, we run some preliminary Monte Carlo simulations that will help us
assess the scope of our empirical results. Assuming that Vt is observed, the ARVG model
can be estimated in two steps. In the �rst step, one estimates an Autoregressive Gamma
model for Vt by CGMM based on the moment function:

ht (� ; �1) = (exp (i� 1Vt)� E [exp (i� 1Vt) jVt�1]) exp (i� 2Vt�1) ; (32)

where E [exp (i� 1Vt) jVt�1] is given by (31), � = (� 1; � 2) and �1 = (�; C; �2). The speci�c
details of the implementation of this �rst step are explained in the empirical section. In
the second step, the remaining set of parameters �2 = (�0; �1; E) is estimated by Gaussian
maximum likelihood based on the distribution of "t conditional on Vt�1 as postulated in
(29). We have:

b"t = V �1=2t

�
rt � �0 � �1

q
bE [VtjVt�1]� E

�
Vt � bE [VtjVt�1]

��
� N(0; 1); (33)

where bE [VtjVt�1] = bC
�
1� e�b�

�
+ e�b�Vt�1.

In all the simulations, we set the true values of the parameters to:

� = 0:02; C = 0:05; �2 = 2:25� 10�4; �0 = 0; �1 = 0:05; E = �0:05

Our method to simulate Vt is inferred from the Poisson-Mixing-Gamma representation of
its density given in (30) (see Devroye, 1986). The simulation algorithm is initialized to
the unconditional mean V0 = C or by drawing V0 from the stationary Gamma distribution
with density given by:

f (v) =
vq�1

� (q)

�
2�

�2

�q
exp

��2�
�2

v

�
:

At t = 1, one draws an integer j0 from the Poisson distribution with parameter ce��V0.
The current realization V1 of the autoregressive Gamma process is then drawn from the
Gamma distribution with density fj0 (v) given by:

fj0 (v) =
vj+q�1cj+q

� (j0 + q)
exp (�cv) :

A t = 2, one draws again an integer j1 from the Poisson distribution with parameter
ce��V1. The new realization V2 of the autoregressive Gamma process is now drawn from
the Gamma distribution with density fj1 (v), and so forth. At an arbitrary step t, the
realization Vt is drawn from the Gamma distribution with density fjt�1 (v), where jt�1 is
a draw from the Poisson distribution with parameter ce��Vt�1.
Let (V0; V1; :::; VT ) be the simulated path for the variance process. As rt depends on

two consecutive realizations of Vt, its simulation starts at t = 1. We generate a sample of
size T of the return process using the equation:

rt = �0 + �1
p
C (1� e��) + e��Vt�1 + E

�
Vt � C

�
1� e��

�
� e��Vt�1

�
+
p
Vt"t;
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for t = 1; :::; T , where "t is an IID draw from the standard normal distribution.
Using the method just described, we simulate M = 1000 samples of size T = 500 and

estimate the ARVG model. Table 3 below shows the summary statistics of the Monte
Carlo simulations. In the estimation process, we constrained b�1 to be positive and bE to
be negative.

b�1 b�2
b� bC b�2 b�0 b�1 bE

True 0:02 0:05 2:25� 10�4 0 0:05 �0:05

Mean 0:0286 0:0504 2:22� 10�4 �0:0216 0:1488 �1:0851
Median 0:0259 0:0496 2:23� 10�4 �0:0043 0:0393 �0:0000
Mode 0:0253 0:0473 2:25� 10�4 �0:0019 0:0565 �0:5323

Std. Dev. 0:0132 0:0079 1:69� 10�5 0:0433 0:1981 1:7315
Root-MSE 0:0157 0:0079 1: 72� 10�5 0:0483 0:221 3 2: 017 3
IC1(95) 0:0092 0:0375 1:88� 10�4 �0:1296 0:0000 �5:9421
IC2(95) 0:0578 0:0685 2:54� 10�4 0:0264 0:6447 �0:0000

Table 3: Monte Carlo statistics (M = 1000 replications, T = 500).

