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Combining neural networks and wavelet theory as an approximation or prediction models appears to be an effective solution in many applicative areas. However, when building such systems, one has to face parsimony problem, i.e., to look for a compromise between the complexity of the learning phase and accuracy performances. Following that, the aim of this paper is to propose a new structure of connectionist network, the Summation Wavelet Extreme Learning Machine (SW-ELM) that enables good accuracy and generalization performances, while limiting the learning time and reducing the impact of random initialization procedure. SW-ELM is based on Extreme Learning Machine (ELM) algorithm for fast batch learning, but with dual activation functions in the hidden layer nodes. This enhances dealing with non-linearity in an efficient manner. The initialization phase of wavelets (of hidden nodes) and neural network parameters (of inputhidden layer) is performed a priori, even before data are presented to the model. The whole proposition is illustrated and discussed by performing tests on three issues related to time-series application: an "input-output" approximation problem, a one-step ahead prediction problem, and a multi-steps ahead prediction problem. Performances of SW-ELM are benchmarked with ELM, Levenberg Marquardt algorithm for Single Layer Feed Forward Network (SLFN) and ELMAN network on six industrial data sets. Results show the significance of performances achieved by SW-ELM.

Introduction

Among several types of ANNs, feed forward neural networks (FFNN) have played an important role in research for different applications like pattern classification, complex non-linear mappings and other fields as well [START_REF] Daqi | Influences of variable scales and activation functions on the performances of multilayer feedforward neural networks[END_REF]. To instigate such structures and to achieve superior FFNN models for more complex applications, the combination of wavelet theory and learning ability, approximation properties of ANNs has resulted in the form of wavelet neural networks (WNNs) [START_REF] Cao | Composite function wavelet neural networks with extreme learning machine[END_REF][START_REF] Banakar | Artificial wavelet neural network and its application in neuro-fuzzy models[END_REF]. In such an integration, the structure is based on a single layer feed forward network (a special type of FFNN) with wavelet activation functions in the hidden layer, which can also be called as wavenet [START_REF] Li | Multi-modal sensing and correlation modelling for condition-based monitoring in milling machine[END_REF]. According to literature, different models of WNNs have been proposed recently, Wang et al. [START_REF] Ting | A wavelet neural network for the approximation of nonlinear multivariable function[END_REF] and Yamakawa et al. [START_REF] Yamakawa | Wavelet neural networks employing over-complete number of compactly supported non-orthogonal wavelets and their applications[END_REF] used non-orthogonal wavelet function as a hidden node activation function in SLFN. Cao et al. [START_REF] Cao | Composite function wavelet neural networks with extreme learning machine[END_REF] used wavelet with a bounded non-constant piecewise continuous function and proposed a new algorithm that had composite functions in hidden layer. Pourtaghi et al. [START_REF] Pourtaghi | Wavenet ability assessment in comparison to ann for predicting the maximum surface settlement caused by tunneling[END_REF] performed a thorough assessment on wavenet ability in comparison to SLFN and used different wavelets as activation functions to enhance the network performance. In order to tune such ANNs, various kinds of training schemes can be used, like support vector machines (SVM), evolutionary approaches, or simple back-propagation algorithm (BP) [START_REF] Rajesh | Extreme learning machines -a review and state-of-the-art[END_REF]. However, the main disadvantage of such learning methods is slow learning time. As for others issues, consider an example of the BP that suffers from network complexity, imprecise learning rate, over-fitting, presence of local minimum, etc. In order to overcome drawbacks of traditional learning methods, Huang et al. presented recently an efficient learning scheme for SLFN referred to as Extreme Learning Machine (ELM) [START_REF] Huang | Extreme learning machine: A new learning scheme of feedforward neural networks[END_REF]. Mainly, ELM algorithm for SLFN, randomly initializes parameters of hidden nodes and restricts the learning scheme to linear methods to analytically determine output weights for a suitable readout function. In brief, some prominent advantages of ELM are: [START_REF] Daqi | Influences of variable scales and activation functions on the performances of multilayer feedforward neural networks[END_REF] it is a one-pass algorithm, (2) it only requires tuning of one parameter i.e., hidden neurons, (3) it can work with wide range of activation functions including piecewise continuous functions. Among these advantages, learning speed is far superior to traditional methods like SVM and BP. However, random initialization of hidden node parameters may affect the performances of ELM [START_REF] Bhat | Prediction of melting points of organic compounds using extreme learning machines[END_REF], where, human choices, like the number of nodes or the type of activation functions, also have a great impact on the network's usefulness. Indeed, the last factor often plays a crucial role [START_REF] Daqi | Influences of variable scales and activation functions on the performances of multilayer feedforward neural networks[END_REF][START_REF] Da | Comparison of new activation functions in neural network for forecasting financial time series[END_REF]. Finally, due to such hurdles, performances of algorithms might not be as great as per expectations. Moreover, for practitioners, these problems may limit the application of an algorithm for real problems [START_REF] Singh | Application of extreme learning machine method for time series analysis[END_REF]. As an example, consider prediction of time series, that can be usually non-linear or chaotic by nature and requires to carefully choose an appropriate approach for prediction. According to all this, the aim of this paper is to propose a new structure of connectionist network, the SW-ELM that enables good accuracy and generalization performances, while limiting the learning time and reducing the impact of random initialization procedure. The main contributions of this paper are as follows:

• Fast learning of SW-ELM -To achieve fast learning, ELM [START_REF] Huang | Extreme learning machine: A new learning scheme of feedforward neural networks[END_REF] is considered as a basis to train the SLFN. ELM is preferred mainly due to its features of increased applicability (to avoids drawbacks) as compared to conventional algorithms for ANNs.

• Dual structure of SW-ELM -To ensure good approximation capability while keeping a compact structure, a SLFN is integrated with wavelet such that each neuron in the hidden layer holds a dual activations (two different activation functions). By this configuration, the output from individual hidden node is averaged after transformations from dual activations [START_REF] Banakar | Artificial wavelet neural network and its application in neuro-fuzzy models[END_REF].

• Activation functions of SW-ELM -To improve accuracy of the SW-ELM, a combination of a Morlet wavelet [START_REF] Cao | Composite function wavelet neural networks with extreme learning machine[END_REF][START_REF] Pourtaghi | Wavenet ability assessment in comparison to ann for predicting the maximum surface settlement caused by tunneling[END_REF] and an inverse hyperbolic sine (arcsinh) [START_REF] Li | Fully complex extreme learning machine[END_REF] is applied to each hidden node of the network. This enhances performances of hidden layers and enables dealing with non-linearity in an efficient manner.

• Parameters initialization of SW-ELM -To further optimize the network, the well known Nguyen Widrow procedure is applied to initialize hidden nodes weights and bias [START_REF] Nguyen | Improving the learning speed of 2layer neural networks by choosing initial values of the adaptive weights[END_REF]. Also, parameters of wavelet activations functions are initialized thanks to an heuristic procedure based on the domain of each input [START_REF] Oussar | Initialization by selection for wavelet network training[END_REF].

The paper is organized as follows. Theoretical backgrounds of WNNs and ELM are given in section 2. This enables pointing out advantages and drawbacks from both models. On this basis, section 3 presents proposed SW-ELM with new structure and learning scheme. Performances of SWELM are benchmarked by performing tests on real datasets from industry (section 4). Three kinds of issues are considered: an "input-output" approximation problem, a one-step ahead prediction problem, and a multi-steps ahead prediction problem. Thorough comparisons with classical ELM and Levenberg Marquardt [START_REF] Hagan | Training feedforward networks with the marquardt algorithm[END_REF] for SLFN and ELMAN network are given. Finally, section 5 concludes this work and proposes some future aspects.

Backgrounds: WNN and ELM

2.1. The wavelet neural network WNN 2.1.1. Concept of wavelet Wavelet theory is an outcome of multidisciplinary struggles, that brought together engineers, mathematicians and physicists [START_REF] Pourtaghi | Wavenet ability assessment in comparison to ann for predicting the maximum surface settlement caused by tunneling[END_REF]. The term wavelet means a "little wave". Mainly, a wavelet transform (WT) of continuous form behaves as a flexible time-frequency window, that shrinks when analyzing high frequency and spreads when low frequency behavior is observed [START_REF] Banakar | Artificial wavelet neural network and its application in neuro-fuzzy models[END_REF]. The WT can be divided into two types, continuous wavelets transform (CWT) and discrete wavelets transform (DWT), formulated as follows:

CW T (a, b) = 1 √ a x (t) Ψ t -b a (1) DW T (a, b) = i x (t) a -1/2 i Ψ t -b i a i ( 2 
)
where Ψ is a wavelet function, and a and b are its corresponding scale (dilate) and translate (shift) factors.

