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Accuracy and usefulness of learned data-driven PHM models are closely related to availability and 
representativeness of data. Notably, two particular problems can be pointed out. First, how to improve the 
performances of learning algorithms in presence of underrepresented data and severe class distribution 
skews? This is often the case in PHM applications where faulty data can be hard (even dangerous) to 
gather, and can be sparsely distributed accordingly to the solicitations and failure modes. Secondly, how to 
cope with unlabelled data? Indeed, in many PHM problems, health states and transitions between states 
are not well defined, which leads to imprecision and uncertainty challenges. According to all this, the 
purpose of this paper is to address the problem of "learning PHM models when data are imbalanced 
and/or unlabelled" by proposing two types of learning schemes to face it. Imbalanced and unlabelled data 
are first defined and illustrated, and a taxonomy of PHM problems is proposed. The aim of this 
classification is to rank the difficulty of developing PHM models with respect to representativeness of data. 
Following that, two strategies are proposed as pieces of solution to cope with imbalanced and unlabeled 
data. The first one aims at going through very fast and/or evolving algorithms. This kind of training scheme 
enables repeating the learning phase in order to manage state discovery (as new data are available), 
notably when data are imbalanced. The second strategy aims at dealing with incompleteness and 
uncertainty of labels by taking advantage of partially-supervised training approaches. This enables taking 
into account some a priori knowledge and managing noise on labels. Both strategies are proposed as to 
improve robustness and reliability of estimates. 

1. Introduction 

Data-driven Prognostics and Health Management (PHM) methods rely on the assumption that the 
statistical characteristics of data are relatively unchanged unless a malfunction occurs. These methods 
aim thereby at transforming raw monitoring data into relevant information and behavior models (including 
the degradation) of the system (Das et al., 2011), (Pecht and Jaai, 2010). Such methods are suitable for 
situations where it is hard to provide a mathematical model to replicate the behavior of physical system, or 
there is an absence of prior knowledge about the system. In other words, data-driven PHM methods can 
automatically learn to deduce complex and nonlinear relation among actual survival condition and 
measured condition monitoring information data, as they are trained to learn degradation from past 
examples (Dong, 2010). These methods are generally based on machine learning, artificial intelligence 
and pattern recognition tools. 
The implementation phase of data driven PHM approaches has to go through important steps of learning 
and testing of the model (health assessment and/or prognostics model). Firstly, the model is tuned in order 
to learn behaviour of the system by pre-processed data (features) collected from degrading equipment, 
and secondly, the test phase uses learned model to predict the future condition (Figure 1). The modelling 
phase in itself can be spilt into two complementary steps: 1) pave the data space into areas of interest 
(data clustering), 2) build a behaviour model using the partition. According to this, the main limitation of 
data driven methods lies in the requirement of learning data: their performance is highly dependent on 
quality and quantity of data. 



 

Figure 1: from raw data to PHM models 

At least, two ill problems can be pointed out. First, learning dataset can be insufficient to accurately 
represent all possible states of the system (Figure 2 – left part). This is often the case in PHM applications 
where faulty data can be hard (even dangerous) to gather, and can be sparsely distributed accordingly to 
the solicitations and failure modes. Secondly, how to define health states and transitions between states if 
no prior knowledge is available, i.e. if data are unlabelled (Figure 2 – right part)? 
According to all this, the purpose of this paper is to address the problem of "learning PHM models when 
data are imbalanced and/or unlabelled" by proposing two types of learning schemes to face it. Imbalanced 
and unlabelled data are first defined, and a taxonomy of PHM problems is proposed. The aim of this 
classification is to rank the difficulty of developing PHM models with respect to representativeness of data. 
Following that, two strategies are proposed as pieces of solution to cope with imbalanced and unlabeled 
data. The first one aims at going through very fast and/or evolving algorithms. This kind of training scheme 
enables repeating the learning phase as required in order to manage state discovery (as new data are 
available), notably when data are imbalanced. The second strategy aims at dealing with incompleteness 
and uncertainty of labels by taking advantage of partially-supervised training approaches. This enables 
taking into account some a priori knowledge and managing noise on labels. Both strategies are proposed 
as to improve robustness and reliability of estimates. 
 