The �rst result is that b�2 is relatively more volatile than b�1. In fact, the Student-t
statistics would predict that �1 and E are not signi�cantly di¤erent from zero although
in reality they are. However, part of the variance of b�2 may be due to the fact that it
is estimated conditional on b�1. Second, the mean of b�1 is a good predictor of its true
counterpart. The same cannot be said for b�2 whose median is much closer to the truth
than the mean. The graphs of Panel 4 indicate that the modes of the distributions of b�0;
b�1 and bE are even closer to the truth than their medians. Unfortunately, the mode of the
distribution of bE is still ten times larger in magnitude than the true E. Finally, the 95%
con�dence regions contain the true values of the parameters although the intervals are
quite wide and uninformative for �0; �1 and E.
Overall, the results are encouraging for the portion of the ARVG model that has been

estimated by CGMM. In the sequel, we present an estimation strategy that relies on the
availability of high frequency data.

[Panel 4 about here]
Fig. 4. Estimation of the ARVG model. Empirical distributions of the estimators for 1000
Monte Carlo replications and true parameter

�
�; C; �2

�
=
�
0:02; 0:05; 2:25� 10�4

�
and

(�0; �1; E) = (0; 0:05;�0:05)

5.3 Estimating the ARVG Model from High Frequency Data

Assuming that the ARVG model describes the observed dynamic of daily returns, this
section explains why and how one can construct a proxy for Vt using high frequency data.
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Let us consider an arbitrary asset whose instantaneous log-price ps follows a Brownian
di¤usion with drift:

dps = m (s; �s) ds+ �sdWs;

whereWs is a standard Brownian motion possibly correlated with �s. It is further assumed
that �s itself follows a positive di¤usion. If we normalize a trading day to be one period,
then daily returns are given by:

rt � pt � pt�1 =
Z t

t�1

m (s; �s) ds+

Z t

t�1

�sdWs; t = 0; 1; :::

It is seen that rt satis�es:

E
h
rtj f�sgTs=0

i
=

Z t

t�1

m (s; �s) ds+ E

�Z t

t�1

�sdWsj f�sgTs=0
�
and

V ar
h
rtj f�sgTs=0

i
= IVt;

where IVt =
R t
t�1
�2sds is the integrated variance and f�sgTs=0 is the information set that

contains the whole continuous path of the spot volatility.
Interestingly, the ARVG model also satis�es:

E [rtjVt; Vt�1] = �0 + �1
p
E [VtjVt�1] + E (Vt � E [VtjVt�1]) and

V ar [rtjVt; Vt�1] = Vt:

The last equation emphasizes that Vt is the conditional variance of the daily return rt and
is thus related to the daily integrated variance in any continuous time framework. Our
strategy to estimate the ARVG model from high frequency data consists in assuming the
following intuitive matching:

E
h
rtj f�sgTs=0

i
� E [rtjVt; Vt�1] and (34)

V ar
h
rtj f�sgTs=0

i
� V ar [rtjVt; Vt�1] : (35)

Equation (34) matches the conditional expectations while (35) matches the conditional
variances. The last equation implies that Vt �

R t
t�1
�2sds so that the conditioning informa-

tion set of the right-hand side is narrower than for the left-hand side. Our approximation
should thus be viewed as a linear projection of the left-hand side onto (IVt; IVt�1).
To construct a proxy for IVt, let us assume that in each trading day we observe m+1

equidistant prices. These prices can be used to compute exactly m high frequency returns
rt;1; rt;2; :::; rt;m, that is:

rt;j = pt�1+j=m � pt�1+(j�1)=m:
Jacod (1994), Jacod and Protter (1998) and Barndor¤-Nielsen and Shephard (2002) show
that for large m, the realized variance RV (m)t =

Pm
j=1 r

2
t;j is a fairly good proxy for IVt. In

practice however, the observed prices are contaminated with market microstructure noise
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which causes the naive realized variance to be a biased estimator of IVt. The following
estimator proposed by Barndor¤-Nielsen et al. (2008) is known to be consistent for IVt
even in the presence of microstructure noise:

KBNHLS
H;t = Dt;0 +

HX

h=1

�
1� h� 1

H

��
Dt;h + Dt;�h

�
;

where Dt;h =
Pm

j=1 rt;jrt;j�h. To further reduce the variance of K
BNHLS
H;t , we will use the

following shrinkage estimator proposed in Carrasco and Kotchoni (2010b):

K$
H;t = $K

BNHLS
H;t + (1�$)cIV t;

where

cIV t = Dt;0 + Dt;1 + Dt;�1 +
1

T

TX

s=1

L+1X

l=2

�
Ds;l + Ds;�l

�
:

The shrinkage weight $ is chosen so as to minimize the marginal variance of K$
H;t:

$�

t = argmin
$
E
h�
K$
H;t � IVt

�2i
:

It is easy to show that $�

t =
Cov[cIV t;cIV t�KBNHLS

H;t ]
V ar[cIV t�KBNHLS

H;t ]
, which we estimate in the simplest

possible way from the data by:

b$� =

PT
t=1

�
cIV t �KBNHLS

H;t

�
cIV t

PT
t=1

�
cIV t �KBNHLS

H;t

�2 :

We present an empirical application in the next section.

5.4 Empirical Application

The data are the transaction prices of Alcoa, a stock listed in the Dow Jones Industrials.
The prices are observed every minute from January 1, 2002 to December 31, 2007 (T =
1510 trading days). In a typical trading day, the market is open from 9:30 am to 4:00 pm,
and this results in m = 390 observations per day. There are a few missing observations
(fewer than 5 missing data per day) which we �lled in using the previous tick method,
which amounts to replacing any missing price by the most recent price.
The estimation takes place in several steps. First of all, we compute the �rst step

CGMM estimator of �1 = (�; C; �2) based on the moment function (32):

b�(1)1 = argmin
�1

DDDbhT (:; �1)
DDD
2

:
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Second, we use b�(1)1 to estimate the covariance operator KT

�
b�(1)1
�
associated with the

moment function. We use the ad-hoc value � = 10�6 for the regularization of the inverse

of KT

�
b�(1)1;T

�
, that is:

K
�1=2

T;10�6

�
b�(1)1
�
=
�
K2
T

�
b�(1)1
�
+ 10�6 � I

��1=2
K
1=2
T

�
b�(1)1
�
:

The second step estimator of �1 is thus:

b�(2)1 = argmin
�1

DDDK�1=2

T;10�6
bhT (:; �1)

DDD
2

;

where K�1=2

T;10�6 � K
�1=2

T;10�6

�
b�(1)1
�
. The objective functions of the CGMM are computed in

each cases using 100 Hermitian quadrature points in R2.

Third, we estimate the variance of b�(2)1 . Unfortunately, the analytical expression (16)
is unusable because the gradient of bhT (� ; �1) (given in appendix D) is extremely badly
scaled. This is due to the fact that the likelihood function of Gamma distributions (like
some Student distributions) are very �at around the true value of the degree of freedom
parameter. As a result, the derivative of the objective function with respect to the
degree of freedom parameter is very small relatively to the derivatives with respect to
the remaining parameters. In other words, the gradient matrix is so badly scaled that it
is numerically singular. The problem is even more severe in the Autoregressive Gamma
model because the degree of freedom is q = 2�C

�2
, that is, a function of all three parameters

of interest. However, this numerical singularity does not imply that the model is not
identi�ed. Note that even in the discrete GMM, it is possible to have an over-identi�ed
set of restrictions that is �rst order under-identi�ed (see Dovonon and Renault, 2009).

