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Abstract. Different methods have been proposed for merging multiple
and potentially conflicting informations. Sum-based operators offer a nat-
ural method for merging commensurable prioritized belief bases. Their
popularity is due to the fact that they satisfy the majority property and
they adopt a non cautious attitude in deriving plausible conclusions.
This paper analyses the sum-based merging operator when sources to
merge are incommensurable, namely they do not share the same mean-
ing of uncertainty scales. We first show that the obtained merging op-
erator can be equivalently characterized either in terms of an infinite
set of compatible scales, or by a well-known Pareto ordering on a set of
models. We then study different families of compatible scales useful for
merging process. This paper also provides a postulates-based analysis of
our merging operators.

1 Introduction

The problem of merging multiple-source information is crucial for many ap-
plications. Indeed, many situations require to take into account several poten-
tially conflicting pieces of information, such as distributed databases frameworks,
multi-agent systems, or distributed information in general (e.g. semantic web).
This kind of situation leads to perform some combination operations on available
pieces of information, which is well known as a data fusion problem.

Different merging operators have been proposed in the literature to merge pri-
oritized pieces of information issued from different sources [1–3]. Most of existing
merging methods assume that ranks associated with beliefs are commensurable
from one source to another. This commensurability assumption may make sense
in some situations, when it is possible to obtain a reference scale between sources.
However, it can appear to be too strong for other applications. Only few works
have addressed the issue of merging incommensurable ranked belief bases [4, 5].

In this paper, we first provide, in Section 3, a natural extension of the sum-
based fusion mode to deal with incommensurable belief bases. This extension
uses the concept of compatible scales to define the result of merging. We show,
in the same section, that the fusion can also be characterized in terms of a
Pareto-ordering on possible worlds. We then analyze, in Section 4, the logical



behavior of the sum-based merging operator in commensurable and incommen-
surable cases. As a surprising result, the majority postulate is no longer valid
when dealing with incommensurable belief bases. Even worse, the sum-based
merging operator become majority-independent. Section 5 presents several in-
ference relations based on some selection functions of compatible scales (such as
the ones obtained from linear transformations or bounded compatible scales). In
particular, we analyze the impact of these selection functions on the satisfaction
of rationality postulates, and on the prudence of merging operators. Section 6
provides a brief comparison with some other merging approaches.

Before developing in details these results, we first provide some backgrounds
on ranked belief bases and sum-based merging of commensurable belief bases.

2 Merging Ranked Belief Bases

Let L be a finite propositional language. We denote by Ω the set of interpreta-
tions of L and by ω an element of Ω. Greek letters ϕ and ψ denote propositional
formulas. ≡ denotes a logical equivalence, Mod(ϕ) represents the set of models
of ϕ, ⊤ and ⊥ represent respectively a tautology and a contradiction.

2.1 Ranked Belief Bases

A ranked belief base is a multi-set of ranked formulas. It contains beliefs provided
by a given source. The term belief is used when pieces of information provided by
sources are uncertain. A ranked belief is represented by a propositional formula
associated with a rank. This rank represents the amount of uncertainty asso-
ciated with the formula, and can simply expresses the reliability of the source
which provides this belief. A ranked belief base is a convenient framework to
represent uncertain (or prioritized) pieces of information:

Definition 1 (Ranked belief base). A ranked belief base Bi is a multi-set
of ranked propositional formulas Bi = {(ϕij , RBi

(ϕij)), j ∈ {1, ...,mi}}, where
ϕij ∈ L, and RBi

(ϕij) ∈ N∗.

(ϕij , RBi
(ϕij)) means that ϕij has a priority rank of at least RBi

(ϕij). Intu-
itively, formulas associated with highest ranks are those which are preferred for
a given source (or agent). Only strictly positive ranks are represented. Ranked
belief bases are used in different frameworks, such as possibility theory [6] or
ordinal conditional functions (OCF) [7–9]. We denote by B∗

i the set of proposi-
tional formulas obtained from Bi by ignoring ranks associated with formulas.

Given a ranked belief base, a total pre-order on interpretations of Ω can be
derived as follows: ω is preferred to ω′ if and only if the strongest belief falsified
by ω is less important than the strongest belief falsified by ω′. More precisely:

Definition 2 (κ-functions). A ranking function κBi
associated with a ranked

belief base Bi is a function that maps each interpretation ω ∈ Ω to an integer
κBi

(ω) such that:

κB(ω) =



0 if ∀(ϕij , RBi
(ϕij)) ∈ Bi, ω |= ϕij

max{RBi
(ϕij) : ω 2 ϕij , (ϕij , RBi

(ϕij)) ∈ Bi} otherwise.