 

Figure 2: ill problems of learning data for PHM models 

2. Taxonomy of PHM cases 

2.1 Imbalanced and unlabelled data: terminology 
� Technically speaking, imbalanced data represents any dataset that exhibits an unequal distribution 
between its classes, i.e., cases in which the number of elements of one class severely outrepresents 
another. A taxonomy of imbalanced data was proposed in (He and Garcia, 1999) where authors 
distinguished between: 

- "Intrinsic imbalances" that are directly related to the nature of the dataspace. This kind of 
imbalanced data can easily be found in PHM area, e.g. in nuclear power plant; 

- "Extrinsic imbalances" that are related to time or storage. Even if the phenomenon is well 
balanced, data acquired can be imbalanced if a sensor has failed for example. 

According to this, relative imbalance between classes or imbalance due to rare instances can result in a 
same problem for machine learning techniques and, whatever the type of imbalanced data, usual learning 
algorithms suffer from the disparity of samples in classes. Performances drop consequently (for instance, 
performances are also imbalance in between classes)… 
� Whilst training data represents generic knowledge that helps to capture inherent randomness of the data 
generating process, some specific knowledge can also be available to capture epistemic uncertainty due 
to lack of knowledge. In pattern recognition and machine learning algorithms, specific knowledge takes 
generally the form of prior information such as labels. In the context of PHM algorithms, labels can be 
viewed as a ground truth and can be encountered in two main cases: 
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− In the detection process: this process consists in discriminating between different possible 
functioning states, generally discrete. In this situation, a label associated to a training data point 
represents the real functioning state of that point (for example healthy or broken). 

− In the prediction process: this process aims at estimating the remaining useful life of the system. 
When based on regression procedures, a label assigned to a training data represents the 
remaining useful life of this instance (for example 120 time units). 

In both process, labels are used to improve estimates of the parameters used to discriminate between the 
states and predict the remaining useful life.  
A dataset is called unlabelled when there is no prior/specific information. In that case, unsupervised 
training procedures are necessary to build PHM models. On the opposite, a labeled dataset is composed 
of a set of data points (time-series) plus prior information and one talks about supervised training data. In 
the sequel, we will expose two other cases: semi-supervised training and partially-supervised training. 

2.2 Taxonomy of PHM cases accordingly to the data 
According to the type of data, useful algorithms vary from an extreme to an other, and can require the user 
to a priori set some parameters to which performances are closely related (number of classes, distance 
measure, etc.). According to this, consider the following taxonomy of PHM cases (Table 1). 

Table 1: Illustration of PHM cases – taxonomy accordingly to the available data 

PHM Cases Balanced Data Imbalanced Data 

Labeled 
Data 

 
Case A - Modelling and estimates: easy 

 
Case B - Modelling and estimates: quite difficult 

Unlabeled 
Data 

 
Case C - Modelling and estimates: quite easy 

 
Case D - Modelling and estimates: difficult 

 
� Case A – PHM problem with balanced and labeled data.  Data of Case A (Table 1) are from a simulated 
example. In this case, data are well distributed (in quantity and in the space), and labels (states classes) 
are known. This can be the case for non costly components, i.e. components for which many failure 
experiments can be performed without compromising safety. 
Such PHM issue can be easily addressed. Indeed, the current state of the component can be clearly 
identified and trajectories (behavior) are known. According to this, PHM algorithms can be built (they follow 
from traditional reliability modeling). However, is it a realistic case with respect to industrial constraints? 
 
� Case B – PHM problem with imbalanced and labeled data.  Data of Case B (Table 1) are extracted from 
the "Turbofan engine degradation simulation data set" (Saxena and Goebel, 2008). Blue points depict the 
normal mode (steady part) whereas red points are for faulty mode. One can note a strong overlap between 
classes with relative number of samples in each class. Also, labels are known since state classes are 
distinguished. This kind of data can depict sudden crack propagation phenomena, faults of an acquisition 
system (sensors), or excessive maintenance policies. In any case, these are explainable data sets. 
In such PHM issues, since labels are known, local behavior models can be built. However, transitions 
between classes can be hard to catch: it requires the combination or adaptation of models. According to 
this, building PHM algorithms is quite difficult to perform (because of the dynamics of the behavior). 