We can thus resort to the bootstrap to evaluate the variance of b�(2)1 . The experiment is
conducted as follows.
We use the initial sample of size T = 1510 to compute 1509 moment functions:

fht (� ; �1)gTt=2. According to the speci�ed model, ht (� ; �1) is a martingale di¤erence
sequence. Hence the bootstrap procedure can be performed as if the set of moment func-
tions were independent. We thus draw 500 moment functions with equal probability and

replacement from the above set to get
n
eh(b)j (� ; �1)

o500
j=1
, for b = 1; 2; :::; B = 1000. Each

sample
n
eh(b)j (� ; �1)

o500
j=1

is then used to compute an estimator b�1;b for �1 = (�; C; �2).

Finally, b�1;b is used together with the realizations of Vt on which
n
eh(b)j (� ; �1)

o500
j=1

depend

to compute an estimator b�2;b for �2 = (�0; �1; E). In computing b�2;b, the constraints � � 0
and E � 0 are explicitly imposed. Likewise, (�; C; �2) > 0 is imposed in the estimation of
�1. The following table summarizes the empirical distributions of b�1;b and b�2;b.
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b�1;b b�2;b
b�b bCb b�2b b�0;b b�1;b bEb

Mean 0:8825 0:0004 0:0006 �0:0032 0:1665 �3:2039
Mode 0:8650 0:0004 0:0006 �0:0005 0:0664 �1:8341

Std. Dev. 0:0281 2:3� 10�5 7:8� 10�5 0:0046 0:2422 5:3613
IC1(95) 0:8135 0:0003 0:0005 �0:0154 0:0000 �19:807
IC2(95) 0:8917 0:0004 0:0008 0:0008 0:8009 0:0000

Table 4: Bootstrap statistics (B = 1000 samples of size T = 500).

The empirical results are qualitatively similar to what we have seen in the preliminary
simulation study. In particular, b�1;b is less volatile than b�2;b and this shows up as wider
con�dence regions for b�2;b. We have learned from the simulation exercise that the mean
of b�1;b is a good guess of �1 while the mode of b�2;b is a good guess of �2. The estimated
risk premium parameter is Mode

�
b�1;b
�
= 0:0664 while the leverage parameter is about

Mode(bEb) = �1:83. The latter estimate is probably exaggerated in regard of the results
of Table 3. In light of this, the results of Table 4 support the conclusion of French et al.
(1987) according to which the expected return is positively correlated with the expected
risk while the unexpected return is negatively correlated with the unpredictable risk.

6 Conclusions

The goal of this paper is to illustrate how to implement the CGMM. To start with, we
brie�y review the useful theoretical properties of the CGMM estimator. Next, we present
in detail some helpful numerical methods for its implementation. Finally, we apply the
estimation method to the stable distribution and the autoregressive variance Gamma
model.
When the parameter B of the stable distribution is close to 2, the asymmetry parameter

C becomes hard to identify. As a result, the gradient of the moment function is numerically
singular and one has to rely on Monte Carlo simulations for inference on the identi�able
parameters. When B is far from 2, the gradient of the moment function is of full rank
and the standard errors of the estimators can be computed using the standard analytical
formulas. Overall, the parameters of the stable distribution can be reliably estimated by
the CGMM.
In the autoregressive Gamma model, the variances of the estimators cannot be com-

puted analytically because the gradient of the moment is numerically singular. This
problem is due to the fact that the objective function is extremely �at around the true
values of the parameters, and can be linked to the di¢culties inherent to the estimation
of the degree of freedom parameter in Gamma distributions or Student distributions. We
avoid this problem by generating the empirical distributions of the estimates by resam-
pling from the original sample. The empirical application with the Alcoa stock suggests
that expected return is positively correlated with expected risk while unexpected return
is negatively correlated with unpredictable risk.
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Appendix A: Some Basic Properties of the Covariance Operator

For formal proofs of the results mentioned in this appendix, see Carrasco et al.
(2007a,b). In the sequel, bht (� ; �) is the moment function de�ned in (1) or (7), K is
the covariance operator with kernel given by (3) and (9), and �C is the subset of L2 (�)
de�ned in Assumption 4.

De�nition 1 The range of K denoted R(K) is the set of functions g such that Kf = g
for some f in L2 (�).

Proposition 2 R(K) is a subspace of L2 (�).