Interpretations associated with lower ranks represent agent’s current beliefs.
This ordering is the basis of possibilistic logic [6] and adjustment revision [8].

Example 1. Let us consider the ranked belief baseB = {(¬a∨b, 8), (a∨b, 5), (a, 2)}.
Table 1 gives the κ-function κB associated with B. ω3 is the preferred interpre-
tation and will represent agent’s current beliefs.

ωi ∈ Ω a b κB(ωi)

ω0 0 0 5
ω1 0 1 2
ω2 1 0 8
ω3 1 1 0

Table 1. An example of κ-function

It is important to note that beliefs are inserted as they are and as they come
from their sources, and we do not add derived beliefs. This is the spirit of what is
called "belief bases" by Nebel [10]. Hence, the same belief can be present several
times in Bi and this explains why we consider it as a multi-set. Equivalent beliefs
have different identification (the identification can be an arbitrary numbering of
the beliefs in Bi). We do not make these identifications explicit since it renders
the notation heavy. Formulas of belief bases are distinguished from plausible
conclusions which are derived from beliefs.

2.2 Sum-Based Fusion of Commensurable Bases

This section recalls a sum-based merging method. Let E = {B1, ..., Bn} be a
multi-set of n ranked belief bases issued from n sources, and let µ be a proposi-
tional formula representing integrity constraints to satisfy. The aim of merging
is, given E and µ, to rank-order different interpretations of Ω with respect to
pieces of information provided by sources. This ordering is often obtained using
a merging operator denoted here by △µ. Given E, △µ, we denote by ⊳E the
ordering on Ω induced by △µ and E. We denote by △µ(E) the so-called belief
set which represents the set of actual beliefs obtained after merging E and µ

by △µ. △µ(E) is defined as usually, namely it is such that its models are those
which are minimal with respect to ⊳E . In the literature, different methods for
merging E have been proposed (e.g. [2,3,11]). This paper focuses on a sum-based
fusion, denoted by △µ

Σ .
To compute the result of merging, each interpretation ω is associated with a

profile, denoted by νE(ω), and defined by:

νE(ω) = 〈κB1
(ω), ..., κBn

(ω)〉

It represents the consistency degree of an interpretation ω with respect to ranked
bases to merge. The computation of △µ

Σ is achieved in two steps: first combine
the consistency degrees κBi

(ω)’s with the Sum operator Σ, and then rank-order
interpretations with respect to their obtained ranks. More formally:



Definition 3 (⊳E
Σ). Let ω and ω′ be two interpretations of Ω, and νE(ω),

νE(ω′) be their respective profiles. Then : ω ⊳E
Σ ω′ iff Σ(νE(ω)) < Σ(νE(ω′)),

where Σ(νE(ω)) =
∑

i=1,..,n

κBi
(ω).

Models of △µ
Σ(E) are models of µ which are minimal with respect to ⊳E

Σ :

Mod(△µ
Σ(E)) = Min(Mod(µ), ⊳E

Σ)

The sum-based merging operator is majority dependent : the repetition of a
same piece of information may affect the result of merging. This kind of operator
is particularly well adapted if sources (or agents) are assumed to be independent.

Example 2. Let us consider E = {B1, B2 B3} where B1 = {(a, 6), (b, 3)}, B2 =
{(a∨ b, 3), (¬b, 1)} and B3 = {(¬a, 5}. Assume that µ ≡ ¬a∨¬b. Profiles associ-
ated with interpretations are given by Table 2. We have Mod(△µ

Σ(E)) = {ω1}.

ω ∈ Ω a b νE(ω) Σ(νE(ω))

ω0 0 0 〈6,3,0〉 9
ω1 0 1 〈6,1,0〉 7
ω2 1 0 〈3,0,5〉 8
ω3 1 1 〈0,1,5〉 6

Table 2. Profiles associated with interpretations

3 Extension of the Sum-Based Operator for Merging

Incommensurable Belief Bases

3.1 Compatible Scales Merging Approach

The sum-based merging operator defined above assumes that ranks, associated
with formulas, have to be commensurable in order to sum them. Such assump-
tion can be too strong for some applications, for instance when information is
obtained from sources with unknown quality (e.g. web). A natural way to merge
incommensurable belief bases consists in using possible common scales, called
compatible scales [5]. A compatible scale affects new ranks to beliefs such that
initial relative orders between beliefs of each agent are preserved.

