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Introduction

Since the introduction of the least-squares method by C.F. Gauss, many developments have allowed present researchers and engineers to use minimization algorithms for the solution of non linear inverse problems. The progress in computer technology is of course part of this story. The initial Gauss Newton (GN) iterative method was designed for minimizing the euclidian distance between experimental data and the output of a model. This minimization is achieved by adjusting parameters at each step of an iterative process. It is efficient for weakly non linear parameter estimation problems. It is especially designed to exploit the special structure of the Hessian matrix and gradient vector appearing in the least-squares formulation. Later on, the so-called Levenberg Marquardt (LM) algorithm achieved robustness by combining the steepest gradient descent method and the quadratic convergence rate of the Gauss Newton (GN) iterate (second-order series expansion of the objective function). Different versions of this type of combination exist, one of the most interesting ones being based on Singular Value Decomposition (SVD) of the Jacobian matrix, see Gill and Murray [START_REF] Gill | Algorithms for the solution of the nonlinear least-squares problem[END_REF].

Following such ideas, the regularization is achieved by preventing the Hessian matrix to become non positive-definite through appropriate modification of its singular values. Recently, Finsterle and Kowalsky [START_REF] Finsterle | A truncated Levenberg-Marquardt algorithm for the calibration of highly parameterized non linear models Computers and[END_REF] came back to this idea and pushed it forward considering a truncated singular matrix. Small eigenvalues result from a lack of sensitivity to some parameters or from a high degree of correlation between some of them. They are directly responsible for the instability or singularity of the Hessian matrix and a damping is applied to them before inversion. Tonkin and Doherty [START_REF] Tonkin | A hybrid regularized inversion methodology for highly parameterized environmental models[END_REF] followed the works of Lawson and Hanson [START_REF] Lawson | Solving Least-Squares Problems Classics[END_REF] and used also truncated singular value decomposition. The strategy is slightly different as the eigenvectors corresponding to vanishingly small eigenvalues are not considered in the inversion problem (the iteration increment is not computed from the projections of the solution vector onto these eigenvectors, in order to avoid noise amplification). This results in a lowering of the dimensionality of the inverse problem which leads to the concept of super parameters. In such a strategy, the regularizing parameter is chosen in order to set the condition number (the ratio between the largest and the smallest singular values, if the Eucilidian norm is used) of the regularized matrix to a lower value than the corresponding number of the original matrix [START_REF] Lawson | Solving Least-Squares Problems Classics[END_REF].

What is presented here stems from these previous works, but differs because the physical dimensions of the quantities at stake in the Parameter Estimation Problem (PEP) are considered. This leads to a dimensionless form of the model and parameter structure and of a dimensionless form of the sensitivity matrix. As a consequence, a rescaling is implemented at each iteration of the non linear least squares minimization So, we consider here a Parameter Estimation Problem based on a single output mo y at time t , the independent variable, for a model that is non linear with regard to its parameters gathered in a column vector α of dimensions 

The output mo y of this state-space model can derive from conservation equations (the heat equation and its associate conditions, for example) and on a constitutive law (Fourier law, for example). Once m discrete measurements i y at times i t are available, the preceding model can be put into a column vector form: where the dimensions of mo y , y and ε are (m, 1) and ε is a noise vector. Let us note that in this case all the coefficients of these three vectors have the same physical unit (a temperature, if mo y is observed through a thermococouple measurement y).

The definition of the parameters ) to 1 (where

  n j j 
depends on the objective of the estimation. However their number may be too large: only a prior dimensional analysis of model (1 or 2a) can show that this is not the case through a calculation of its number of degrees of freedom. This does not require the knowledge of the nominal value nom α α  of the parameter vector since it is only based on the mathematical form of function  . As a consequence the corresponding scaled sensitivity matrix *  S , see J.V. Beck et K.J. Arnold [START_REF] Beck | Parameter Estimation in Engineering and Science[END_REF], composed of the  n scaled sensitivity column vectors

j k , j nom nom j * j k     for ) ; (     t α t μ S calculated around a nominal value nom α , is not mathematicaly singular ( 0 ) ( det *   S
), even if the corresponding estimation problem may be ill-posed, because of the presence of errors in the measurements.

So in order to make estimation of the parameters possible a parsimonious choice of the parameters to be estimated, as well as a scaling of each of them using a dimensional analysis approach, are presented in section 2. Derivation of a tangent linear model and its declination within the framework of the singular value decomposition (SVD) of the local and scaled sensitivity matrix is made in section 3. The corresponding implementation in a specific non linear least squares minimization technique based on scaled and dimensionless local parameters is dealt with in section 4 and the derived PETIR algorithm (Parameter Estimation Through Iterative Rescaling) is presented in section 5.

The notion of target parameters, that is the parameters that are primarily looked for by the inverter in an experimental characterization process is introduced in section 6.