Note that the kernel functions k(s; :) and k(:; r) are elements of L2 (�) because

jk(s; r)j2 =
CCCE
h
ht(�; s)ht(�; r)

iCCC
2

� 4; 8 (s; r) 2 R2p:

Thus for any f 2 L2 (�), we have

jKf (s)j2 =

CCCC
Z
k(s; r)f (r) � (r) dr

CCCC
2

�
Z
jk(s; r)f (r)j2 � (r) dr

� 4

Z
jf (r)j2 � (r) dr <1;

implying

kKfk2 =
Z
jKf (s)j2 � (s) ds <1) Kf 2 L2 (�) :

De�nition 3 The null space of K denoted N(K) is the set of functions f in L2 (�) such
that Kf = 0.

The covariance operator K associated with a moment function based on the CF is
such that N(K) = f0g (See Carrasco et al. 2007a,b, for a proof).

De�nition 4 � is an eigenfunction of K associated with eigenvalue � if and only if
K� = ��.

Proposition 5 Suppose �1 � �2 � :::: � �j � ::: are the eigenvalues of K. Then the

sequence
�
�j
	
satis�es: (i) �j > 0 for all j, (ii) �1 <1 and lim

j!1
�j = 0.

Remark. The covariance operator associated with the CF-based moment function is
necessarily compact.

Proposition 6 Every f 2 L2 (�) can be decomposed as: f =P1

j=1

A
f; �j

B
�j.
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As a consequence, we have:

K�Cf =
1X

j=1

A
f; �j

B
KC�j =

1X

j=1

��Cj
A
f; �j

B
�j; C 2 R:

Because lim
j!1

�j = 0, kK�1fk2 =P1

j=1 �
�1
j

CCAf; �j
BCC2 is clearly not �nite for all f .

Proposition 7 If 0 < C1 � C2; then �C2 � �C1.

We recall that �C is the set of functions such that
DDK�Cf

DD < 1. In fact, f 2
R(KC2)) K�C2f exist and

DDK�C2f
DD2 =P1

j=1 �
�2C2
j

CCAf; �j
BCC2 <1: Thus if f 2 R(KC2),

we have:

DDK�C1f
DD2 =

1X

j=1

�
2(C2�C1)
j �

�2C2
j

CCAf; �j
BCC2

� �
2(C2�C1)
1

1X

j=1

�
�2C2
j

CCAf; �j
BCC2 <1;

) K�C1f exists ) f 2 R(KC1). This means R(K) � R(K1=2) so that the function
K�1=2f is de�ned on a wider subset of L2(�) compared to K�1f . When f 2 �1,A
K�1=2f;K�1=2f

B
= hK�1f; fi. But when f 2 �C for 1=2 � C < 1, the quadratic

form
A
K�1=2f;K�1=2f

B
is well de�ned while hK�1f; fi is not.
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Appendix B: Other Parameterizations of the Stable Distribution and
Simulation Strategies

The CF of the parameterization (21) which we refer to in this appendix as S0B (C0; �0; �0)
is discontinuous around B = 1 whenever C0 6= 0. To circumvent this, Zorotalev (1986)
proposed to parameterize:

�1 =

�
�0 + C0�

B
0 tan

B�
2
; B 6= 1

�0; B = 1
:

This results in the following expression for the CF which is continuous with respect to all
the parameters:

E [exp (i�X)] (36)

=

�
exp

�
i�1� � �B0

�
j� jB � i�C0

�
j� jB�1 � 1

�
tan B�

2

�	
; B 6= 1

exp
�
i�1� � �0 j� j

�
1 + i 2

�
C0sign (�) ln j� j

�	
; B = 1

:

Let us call this new parameterization S1B (C0; �0; �1).
Using (21) as starting point, Nolan (1997) proposed:

�2 =

�
�0 + C0�0 tan

B�
2
; B 6= 1

�0 +
2
�
C0�0 ln �0; B = 1

:

This yields another continuous representation of the CF:

E [exp (i�X)] (37)