Definition 4 (Compatible scale). A compatible scale S is a function that
maps E = {B1, ..., Bn} to ES = {BS

1 , ..., B
S
n}such that for all Bi ∈ E:

(i) BS

i = {(ϕij ,S(ϕij)) : (ϕij , RBi
(ϕij)) ∈ Bi}

(ii) ∀Bi ∈ E, ∀(ϕij , RBi
(ϕij)) ∈ Bi, ∀(ϕij′ , RBi

(ϕij′)) ∈ Bi,
RBi

(ϕij) ≤ RBi
(ϕij′) iff S(ϕij) ≤ S(ϕij′).

The following example shows that compatible scales are not unique.



ϕij RBi
(ϕij) S1(ϕij) S2(ϕij) S3(ϕij)

B1 a 6 2 6 1
b 3 1 4 5

B2 a ∨ b 3 2 3 3
¬b 1 1 2 1

B3 ¬a 5 1 4 5

Table 3. Examples of compatible scales

Example 3. Let us consider E = {B1, B2, B3} be belief bases provided by Ex-
ample 2. Table 3 gives three possible scales: S1, S2 and S3. Scales S1 and S2 are
compatible, because they preserve initial orders induced by each base. However,
S3 is not a compatible one: it inverses priority between beliefs of B1.

As we already pointed out, beliefs are considered as self justified. A com-
patible scale does not directly handle beliefs but rather normalize ranks associ-
ated with beliefs. If, for instance, one have two bases: B1 = {(a, 1), (b, 2)}, and
B2 = {(b, 3), (a, 5)}; a possible common scale is S such that BS

1 = {(a, 2), (b, 3)},
and BS

2 = {(b, 2), (a, 3)}. This scale is compatible since it simply preserves the
initial ordering between beliefs of B1 and between beliefs of B2.

The set of scales compatible with E is denoted by SE . Note that SE is never
empty (it is enough to consider a scale that simply uses initial ranks, which is
trivially compatible). Given a compatible scale S ∈ SE , we denote by BS

i the
belief base obtained from Bi by using a compatible scale S. More formally, BS

i

is obtained by replacing each pair (ϕij , RBi
(ϕij)) by (ϕij ,S(ϕij)). Moreover, we

denote by ES the multi-set obtained by application of S on each Bi from E.

Definition 5 (Definition of ◭
E
Σ). Let ω, ω′ be two interpretations of Ω. Then:

ω ◭
E
Σ ω′ iff ∀S ∈ SE , ω ⊳

ES

Σ ω′

where ⊳ES

Σ is the result of applying the Definition 3 on ES .

Models of N
µ
Σ(E) are again: Mod(Nµ

Σ(E)) = Min(Mod(µ),◭E
Σ).

Example 4. Let consider again B1 = {(a, 6), (b, 3)}, B2 = {(a ∨ b, 3), (¬b, 1)}
and B3 = {(¬a, 5}. Table 4 provides profiles associated with interpretations for
each of two compatible scales, S1 and S2. Bold elements represent models of
△µ

Σ(ESi). For instance, ω2, and ω3 are models of △µ
Σ(ES1) according to S1.

ω ∈ Ω a b νES1 (ω) ΣS1 νES2 (ω) ΣS2

ω0 0 0 〈2, 2, 0〉 4 〈6, 3, 0〉 9
ω1 0 1 〈2, 1, 0〉 3 〈6, 2, 0〉 8
ω2 1 0 〈1,0,1〉 2 〈4, 0, 4〉 8
ω3 1 1 〈0,1,1〉 2 〈0,2,4〉 6

Table 4. Profiles associated with interpretations



3.2 Characterization of the Result of Merging

This subsection shows that it is possible to characterize the result of fusion
without comparing all compatible scales. The following proposition shows that
an interpretation ω is a model of N

µ
Σ(E) if and only if there exists a compatible

scale S where ω is a model of △µ
Σ(ES). More formally:

Proposition 1. Let E be a multi-set of ranked belief bases. Then ω ∈Mod(Nµ
Σ(E)),

if and only if there exists a compatible scaling S such that ω ∈Mod(△µ
Σ(ES)).