� Case C – PHM problem with balanced and unlabeled data.  Data of Case C (Table 1) are extracted from 
experiments on PRONOSTIA platform (Nectoux et al. 2012). Data from two bearings with different loads 
are depicted. Data appears to be well distributed but labels are unknown. This kind of PHM problem can 
be encountered when large operating conditions or loads are considered, or if the quality of manufacturing 
is not constant.�
The underlying structure of data is "depictable" and clustering of data can be done. This can lead to some 
problems of model parameterization and noise must be taken into account. Also, since no prior 
understanding of behavior is available, this has to be catch. However, efficient machine learning 
techniques for balanced data can be used, and developing a PHM algorithm for such cases is quite easy 
to perform. 
 
� Case D – PHM problem with imbalanced and unlabeled data.  Data of Case D (Table 1) are those ones 
from Case B without labels. One can guess a strong overlap between classes with relative number of 
samples in each class. Data are sparse, with rare instance and labels are unknown. This kind of data can 
depict cases where faulty states have never been met (new technologies, nuclear plants, etc.), or where 
the behavior is totally unknown like for multi-physics phenomena or multi-scales PHM problems. 
In such PHM issues, the learning frame is poor which entails confidence problems. As for some examples, 
one should be able: to cluster data while distinguishing outliers from classes with few instances, to model 
transitions between classes thanks to combination or adaptation of models. However, since all situation 
have not been already met, all behaviors can not be modeled, and building PHM algorithms is difficult to 
perform (poor representativeness of data, misunderstanding of phenomena) 

2.3 Pointing out a challenge 
According to all above, at least two major issues can be pointed out: 

− How to improve the performances of learning algorithms in presence of underrepresented data and 
severe class distribution skews? This is often the case in PHM applications where faulty data can 
be hard (even dangerous) to gather, and can be sparsely distributed accordingly to the solicitations 
and failure modes. 

− How to cope with unlabelled data? Indeed, in many PHM problems, health states and transitions 
between states are not well defined, which leads to imprecision and uncertainty challenges. 

The aim of next section is to discuss those challenges and to propose some strategies to cope with them. 

3. Learning schemes to face imbalanced and unlabelled data in PHM applications 

3.1 Evolving and/or fast algorithms: how to cope with balance of data 
Consider Figure 3 to discuss the problem addressed. This can not be deeply presented in this paper but 
many PHM approaches based on artificial intelligent tools (neural networks NN, support vector machines 
SVM, hidden Markov models HMM, fuzzy inference systems FIS, etc.) have been proposed in literature. 
Nevertheless and even if it isn't always well pointed out by authors, all those methods are obviously 
dependent on the representativeness of the learning data. Indeed, in real case situations, data are not 
exhaustive and practitioners should be able: 

− to distinguish outliers from transient; 
− to manage "state discovery" (an extreme imbalanced case but practically useful); 
− to cope with continuous data stream. 

Also, learning PHM models can be time consuming and addressing those problems should be made in a 
time efficient manner. This is not the case when batch learning algorithms are required (like for some NN), 
or when optimization procedure are long (like in SVM approach). According to this, we propose two 
learning strategies as powerful candidates for PHM applications where imbalanced data are observed. 
 

 

Figure 3: usefulness and limits of PHM approaches with respect to balance of data 



� New heath states will probably appear in the future (change in materials, drifts...). Thereby, one should 
consider upcoming data as potential behaviours to be learned. This can be achieved thanks to evolving 
systems with online algorithms. (El-Koujok et al. 2011) proposed an PHM models that starts from scratch 
and evolves (structure and parameters) as new data are gathered. This model provides practitioners with a 
tool that does not need the user to make assumptions on the structure or on initial condition for model 
building. The learning phase starts from scratch and the predictor evolves as data are gathered. Similarly, 
(Ramasso and Gouriveau, 2013) proposed a PHM model based on the combination of an evolving neuro-
fuzzy predictor with an evidential classifier (based on belief functions). The approach appears to be very 
efficient since it enables to early estimate the failure instant, even with few learning data are available. 
� An other way of dealing with state discovery is to imagine very fast learning schemes, i.e. algorithms that 
can be retuned as required as new data are available. (Javed et al. 2012) proposed a semi-complex 
extreme learning machine based on neural networks with complex activation functions to achieve heath 
state monitoring and prediction. Experimental results show that with less complex network architecture, the 
proposed approach shows better accuracy performances, while reducing the processing time required (up 
to 130 times with respect with classical NN). 