=

�
exp

�
i�2� � �B0 j� jB

�
1 + iC0sign (�)

�
j�0� j1�B � 1

�
tan B�

2

�	
; B 6= 1

exp
�
i�2� � �0 j� j

�
1 + i 2

�
C0sign (�) ln j�0� j

�	
; B = 1

:

The parameterization (37) will be referred to as S2B (C0; �0; �2). An important feature of
this parameterization is that X��2

�0
� S2B (C0; 1; 0), no matter the value of B. This is true

for the two other parameterizations only when B 6= 1.
An alternative parameterization S3B (C0; �0; �3) tied to the data simulation method of

Chambers, Mallows and Stuck (1976) is got by setting:

�3 =

�
�0 + C0�0 tan

B�
2
; B 6= 1

�0; B = 1
:

This is identical to S2B (C0; �0; �2) for the case B 6= 1. As pointed out by Nolan (2009),
these small changes in parameterization have caused much confusions in the literature.
For instance, some papers build their theoretical framework on the parameterization
S0B (C0; �0; �0) but simulate the data under the parameterization S

3
B (C0; �0; �3).

Another important parameterization proposed in Zorotalev (1986) allows one to derive
an integral representation of the probability distribution function of B-stable random
variables (See Zolotarev, 1986, Remark 1, page 78 or Weron, 1996).
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Di¤erent simulation strategies for the stable distribution
A method to simulate from the parameterization S0B (C0; �0; �0) is presented in Weron

(1996). To start with, one draws two independent uniforms v and w in [0,1] and calculate:
V = � (u� 1=2) and W = � lnw. Then Z � S0B (C0; 1; 0) and X � S0B (C0; �0; �0) are
obtained as follows:
- If B 6= 1; one computes:

Z = SB;C0
sin
�
BV + BBB;C0

�

(cosV )1=B

 
cos
�
(1� B)V � BBB;C0

�

W

!�1+1=B
;

where BB;C0 =
arctan(C0 tan B�

2 )
B

and SB;C0 =
�
1 + C20 tan

2 B�
2

� 1

2B . Then we have

X = �0Z + �0 � S0B (C0; �0; �0) ;
X = �0Z + �1 � C0�B0 tan

B�

2
� S1B (C0; �0; �1) and

X = �0

�
Z � C0 tan

B�

2

�
+ �2 � S2B (C0; �0; �2) :

- If B = 1, one computes instead:

Z =
2

�

���
2
+ C0V

�
tanV � C log

�
W cosV
�
2
+ C0V

��
:

We then have:

X = �0Z + �0 +
2

�
C0�0 ln �0 � S01 (C0; �0; �0) ;

X = �0Z + �1 +
2

�
C0�0 ln �0 � S11 (C0; �0; �1) and

X = �0Z + �2 � S21 (C0; �0; �2) :

The simulation strategy of Z for the case B = 1 is quite standard in the literature.
However, other methods (than the one above) have been used in the literature for the
case B 6= 1. We show the link between (22) and two of them below. To start with, note
that:

sin
�
BV + BBB;C0

�
= sinBV sinBBB;C0 + cosBV cosBBB;C0 and

cos
�
(1� B)V � BBB;C0

�
= cos (1� B)V cosBBB;C0 + sin (1� B)V sinBBB;C0 :

Also, due to sin a = cos a tan a for all a, we have: sinBBB;C0 = C0 tan
B�
2
cosBBB;C0 so

that:
cos2 BBB;C0 = 1� sin2 BBB;C0 = 1� C

2
0 tan

2 B�

2
cos2 BBB;C0 :

The last equation implies:

cos2 BBB;C0 =
1

1 + C20 tan
2 B�
2

:

37



Replacing this in the expressions of sin
�
BV + BBB;C0

�
and cos

�
(1� B)V � BBB;C0

�
yields:

SB;C0 =
�
cosBBB;C0

��1=B
;

sin
�
BV + BBB;C0

�
=

C0 tan
B�
2
sinBV + cosBVq

1 + C20 tan
2 B�
2

and

cos
�
(1� B)V � BBB;C0

�
=

0
@cos (1� B)V + C0 tan

B�
2
sin (1� B)Vq

1 + C20 tan
2 B�
2

1
A
�1+1=B

:

Putting these expressions together in Equation (22) yields:

Z =
C0 tan

B�
2
sinBV + cosBV

(cosV )1=B

�
cos (1� B)V + C0 tan B�2 sin (1� B)V

W

��1+1=B
: (38)

Adding �C tan B�
2
to the above expression yields the formula of Chambers, Mallows and

Stuck (1976). To get the alternative expression of Nolan (2009), Theorem 1.19, it su¢ces
to substitute for SB;C0 =

�
cosBBB;C0

��1=B
in Equation (22). This yields:

Z =
sin
�
BV + BBB;C0

�
�
cosBBB;C0 cosV

�1=B

 
cos
�
(1� B)V � BBB;C0

�

W

!�1+1=B
: (39)

The evaluation of (39) for values very close to B = 1 may raise some numerical
problems. By avoiding the division by cosBBB;C0, the expressions (22) and (38) are more
numerically stable and accurate (see Nolan, 2009).
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Appendix C: Gradients of the moment function (25)

@ht (� ; �)

@�0
= �i� 1't (� 1; �) ei�2rt�1 ;

@ht (� ; �)

@�1
= �i� 1yt�1't (� 1; �) ei�2rt�1 ;

@ht (� ; �)

@B
= �B j� 1jB

�
log (� j� 1j)

h
1� iCsign (� 1) tan

B�

2

i
� i�Csign (� 1)

2 cos2 B�
2

�
't (� 1; �) e

i�2rt�1 ;

@ht (� ; �)

@C
= ��B j� 1jB isign (� 1) tan

B�

2
't (� 1; �) e

i�2rt�1 and

@ht (� ; �)

@�
= B�B�1 j� 1jB

h
1� iCsign (� 1) tan

B�

2

i
't (� 1; �) e

i�2rt�1 :
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Appendix D: Gradients of the moment function (32)

The moment function satis�es:

@ht (� ; �1)

@�1
=
@' (�; Vt�1)

@�1
exp (i� 2Vt�1) ;

where ' (�; Vt�1) is the CF of Vt conditional on Vt�1 given by:

' (�1; Vt�1) =

�
1� i��

2 (1� e��)
2�

�� 2�C

�2

exp

�
2i��e��Vt�1

2�� i��2 (1� e��)

�
:

We now compute @'(�;Vt�1)
@�1

.
Derivative with respect to C:

@' (�1; Vt�1)

@C
=

�2�
�2

ln

�
1� i��

2 (1� e��)
2�

�
exp

�
2�i�e��Vt�1

2�� i��2 (1� e��)

�

�
�
1� i��

2 (1� e��)
2�

�� 2�C

�2

:

Derivative with respect to �:

@' (�1; Vt�1)

@�
= exp

�
2�i�e��Vt�1

2�� i��2 (1� e��)

��
1� i��

2 (1� e��)
2�

�� 2�C

�2

�
��2C
�2

�
ln

�
1� i��

2 (1� e��)
2�

�
+
i��2 (1� e�� � �e��)
2�� i��2 (1� e��)

�

� 2i�e��Vt�1
2�� i�2� (1� e��)

�
i�2� (�� 1 + e��)� 2�2
2�� i�2� (1� e��)

��
:

Derivative with respect to �2:

@' (�1; Vt�1)

@�2
= exp

�
2�i�e��Vt�1

2�� i��2 (1� e��)

��
1� i��

2 (1� e��)
2�

�� 2�C

�2

�
�
2�C

�4

�
i��2 (1� e��)

2�� i��2 (1� e��) + ln
�
1� i�

2� (1� e��)
2�

��

+
i� (1� e��)

2�� i��2 (1� e��)
2i��e��Vt�1

2�� i��2 (1� e��)

�
:

40