We now generalize this proposition by characterizing the whole ordering ◭
E
Σ

and not only its minimal elements. It turns out that ◭
E
Σ corresponds to the

well-known Pareto Criterion. Namely:

Proposition 2. Let ω and ω′ be two interpretations of Ω. Then ω ◭
E
Σ ω′ iff:

(i) ∀j ∈ {1, .., n}, κBj
(ω) ≤ κBj

(ω′) and (ii) ∃i ∈ {1, ..., n}, κBi
(ω) < κBi

(ω′).

The first condition means that ω is at least as preferred as ω′ with respect
to each belief base, while the second condition means that at least one base
expresses a strict preference for ω.

4 Logical Behavior and Rational Postulates

Many postulates have been proposed in the literature to characterize merging
operators under constraints (see [3] for details). These postulates are defined
when belief bases are represented by propositional formulas. In our framework,
these postulates have been adapted (see [5] for details) as follows:
(IC0) △µ(E) |= µ ;
(IC1) If µ is consistent, then △µ(E) is consistent;
(IC2∗) If

∧
B∈E B

∗ is consistent with µ, then
△µ(E) ≡

∧
B∈E B

∗ ∧ µ;
(IC3∗) If E1 ≡R E2 and µ1 ≡ µ2, then

△µ1(E1) ≡ △µ2(E2);
(IC4∗) If B∗

1 |= µ and B∗
2 |= µ, then △µ({B1, B2}) ∧B

∗
1 is

consistent iff △µ({B1, B2}) ∧B
∗
2 is consistent;

(IC5) △µ(E1) ∧△µ(E2) |= △µ(E1

⊔
E2);

(IC6) If △µ(E1) ∧△µ(E2) is consistent, then
△µ(E1

⊔
E2) |= △µ(E1) ∧△µ(E2);

(IC7) △µ1(E) ∧ µ2 |= △µ1∧µ2(E);
(IC8) If △µ1(E) ∧ µ2 is consistent, then

△µ1∧µ2(E) |= △µ1(E) ∧ µ2.

Additional postulates have been proposed in [3]:

(IC6’) If △µ(E1) ∧△µ(E2) is consistent, then
△µ(E1

⊔
E2) |= △µ(E1) ∨△µ(E2);

(MAJ) ∃m ∈ N : △µ(E ⊔ Bm
i ) |= B∗

i , (with Bm
i = {Bi} ⊔ ... ⊔ {Bi} m times

and ⊔ the multi-set union) ;



(MI) ∀m, △µ(E1 ⊔ E
m
2 ) ≡ △µ(E1 ⊔ E2).

The majority postulate (MAJ) characterizes majoritarian merging operators:
if a given set of beliefs is repeated often enough, this set of beliefs should be
accepted in the result of merging. At the opposite, the majority independence
postulate states that the result of merging is independent of the repetition of
beliefs. (IC6’) is a weakened version of (IC6). We also introduce in this paper
a stronger version of (IC4∗), called the consensus postulate:

(CSS) ∀Bi ∈ E, if Bi |= µ, then B∗
i ∧△µ(E) is consistent.

4.1 The Commensurable Case

In the commensurable case, the following proposition shows that △µ
Σ satisfies

most of the original postulates:

Proposition 3. △µ
Σ satisfies (IC0), (IC1), (IC2∗), (IC3∗), (IC5), (IC6),

(IC6’), (IC7), (IC8) and (MAJ).

However, △µ
Σ falsifies (IC4∗), (MI) and (CSS). For the lack of space, we

only provide a counter-example for (IC4∗):

Example 5. Let us consider B1 = {(¬a, 2), (b, 1)}, B2 = {(a, 3), (b, 2)}, and µ =
a∨b. We have B∗

1 |= µ and B∗
2 |= µ, and from Table 5,Mod(△µ

Σ(E)) = {ω3}, and
then △µ

Σ(E) ≡ a ∧ b. Hence, on this example, △µ({B1, B2}) ∧B
∗
2 is consistent,

but △µ({B1, B2}) ∧B
∗
1 is not.

a b κB1(ω) κB2(ω) νE(ω) Σ(νE(ω))

ω0 0 0 1 3 〈1,3〉 4
ω1 0 1 0 3 〈0,3〉 3
ω2 1 0 2 2 〈2,2〉 4
ω3 1 1 2 0 〈2,0〉 2

Table 5. Profiles associated with interpretations

4.2 The Incommensurable Case

When belief bases are incommensurable, we obtain:

Proposition 4. N
µ1

Σ (E) satisfies (IC0), (IC1), (IC2∗), (IC3∗), (IC4∗), (IC5),
(IC7) and (CSS).