It should be noted that CWT has the drawback of impracticality with digital computers, so, DWT is used in practice. Thus, the scale and translation factors from Eq. ( 2) are evaluated on a discrete grid of time scale to generate scaled and shifted daughter wavelets from a given mother wavelet Ψ. Additional details can be found in [START_REF] Banakar | Artificial wavelet neural network and its application in neuro-fuzzy models[END_REF].

Structure of a WNN

An analogy can be found between the expression of the DWT and ANN output. Indeed, Eq. ( 2) can be seen as the output expression of a SLFN that would have an activation function Ψ for a hidden node, with a linear neuron in the output layer. Generally, such combination can be classified into two types. In the first case, the wavelet part is decoupled from network learning. In this manner, a signal is decomposed on some wavelets and its wavelet coefficients are furnished to a FFNN. In the second category, wavelet theory and FFNN are combined into a hybrid structure. The scope of this paper covers the latter category.

Let note n the number of inputs of a WNN, and Ñ the number of hidden nodes with wavelet functions (eg. morlet, see Fig. 1). According to this, the output of a WNN can be formulated as:

y = Ñ k=1 v k Ψ k   n j=1 w kj x j   (3) 
Ψ k (x) = |a k | -1/2 Ψ x -b k a k (4) 
where x = x 1 , x 2 , ..., x n depicts the input values, Ψ k represents the family of daughter wavelets that are scaled and translated from a single mother wavelet function Ψ, a k and b k are the corresponding scale (dilate) and translation factors. Lastly, w k = [w k1 , w k2 , ..., w kn ] T ∈ n is an input weight vector connecting the k th hidden neuron to the input layer neurons, and v k is the weight to connect the k th neuron of hidden layer and the output. 

Issues and requirement

According to literature, the initialization of dilation and translation factors (a k and b k in Eq. ( 4)) is considered as a critical phase. Indeed, it is necessary to properly initialize these parameters for fast convergence of algorithm [START_REF] Cao | Composite function wavelet neural networks with extreme learning machine[END_REF][START_REF] Oussar | Initialization by selection for wavelet network training[END_REF]. As wavelets functions vanish rapidly, improper initialization may lead to the following issues:

• a wavelet can be too local for a very small dilation;

• improper translation may be out of interest domain.

Following that, random tuning of dilation and translation factors of wavelets is inadvisable, and parameters initialization should be based on the input domain. This aspect is taken into account in the proposed model (section 3).

Extreme Learning Machine for SLFN

Learning principles

ELM is a new learning scheme for SLFN that has been recently proposed by Huang et al. [START_REF] Huang | Extreme learning machine: A new learning scheme of feedforward neural networks[END_REF]. Almost all learning algorithms for SLFNs require adjustment of parameters that results dependence between different layers of parameters like, weights and biases. Therefore, many iterative tuning steps are required by traditional learning algorithms [START_REF] Huang | Extreme learning machine: Theory and applications[END_REF]. Where, the ELM algorithm avoids slow iterative learning procedure and only requires a one-pass operation to learn SLFN. This is mainly due to the fact that there is no bias for the output layer neuron (see Fig. 1). In brief, to initiate one-pass learning operation, the hidden node network parameters (weights and biases) are randomly generated without any prior knowledge or training procedure [START_REF] Cao | Composite function wavelet neural networks with extreme learning machine[END_REF]. Consequently, the ELM turns into a system of linear equations and the unknown weights between the hidden and output layer nodes can be obtained analytically by only applying Moore-Penrose generalized inverse procedure [START_REF] Li | Fully complex extreme learning machine[END_REF][START_REF] Rao | Generalized Inverse of Matrices and its Applications[END_REF]. The learning scheme of ELM can be summarized in three steps (algorithm 1).

Algorithm 1 Learning scheme of an ELM

Assume -n inputs, m outputs, Ñ hidden nodes (k = 1 . . . Ñ ) Require -N learning data samples (x i , t i ) (i = 1 . . . N ) x i = [x i1 , ..., x in ] T ∈ n , t i = [t i1 , ..., t im ] T ∈ m -An activation function g(x)
1: Randomly assign parameters of hidden nodes i.e., weights and bias (w k , bias k ). 2: Obtain the hidden layer output matrix H. 