3.2 Partially supervised learning algorithms: how to cope with quantity and quality of labels 
Consider Figure 4 to discuss the kind of problem that can follow from the quality and quantity of learning 
data. As state before, an underlying "data clustering" step is often required in PHM. It consists in gathering 
data points into similar regions of the feature space, also called clusters. This step is useful to decompose 
the estimation of the degradation model's parameters into simpler subproblems. For example, in Hidden 
Markov Models, the expectation-maximization algorithm allows to estimate the parameters of some 
probability densities which pave the feature space (Xing-Hui et al., 2010). Another example is the multi-
modeling approach such as (Serir et al., 2012, 2013) which decomposes the feature space into regions for 
which one local model is used to estimate the evolution of the health indicators. Data clustering is also 
called "unsupervised" classification, meaning that the algorithm is able to estimate the clusters' parameters 
only based on the data obtained from sensors. In "supervised" classification methods, the data are 
accompanied by a ground truth that represents the real cluster. For real applications, knowing the ground 
truth means that the systems' health state is known for all data points (!). Another category of approaches 
are called "semi-supervised" approaches where only some data points are accompanied by the identity of 
the cluster. A problem can be pointed out: since supervised approaches seem to be irrelevant for real 
PHM approaches, how to deal with doubt on labels? According to this, we proposed to take advantage of 
what is called "partially-supervised" algorithms. 
 

 

Figure 4: usefulness and limits of PHM approaches with respect to incompleteness & uncertainty of labels 

� A recent approach called "partially-supervised" consists in considering that the ground truth can be 
known with uncertainty and imprecision (Côme et al. 2009) and covers semi-supervised, supervised an 
unsupervised training as particular cases. The formalism proposed in (Denoeux, 2013) is an extension of 
the previous work to consider uncertain and imprecise prior information in statistical model with latent 
variables. It was exploited for detection in (Ramasso et al. 2013a) and for prediction in (Ramasso et al. 
2013b) using Hidden Markov Models. In all those works, the assessment of the partially-supervised 
learning schemes was performed with report to noise on labels. It was shown that the models are able to 
converge to relevant solutions even in the presence of noise on labels and with a small amount of data. 
Knowing precisely the true state in all data points is thus not necessary. It was also shown that the models 
provided accurate results when the labels were not "crisp", i.e. accompanied by uncertainty and 
imprecision. Besides, as demonstrated in (Denoeux, 2013), even though belief functions are used to 
encode the partial knowledge about the labels, the time/memory-consumption is not really influenced 
compared to usual models. It is all the more reduced than the labels are numerous and precise. 



4. Conclusion 

Data-driven PHM approaches are increasingly applied. However, accuracy and usefulness of learned 
PHM models are closely related to the availability and representativeness of data, as well as the 
interpretation of data. The aim of this paper is to address these problems by pointing out and discussing 
challenging topics for PHM modelling (within others learning challenges). Two aspects are considered: 1) 
how to deal with imbalanced data, i.e., with data whose relative number of instances in each class (each 
heath state) evolves with time, and 2) how to deal with unlabeled data, i.e., data whose signification is not 
known by the user or at least poorly (with doubt). According to this, we propose two learning schemes to 
cope with incompleteness and imperfection of available learning data. The first one is based on evolving 
and fast algorithms that enable relearning PHM models as new data are available. The second one is 
based on "partially-supervised" learning algorithms that enable introducing doubt in PHM models. 
Note that the problems considered in this paper are not the single ones to be addressed by PHM 
community. Indeed, others challenging topics like "robustness", "reliability", "verification" or "validation" of 
PHM models should be clearly stated by the research community as an area of required developments. 
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