However, N
µ
Σ falsifies (IC6), (IC6’), (IC8), and (MAJ). For the lack of

space, we only provide a counter-example for (IC6).

Example 6. Let us consider µ = ⊤, E1 = {B1 = {(a, 1)}, B2 = {(¬a, 1)}} and
E2 = {B3 = {(a, 1)}}. From Tables 6, we have N

µ
Σ(E1) ≡ ⊤ and N

µ
Σ(E2) ≡ a.

Furthermore, we have N
µ
Σ(E1

⊔
E2) ≡ ⊤, but N

µ
Σ(E1) ∧ N

µ
Σ(E2) ≡ a. Hence,



(IC6) is not satisfied since N
µ
Σ(E1)∧N

µ
Σ(E2) is consistent, but N

µ
Σ(E1

⊔
E2) 6|=

N
µ
Σ(E1) ∧ N

µ
Σ(E2).

a b νE1(ω) νE2(ω) νE1
F

E2
(ω)

ω0 0 0 〈1,0〉 〈1〉 〈1,0,1〉
ω1 0 1 〈1,0〉 〈1〉 〈1,0,1〉
ω2 1 0 〈0,1〉 〈0〉 〈0,1,0〉
ω3 1 1 〈0,1〉 〈0〉 〈0,1,0〉

Table 6. Profiles associated with interpretations

Note that the non-satisfaction of (IC8) is due to the fact that when dealing with
incommensurable belief bases, ◭

E
Σ is only a partial order. For instance, in [12],

the fusion mode based on partial order does not satisfy (IC8).
Regarding the non satisfaction of the majority postulate, the situation is

even worst. It can be shown that the Sum-based incommensurable belief base
merging operator satisfies the majority independence postulate.

Proposition 5. N
µ
Σ(E) satisfies (MI).

5 Selection Functions of Compatible Scales

This section restricts our merging operator to particular subsets of compatible
scales, in order to derive more plausible conclusions. We discuss the following
particular classes of compatible scales:

– bounded class S(p): compatible scales such that the highest new rank assigned
to a formula cannot exceed a fixed threshold p (a positive integer).

– linear class Sl: this class only proceeds to a linear transformation of initial
ranks;

– weighted class Sw: this class allows a proportional change of initial weights;
– shift class Ss: this class allows to hold distance between ranks associated

with two distinct formulas from a given source.

Table 7 gives formal definitions of these selection functions:

Class Notation {S s.t. ∀Bi ∈ E, ∀ϕ ∈ Bi : ... }
Bounded S(p) S(ϕ) ≤ p

Linear Sl S(ϕ) = ai.RBi
(ϕ) + bi with ai > 0, bi ≥ 0

Weighted Sw S(ϕ) = ai.RBi
(ϕ) with ai > 0

Shift Ss S(ϕ) = RBi
(ϕ) + bi with bi ≥ 0

Table 7. Particular classes of compatible scales

Bounded compatible scales offer a natural way to select a set of compatible
scales, since in practice common scales are bounded. One can remark that the



smallest possible p is pmin = max{|Bi| : Bi ∈ E}, where |Bi| represents the
number of different rank (or ranks) in Bi. If p < pmin, then the set of compatible
scales is empty.

The shift compatible scale class allows to hold distance relations between
ranks of formulas. Indeed, when applying a such compatible scale S, then:
∀(ϕij , RBi

(ϕij)), (ϕij′ , RBi
(ϕij′)) ∈ Bi, S(ϕij)−S(ϕij′) = RBi

(ϕij)−RBi
(ϕij′).

Weighted compatible scales are obtained by multiplying associated ranks
RBi

(ϕij) by a weight ai. Intuitively, these weights may represent the reliability
of sources (each Bi has a reliability weight ai), and the merging operator become
a weighted sum. Linear compatible scales class generalizes the two above classes
(weighted and shift).