Issues and requirement

As a synthesis, the ELM algorithm shows faster learning speed over traditional algorithms for SLFNs. For example, it learns faster than the Support Vector Machine by a factor of up to thousands. ELM does not suffer from problems like imprecise learning rate, presence of local minima etc. This underlines suitability of ELM for real complex applications that need fast prediction and response capabilities. In addition, the ELM algorithm requires less human involvement, because it does not have any control parameters to be manually tuned, except the number of hidden neurons, which shows its better applicability for real applications [START_REF] Bhat | Prediction of melting points of organic compounds using extreme learning machines[END_REF]. Finally, recent works confirm the advantages of ELM over earlier approaches for ANN [START_REF] Rajesh | Extreme learning machines -a review and state-of-the-art[END_REF][START_REF] Huang | Extreme learning machine: Theory and applications[END_REF][START_REF] Huang | Extreme learning machines: a survey[END_REF][START_REF] Malathi | Application of extreme learning machine for series compensated transmission line protection[END_REF][START_REF] Wang | A study on effectiveness of extreme learning machine[END_REF]. Nevertheless, two key aspects should be pointed out.

• Random initialization of hidden node parameters may affect the performances of ELM [START_REF] Bhat | Prediction of melting points of organic compounds using extreme learning machines[END_REF], that also require high complexity of SLFN for improved performance. This may lead to ill-condition, which means that an ELM may not be robust enough to capture variations in data [START_REF] Zhao | On improving the conditioning of extreme learning machine: a linear case[END_REF].

• Considering the network complexity issue, it is essential to carefully choose hidden neuron activation functions that show good ability to handle complexity, improve convergence of algorithm and result in a compact structure of network [START_REF] Li | Fully complex extreme learning machine[END_REF][START_REF] Jalab | New activation functions for complex-valued neural network[END_REF][START_REF] Huang | Enhanced random search based incremental extreme learning machine[END_REF].

These aspects are taken into account in the proposed SW-ELM model (section 3).

Summation Wavelet-ELM model

Structure and mathematical perspective

As mentioned in the previous section, ELM is quiet efficient as compared to traditional methods to learn SLFNs. However, issues like parameters initialization, model complexity and choice of activation functions have to be carefully addressed for improved performance. Therefore, we propose the SW-ELM as shown in Fig. 2. The proposed • Non-linear transformations are dealt in a better manner by using a conjunction of two distinct activation functions (f 1 and f 2 ) in each hidden node rather than a single activation function. The output from a hidden node is the average value after performing transformation from dual activations ( f = (

f 1 + f 2 ) /2).
• To improve convergence of algorithm, an inverse hyperbolic sine ( [START_REF] Li | Fully complex extreme learning machine[END_REF], Eq. ( 5)) and a Morlet wavelet ([2, 7], Eq. ( 6)) are used as dual activation functions.

f 1 = θ (t) = arcsinh (t) = t 0 dx (1 + x 2 ) 1/2
(5)

f 2 = ψ (t) = cos (5t) e (-0.5t 2 ) (6)
Such a combination of activation functions makes the network more adequate to deal with dynamic systems. That is, the improved structure and proper choice of activation functions enhances the capability of the network to face low and high frequency signals simultaneously. As a consequence, the number of neurons required for hidden layer decreases and a compact structure is achieved [START_REF] Banakar | Artificial wavelet neural network and its application in neuro-fuzzy models[END_REF][START_REF] Li | Fully complex extreme learning machine[END_REF][START_REF] Jalab | New activation functions for complex-valued neural network[END_REF].

According to modifications mentioned above, lets consider n and m the numbers of inputs and outputs, N the number of learning data samples (x i , t i ), where i ∈ [1 . . . N ],

x i = [x i1 , x i2 , ..., x in ] T ∈ n and t i = [t i1 , t i2 , ..., t im ] T ∈ m , and Ñ the number of hidden nodes, each one with activation functions (f 1 and f 2 ). For each sample j, the output o j is mathematically expressed as:

Ñ k=1 β k f [(θ, ψ) (w k .x j + b k )] = o j , j = 1, 2, ..., N (7) 
where w k = [w k1 , w k2 , ..., w kn ] T ∈ n , is an input weight vector connecting the k th hidden neuron to the input layer neurons, (w k .x j ) is the inner product of weights and inputs, and b k ∈ is the bias of k th neuron of hidden layer. Also, β k = [β k1 , β k2 , ..., β km ] T ∈ m , is the weight vector to connect the k th neuron of hidden layer and output neurons. Finally, f shows the average output from two different activation functions i.e., an inverse hyperbolic sine activation function θ and a Morlet wavelet activation function ψ. In order to minimize the difference between network output o j and given target t j , Ñ j=1 o j -t j = 0, there exist β k , w k and b k such that:

Ñ k=1 β k f [(θ, ψ) (w k .x j + b k )] = t j , j = 1, 2, ..., N (8) 
which can be expressed in matrix form as,

H avg β = T (9)
where H avg is a N × Ñ matrix expressed as,

H avg (w 1 , . . . , w Ñ , x 1 , . . . , x Ñ , b 1 , . . . , b Ñ ) = f (θ, ψ)    (w 1 .x 1 + b 1 ) . . . (w Ñ .x 1 + b Ñ ) . . . • • • . . . (w 1 .x N + b 1 ) . . . (w Ñ .x N + b Ñ )    (10) 
and,

β =    β T 1 . . . β T Ñ    Ñ ×m T =    t T 1 . . . t T Ñ    N ×m (11) 
Finally, the least square solution of the linear system defined in Eq. ( 9), with minimum norm (magnitude) of output weights β is:

β = H † avg T = H T avg H avg -1 H T avg T (12) 
where H † avg represents the Moore-Penrose generalized inverse solution for the hidden layer output matrix H avg [START_REF] Rao | Generalized Inverse of Matrices and its Applications[END_REF].

Learning scheme of SW-ELM

Main learning phase derives from Eq. 10 and 12. However, according to issues and requirements related to WNN and ELM presented in sections 2.1.3 and 2.2.2, it is desired to take care of parameters initialization task and to provide a better starting point to algorithm. Two types of parameters have to be considered: the ones from the wavelets (dilation and translation factors) and the ones from the SLFN (weights and bias for input to hidden layer nodes). Details of the learning scheme are given in algorithm 2, and an outline of the main step is synthesized herefater.

Initializing wavelet parameters. To initialize wavelet dilation and translation parameters (a k and b k in Eq. ( 4)) before the learning phase, a heuristic approach is applied to generate daughter wavelets from a mother wavelet function (in our case, a Morlet wavelet). Dilation and translation values are adapted by considering the domain of Algorithm 2 Learning scheme of the SW-ELM Require -N learning data samples (x i , t i ), n inputs (j = 1 . . . n), Ñ hidden nodes (k = 1 . . . Ñ ) -An inverse hyperbolic sine and a Morlet wavelet activation functions (θ and ψ) Ensure -Initialize weights and bias from SLFN, initialize Morlet parameters -Find output weights matrix β to minimize the difference between the network' outputs and the targets SW-ELM learning procedure -Define the input space domain intervals 3:

-Compute [x jmin ; x jmax ]: {domain containing the input item x j in all observed samples} 4:

-Define dilation and translation parameters per domain -Initialize small (random) input weights w k(old) in [-0.5 ; +0.5]: {weights from input nodes to hidden nodes} -Adjust weights parameters by applying NW approach 13:

-Compute

β f actor = C × Ñ 1 n : {C is a constant ≤ 0.7} 14: -Compute w k(new) = β f actor × w k(old)
w k(old)

: {normalized weights} 15:

-Initialize bias values b k 16:

-b k = random number between -β f actor and +β f actor 17: Adjust linear parameters: the ones from the hidden to the output layers -Obtain hidden layer output matrix H avg using Eq. 10 -Find the output weight matrix β in Eq. 12 by applying Moore-Penrose generalized inverse procedure the input space where wavelet functions are not equal to zero [START_REF] Oussar | Initialization by selection for wavelet network training[END_REF]. Besides that, wavelet function with a small dilation value are low frequency filters, whereas increasing dilation factors the wavelet behave as high frequency filter [START_REF] Banakar | Artificial wavelet neural network and its application in neuro-fuzzy models[END_REF]. Finally, the effects of random initialization of wavelet parameters are avoided, and the initialization guarantees that wavelet function stretches over the whole input domain [START_REF] Oussar | Initialization by selection for wavelet network training[END_REF].

Initializing weights and bias. The hard random parameters initialization step is substituted by well known Nguyen Widrow (NW) procedure to initialize weights and bias [START_REF] Nguyen | Improving the learning speed of 2layer neural networks by choosing initial values of the adaptive weights[END_REF]. The intent is to provide a better starting point for learning. NW method is a simple alteration of hard random initialization that aims at adjusting input weights intervals and hidden bias according to the input-hidden layer topology. It has been argued that NW method has shown improved performances over others methods for random parameters initialization of ANNs [START_REF] Pavelka | Algorithms for initialization of neural network weights[END_REF].

Experiments and discussion

Outline: aim of tests and performance evaluation

The aim of this part is to demonstrate enhanced performances of the proposed SW-ELM, that is benchmarked with the ELM, Levenberg-Marquardt (LM) algorithm for SLFN and ELMAN network. For simulation purpose, a sigmoid function is used as hidden node activation function for ELM, LM-SLFN and ELMAN network, whereas for SW-ELM, dual activations are used: an inverse hyperbolic sine function and a Morlet wavelet (Eq. ( 5) and ( 6)). Note that, number of hidden neurons for each model are assigned using trial and error approach, which obviously could not guarantee optimal structure. Simulations are carried on six real datasets from industry as shown in Table 1, where information about model inputs, outputs and training, testing samples are also mentioned (see references for further details on the datasets). Three kind of issues related to time-series application are considered: an "input-output" approximation problem, a one-step ahead prediction problem, and a multi-steps ahead prediction problem. To compare performances, three criteria are considered. With each approach (i.e., ELM, SWELM, LM-SLFN, EL-MAN), 50 simulations were performed on a particular dataset and the best results are summarized in Table 2.

First issue: an approximation problem

In case of approximation or estimation problem, real datasets from two different degrading machineries were used for condition monitoring task. The first dataset was from a Carnallite surge tank pump, which was used to approximate fault codes, where the second dataset was from a Computer Numerical Control milling machine to estimate wear of degrading cutting tools (Table 1). Results in Table 2 show that SW-ELM for both test datasets performs best approximations, with a compact structure, and it requires less learning time.

ELM has clear superiority of fast learning times

(5.8e -004 and 5.0e -004 sec) for both datasets. In addition, SW-ELM and ELM can learn much rapidly as compared to LM-SLFN or ELMAN network. This is mainly due to the advantages of single-step learning phase of ELM based models, whereas LM-SLFN and ELMAN network required additional 50 epochs for the P ump dataset and 10 epochs for CN C dataset to achieve better accuracy performances.

The accuracy of SW-ELM show a best fitting among

all methods for both datasets as measured by R2 i.e., (R2=0.96 and R2=0.92). Comparative plots representing approximation of fault codes and tool wear estimation are shown in Fig. 3 and Fig. 4, where model fitting errors are also depicted for a better understanding of results. Note that, for more clarity, plots of only two methods with higher accuracies are compared. 3. Lastly, when considering model complexity factor, the number of hidden neurons required by LM-SLFN and ELMAN network appears to be twice (i.e. 30 hidden nodes) as compared to ELM based models when applied to Pump dataset. However, same network com-plexity of 4 hidden nodes is sufficient for all methods with CNC dataset. 

Second issue: one-step ahead prediction problem

In case of one-step ahead prediction issue the datasets used, were from an industrial dryer and a mechanical hair 1). In order, to judge model performances, same criteria are used. Comparative performances from all models are summarized in Table 2. Again, results clearly indicate that SW-ELM shows improved performances over ELM, LM-SLFN and ELMAN network.

1. ELM can still perform faster learning (0.0012 and 3.4e -004 sec) with both datasets, even if the learning data size is increased (500 samples). Like in previous issue, the learning times of SW-ELM are still close to the ones of ELM.

2. The accuracy indicator of SW-ELM shows a higher prediction performance with an accuracy R2 = 0.85 with dataset of an industrial dryer. However the accuracy of SW-ELM and ELM are the same (R2 = 0.944) in the case of second data of a mechanical hair dryer.

It should be noted that, in the second test all methods showed good prediction performances. As for illustration, comparative plots of predictions with only two methods are shown in Fig. 5 and Fig. 6 by considering model accuracy, where predictions errors are also depicted. In Fig. 5, one can note that SW-ELM catches better non-linearity from the signal since the error is quite constant among all predictions.

3. ELM based models show a more compact structure (20 hidden nodes) as compared to LM-SLFN and EL-MAN network (30 hidden nodes) when applied to industrial dryer data. However, again small network complexity of 4 hidden nodes is sufficient for all methods with the second data of mechanical hair dryer. Multi-steps ahead prediction models Multi-steps ahead prediction (MSP) modeling by using neural networks can be achieved in different manners. This can not be fully addressed in this paper, but one can refer to [START_REF] Gouriveau | Connexionist-systems-based long term prediction approaches for prognostics[END_REF] for more details. Here, MSP are met by using the "Iterative" approach that is the most common and the simplest to implement. Consider a univariate time series X t , i.e. a sequence of values describing an observation made at equidistant intervals X t = {x 1 , x 2 , . . . , x t }. The MSP problem consists of estimating a set of future values of the time series Xt+1→t+H , where H states for the final horizon of prediction. For that purpose, the Iterative approach utilizes a single neural network that is tuned to perform a one-step ahead prediction xt+1 . This estimated value is used as one of the regressors of the model to estimate another, and the operation is repeated until the estimation of xt+H (see Fig. 7).