We denote by ◭
µ

Σ,S(p) (resp. ◭
µ

Σ,Sl , ◭
µ
Σ,Sw , and ◭

µ
Σ,Ss ) the order obtained

from Definition 5 by replacing S by S(p) (resp. Sl, Sw, and Ss). Following subsec-
tions analyze the impact of restricting to particular classes on the cautiousness
of our merging operator and on the satisfaction of rational postulates.

5.1 Impact on Cautiousness

As a first surprising result, restricting to classes of affine or linear compatible
scales does not affect the result of merging:

Proposition 6. ∀ω, ω′ ∈ Ω,ω ◭
E
Σ,Sl

E

ω′ iff ω ◭
E
Σ,Sw

E
ω′ iff ω ◭

E
Σ ω′.

However, inference based on bounded scales is in general more productive
than N

µ
Σ . In fact, inference from bounded scales depends on the value of p, and

for a very particular value of p the standard sum-based merging operator is
recovered. Indeed, if all bases in E have the same number of different ranks,
equal to p0, and that the maximal rank associated with formulas in each Bi is

p0, then ∀ω, ω′ ∈ Ω: ω ◭
E

Σ,S
(p0)

E

ω′ iff ω ⊳E
Sp0

Σ ω′.

Regarding inference based on shift compatible scales, it is also in general
more productive than N

µ
Σ . In fact, we can even provide a criterion which allows

to characterize the order on possible worlds induced by ◭
E
Σ,Ss

E
.

Proposition 7. Let ω, ω′ be two interpretations of Ω. Then ω ◭
E
Σ,Ss

E
ω′ if and

only if: i)Σ(νE(ω)) < Σ(νE(ω′)) and ii)∀Bi ∈ {Bj ∈ E,ω′ |= Bj}, ω |= Bi.

A full picture of the relationships between these different merging operators
regarding prudence relations will be provided before the concluding discussion.

5.2 Impact on Rational Postulates

Table 8 summarizes the impact of selection functions on the satisfaction of pos-
tulates. In addition to Table 8, N

µ

Σ,S(p) and N
µ
Σ,Ss both satisfy (IC0), (IC1),

(IC2∗), (IC3∗), (IC5), and (IC7).
The main reason of the non-satisfaction of the majority postulate by N

µ
Σ(E)

is that new ranks which are assigned to belief bases by compatible scales are not



(IC4∗) (IC6) (IC8) (MAJ) (MI) (CSS)

△µ
Σ -

√ √ √
- -

N
µ
Σ

√
- - -

√ √

N
µ
Σ,Ss

√
- - - -

√

N
µ

Σ,S(p)

√
- -

√
- -

Table 8. Rational postulates satisfied in commensurable and incommensurable cases

bounded. For instance, assume that B1 contains ϕ and B2 contains ¬ϕ. Since
compatible scales are not bounded, then even if B1 is repeated m times, it is
always possible to find a compatible scale that assigns a high rank to formulas
of B2 (hence to ¬ϕ) which blocks the inference of ϕ. This explains why N

µ

Σ,S(p)

satisfies (MAJ) while other compatible based operators not.
△µ

Σ satisfies most of postulates except the fairness postulate (IC4∗) and
(CSS). A natural question is whether there exists a single compatible scale
that satisfies the fairness postulate and the consensus postulate. The following
proposition provides a very particular case where (IC4∗) and (CSS) hold.

Proposition 8. Let E = {B1,= {(ϕ,RB1
(ϕ))}, B2 = {(ϕ′, RB2

(ϕ′))}}. Let S
be a compatible scale. Then: △µ

Σ,S satisfies (IC4
∗)and (CSS) iff S(ϕ) = S(ϕ′).

However, in general, there is no hope to recover the satisfaction of the fairness
and consensus postulates if one only uses a single compatible scale.

Proposition 9 (of impossibility). There is no single compatible scale such
that △µ

Σ,S satisfies the fairness and the consensus postulate for multi-set of

sources E, namely: ∄S s.t. ∀E : △µ
Σ,S satisfies (IC4

∗) or (CSS).

For the counter example, it is enough to consider E = {B1, B2, B3} with
B1 = {(a ∧ c, 1)}, B2 = {(¬a, 1)}, and B3 = {(¬c, 1), (a, 2)}.

6 A comparative study

This section provides a comparative study of our merging operators with re-
spect to max-based merging and coherence-based merging. Let N

µ
Max(E) (resp.