1 1 t t t p x x x - -+               ⋮ ANN 1 ˆt x + 1 2 ˆt t t p x x x + -+               ⋮ ANN 2 ˆt x + 1 2 ˆt H t H t H p x x x + - + - + -               ⋮ ˆt H x + ANN Figure 7:
Iterative approach for multi-steps ahead predictions [START_REF] Gouriveau | Connexionist-systems-based long term prediction approaches for prognostics[END_REF]. Parameter p states for the number of regressors

Results and discussion

In case of MSP problem, again two data sets were applied to test model performances. The first test data, were from NN3 competition, where horizon of prediction was last 18 values of each time series for test. The second dataset were from NASA data repository that were composed of run to failure sensor measurements from degrading Turbofan engines, where the horizon of prediction was from a critical time tc upto end of degradation (see Table 1, we used data record train -F D001.txt to train and test the models). Similarly, like in previous issues, 50 trials are performed and best results are presented. The MSP accuracy of each model is assessed by computing Coefficient of Variation of the Root Mean Squared Error (CV RM SE) that enables evaluating relative closeness of predictions, which should be as low as possible. Whereas, computational time (for a single trial) and network complexity are evaluated similarly like previous cases. As for illustration, a comparative plot with two models showing higher accuracies of MSP with NN3 competition data for time series 61 is shown in Fig. 8. Averaged performances of prediction models for all randomly selected time series (51, 54, 56, 58, 60, 61, 92, 106 ) are summarized in Table 2. In case of Turbofan engines dataset, the comparative plot of two models on test-engine 5 is shown in Fig. 9, where SW-ELM explicitly shows good prediction capability over long horizon. Averaged performances of prediction models for all tests are summarized in Table 2.

1. Among all methods, ELM requires less computation time for learning with both datasets (i.e., 5.5e -004 and 0.004 sec). As explained before, this is mainly due to the one-pass learning phase, where SW-ELM also shows rapid learning behavior closer to ELM. 2. Most importantly, accuracy indicator (CV RM SE) of SW-ELM is highest in comparison to others models for both datasets (i.e., NN3 competition and Turbofan engines). A synthetic but explicit view of that is given in Fig. 10 and Fig. 11. Note that such performances of SW-ELM are obtained with the same structure like other methods (see point 3). 3. The network complexity of all models was the same with both datasets (i.e., 30 hidden nodes and 3 hidden nodes). Note that for all test on 5 Turbofan engines) even with more complex models of ELM, LM-SLFN and ELMAN network poor prediction performances were obtained, therefore the only complexity of 3 hidden nodes was compatible with the data.

Finally, again SW-ELM enables a good compromise among model accuracy, learning time and network complexity. 

Conclusion

In this paper, a new structure of neural network is proposed, the SW-ELM, which is based on ELM algorithm for fast learning, but with dual activation functions in the hidden layer. The output from each hidden node is the average value after transformations from an inverse hyperbolic sine function and a Morlet wavelet function. This enhances dealing with non-linearity in an efficient manner. Also, the learning scheme of SW-ELM is improved (w.r.t classical ELM), where wavelets and other parameters of hidden nodes are adjusted a priori to learning. The whole enables good accuracy and generalization performances, while limiting the learning time and reducing the impact of random initialization procedure. For practical problems, SW-ELM avoids long "test and error" procedure and is therefore suitable for real cases where few prior knowledge is available or huge datasets have to be processed. The performances of proposed SW-ELM are benchmarked with ELM, Levenberg Marquardt for SLFN, and ELMAN network for three types of prediction problems: input-output approximation, one-step ahead prediction, and multi-steps ahead predictions. In all cases, SW-ELM shows enhanced performance to face parsimony problem.
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 1 Figure 1: Single layer feed forward neural network
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 3 Find the output weight matrix β: β = H † T , where H † represents the Moore-Penrose generalized inverse solution for the hidden layer output matrix H[START_REF] Rao | Generalized Inverse of Matrices and its Applications[END_REF].
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 2 Figure 2: Structure of SW-ELM
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 1 Initialization of wavelet parameters 2:

5 :- 6 :- 8 :-

 568 Compute d kj = 0, 2 × [x jmax -x jmin ]: {temporal dilatation parameter for input item x j } Compute m kj = [x jmin + x jmax ]/2: {temporal translation parameter for input item x j } 7: -Initialize Morlet parameters (a k and b k ) Compute a k = mean(d kj ) j=1...n : {dilatation factor} 9: -Compute b k = mean(m kj ) j=1...n : {translation factor} 10: Initialization of weights and bias parameters by Nguyen Widrow (NW) approach 11:

1 .

 1 Computation time to learn the dataset for a single trial (T ime). 2. Model fitting accuracy is judged by the coefficient of determination (R2) that should be close to 1 and coefficient of variation of the Root Mean Squared Error (CV RM SE) that should be as low as possible (close to 0 -it is often expressed in percentage). Both measures are unitless and are indicative of model fit, but each define model fit in two different ways: R2 evaluates the variability in the actual values explained by the model, where CV RM SE evaluates the relative closeness of the predictions to the actual values. 3. Network complexity is reflected by the number of hidden neurons (Hid -nodes).
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 3 Figure 3: Fault code approximations and corresponding errors
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 4 Figure 4: Tool wear estimation and corresponding errors
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 5161 Figure 5: 1-step ahead pred. of bulb temp. and corresponding errors
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 8 Figure 8: Multi-steps ahead predictions of time series 61 (NN3)
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 910 Figure 9: Multi-steps ahead predictions of sensor 2 (Engine 5)
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 11 Figure 11: Accuracy of MSP for 5 Turbofan engines

Table 1 :

 1 Specification of datasets to benchmark performances for time series application

	Data	Short description	Input	Output	Train	Test
	Pump [26]	Condition	Root mean square	Fault code	73 (samples)	19 (samples)
		monitoring	Variance			
	CNC [27]	Condition	Max force, Cutting amp. Tool wear	C33, C09, C18 C18
		monitoring	Amp. Ratio, Avg. force		(450 samples)	(165 samples)
	Ind. Dryer [28] Predict	Fuel flow, Fan speed	Bulb temp.	500 (samples)	367 (samples)
		temperature	Flow raw material	y t+1		
			Bulb temp. y t			
	Hair dryer [29] Predict	Voltage of device x t	Air temp.	500 (samples)	500 (samples)
		temperature	Air temp. y t	y t+1		
	NN3 [30]	Time series	Time series (4 reg.)	Same time series 51, 54, 56, 58, All series
		forecast	(x t , x t-1 , x t-2 , x t-3 )	x t+1→t+18	60, 61, 92, 106 (18 samples)
	Turbofan [31]	Predict	Degradation series	Same series	90 engines	5 engines
		degradation	3 reg. (x t , x t-1 , x t-2 )	x t+1→t+H		H ∈ [103, 283]

Table 2 :

 2 Comparison of model performances

		Approximation: Pump			Approximation: CNC		
	Method	Hid-node Train time (sec) Epoch R2	Hid-node Train time (sec) Epoch R2
	SW-ELM	15	6.5e-004	-	0.96	4	7.7e-004	-	0.92
	ELM	15	5.8e-004	-	0.94	4	5.0e-004	-	0.77
	LM-SLFN 30	1.02	50	0.79	4	0.22	10	0.80
	ELMAN	30	8.88	50	0.81	4	0.21	10	0.77
		1-step prediction: Ind. Dryer		1-step prediction: Hair dryer	
	Method	Hid-node Train time (sec) Epoch R2	Hid-node Train time (sec) Epoch R2
	SW-ELM	20	0.0024	-	0.85	4	6.1e-004	-	0.944
	ELM	20	0.0012	-	0.66	4	3.4e-004	-	0.944
	LM-SLFN 30	1.03	50	0.81	4	0.21	10	0.9434
	ELMAN	30	8.9	50	0.80	4	0.20	10	0.9434
		Multi-step prediction: NN3 (avg.)		Multi-step prediction: Turbofan (avg.)
	Method	Hid-node Train time (sec) Epoch CVRMSE Hid-node Train time (sec) Epoch CVRMSE
	SW-ELM	30	0,0014	-	10.83%	3	0.006	-	0.042%
	ELM	30	5.5e-004	-	11.06%	3	0.004	-	0.0578%
	LM-SLFN 30	0.20	10	11.51%	3	0.72	10	0.0570%
	ELMAN	30	0.45	10	10.83%	3	0.75	10	0.0570%
	dryer, that were applied to predict temperature variations				
	(Table