△µ
Max(E)) be defined exactly as N

µ
Σ(E) (resp. △µ

Σ(E)) given by Definition 5
(resp. Definition 3), except that the sum operator Σ is replaced by the maxi-
mum operator Max (see [5] for more details).

Note that in the commensurable case, the sum-based and the Max-based
merging operators are incomparable. In the incommensurable case, we have a
strict inclusion between these two inference relations, namely:

N
µ
Σ(E) |= N

µ
Max(E).

Another way to deal with merging incommensurable bases is to view the set
of bases to merge E as a partially ordered belief bases (KE , <KE ) where KE is
a multi-set containing all formulas in each bases of E, and <KE is defined by:



ϕij <KE ϕik iff ∃Bi ∈ E such as ϕij ∈ Bi, ϕik ∈ Bi and RBi
(ϕij) < RBi

(ϕik).
Computing the result of merging comes down to select a set of preferred interpre-
tation, according to (KE , <KE ). One way to define such preferred interpretations
is to use the well-known set inclusion-based criterion defined by [13]:

Definition 6. An interpretation ω is said to be Incl-preferred to another inter-
pretation ω′, denoted by ω ⊳Incl

E ω′, iff: ∀ϕ ∈ KE s.t. ω 6|= ϕ and ω′ |= ϕ,

∃ψ ∈ KE s.t. ω |= ψ and ω′ 6|= ψ and: ψ <KE ϕ.

This leads to define a merging operator △µ
Incl based on ⊳Incl

E . Preferred beliefs
for this merging operator are defined as follows:
Mod(△µ

Incl(E)) = Min(Mod(µ), ⊳Incl
E ).

The following proposition expresses that when each belief base contains ex-
actly one formula, namely KE is a set of propositional formulas, then △µ

Incl and
N

µ
Σ provide the same result:

Proposition 10. Assume that each Bi exactly contains one propositional for-
mula. Then ∀ϕ ∈ L, △µ

Incl(E) |= ϕ iff N
µ
Σ(E) |= ϕ

Again, Proposition 10 shows that N
µ
Σ has a different behavior in the incom-

mensurable case, since if Bi’s are commensurable and contains a single formula,
then △µ

Σ is more productive than inclusion-based approach. Now, if Bi’s contain
more than one formula, then △µ

Incl(E) and △µ
Σ(E) are incomparable.

Example 7. Let E1 = {B1, B2, B3} be such that B1 = {(a ∧ b, 1)}, B2 = {(¬a ∧
b, 1)} and B3 = {(a, 1)}. The sum-based operator will conclude {a} whereas
the inclusion-based merging operator will not. Now consider E2 = {B1, B2}
where B1 = {(b, 2), (a, 1)} and B2 = {(¬a, 2)}. Here, the inclusion-based merging
operator will deduce {b} whereas the sum-based merging operator will not.

N
µ
Max

N
µ
Σ
≡ NΣ,Sl ≡ NΣ,Sw(≡flat △

µ
Incl)

N
µ
Σ,Ss

△
µ
Max N

µ

Σ,S(p) N
µ

Σ,S(1) △
µ
Σ

flat

Fig. 1. Cautiousness of the different merging operators

Figure 1 summarizes the links between all operators in terms of cautiousness:
△1 → △2 means that △1 can be inferred by △2 . Flat case is also represented.
In case of flat bases (namely each Bi contains exactly one formula), then △µ

Incl

is more cautious than if one uses bounded scales with p = 1. In fact, when each
belief base in E contains a single formula, then we can check that the well-known
cardinality-based inference can be recovered from bounded scales with p = 1.



7 Conclusion

This paper investigated the sum-based merging operator for incommensurable
bases. We proposed a characterization of the merging result in terms of com-
patible scales and in terms of a Pareto-ordering. This paper showed that the
behavior of the sum-based merging in incommensurable case departs from the
commensurable case, regarding postulates satisfaction and cautiousness proper-
ties. In particular, the sum-based merging operator is no longer a majoritarian
operator. We analyzed different classes of compatible scales. Bounded compat-
ible scales allow to recover the majority operator, and some coherence based
approaches [14] when bases contain a single formula. We also analyzed the fair-
ness postulate (IC4∗) and the new postulate proposed in this paper, called
consensus postulate (CSS). We showed that there is no way to recover these
postulates if a single compatible scale is selected. Lastly, this paper provided a
comparative study between different merging operators discussed in this paper.
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