Regularization of the PETIR algorithm is defined in section 7: it does not relate to Truncated Singular Value Decomposition (TSVD) usually used in function estimation techniques since the inverter can not reduce the number of parameters in a parameter estimation procedure. On the contrary, the number of singular values is kept unchanged and the smallest singular values are given an infinite level, which implies a zero amplification of the corresponding components of the noise content of the right singular modes. This regularization technique is coined ILSVD (Infinite Levels Singular Value Decomposition) in this paper. Section 8 is devoted to the implementation of the regularized PETIR-ILSVD technique to two-parameter estimation test cases, met in characterization problems, either in heat transfer or in solid rheology. These two studies are based on synthetic noisy signals corresponding each to an observation domain and to a model whose inversion is very ill-posed. Comparison of our inversion technique with the original Levenberg Marquardt algorithm shows that it performs very well for characterization applications with a parameter vector of relatively low dimension.

Conditions for a physically sound estimation

Getting a parsimonious model

The original physical model (1) involves [START_REF] Lawson | Solving Least-Squares Problems Classics[END_REF] In this equation, the vector function η is the structure of the model, see E. Walter and L. Pronzato [START_REF] Walter | Identification of Parametric Models from Experimental Data[END_REF], and column vector β is composed of two parameters 1  and 2  (with physical dimension) and of 2  n dimensionless parameter groups, the * j  's.

  T * n * * * mo 2 1 2 1 2 1 where ) ; ( ) ; (            β β t η α t μ y

Getting a statistically sound estimation during iterative minimization

Once the n parameters defined, iterative non linear minimization of the square of the norm of the residuals has to be implemented:

) ; ( ) ( and ) ( ) ( with ) ( ) ( ) ( ) ( 2 β t η β y β y y β r β r β r β r β      mo mo T J (5) 
In this expression, the Euclidian norm ) (β y y mo  of the residual vector r is defined in the output domain. However, if the stability in the solution of the inversion has to be studied, one notes that the corresponding norm of the estimation error exact β β 

is not really defined in the parameter (input) domain, since it depends on the physical units of 1  and 2  . So, we propose, at iteration number k in the minimization of ( 5), a rescaling of parameter vector β to make all the n components of its new form x dimensionless. At each iteration number k, this vector, whose norm is now mathematically sound, is redefined around a local value

) (k nom β β  considered as 'nominal':   nom j nom j j j x    /   (6a)
Let us note that in the neighbourhood of the exact value, that is for

exact nom β β 
, each dimensionless parameter can be related to the logarithm of its dimensional counterpart scaled by its exact value:

        exact j j exact j exact j j nom j nom j j j x         / ln / 1 ln /       (6b)
This procedure is implemented at each iteration, with the calculation of the new scaled sensitivity matrix which is put under its Singular Value Decomposition form [START_REF] Tonkin | A hybrid regularized inversion methodology for highly parameterized environmental models[END_REF]. This factorization enables an efficient regularization of this dimensionless PEP once the smaller singular value becomes too low with respect to the standard deviation   of the noise on signal y, in the case of an independent identically distributed (i.i.d.) noise ε [START_REF] Rémy | Non linear parameter estimation problems: tools for enhancing metrological objectives in[END_REF]. The performances of this procedure are tested on two different physical PEPs in section 7.

Tangent linear model

The differential relationship between parameter vector β and its dimensionless normalized form x is: [START_REF] Walter | Identification of Parametric Models from Experimental Data[END_REF] So, model ( 5) is also put under its local differential tangent form:

β R β R x d d d 1 1     nom with                 nom n nom nom nom nom           0 0 0 0 0 0 ) ( diag 2 1 β R
nom * * mo R S S x S y   with d d (8) 
where the scaled sensitivity matrix * S is formed of n column-vectors, the scaled sensitivity vectors * j S :

  j k o , j nom * j * n * * * k      r f 2 1 ) (ln ) ; ( with   t β t η S S S S S  (9) 
The 'compact' singular value decomposition of the nominal scaled sensitivity matrix

* nom

S

is written: [START_REF] Degiovanni | Thermal Diffusivity and Flash Method[END_REF] where :

T * nom V W U S  with ) , ( dim dim ; ) , ( dim n n n m    V W U
-W is the (diagonal) matrix of the singular values of * nom S -U gathers its first n left singular vectors -V is the matrix of its n right singular vectors So, tangent model (8) becomes:

x V W U y d d T mo  (11)
The m theoretical outputs of this model are projected onto the output space whose basis is composed by the left singular vectors (dimension m n 

):

mo T mo mo mo y U z z U y d d d d    (12) 
Column vector mo z can be called the 'diagonal output'. A change of basis is implemented next in the space of the scaled parameters (dimension n) :

p V x d d  (13a) 
Integration of this equation between nominal and current states yields:

p V x  (13b)
because equation [START_REF] Buckingham | On physically similar systems[END_REF] shows that 0  nom x and, as a consequence, 0  nom p .

Column vector p can be called the 'diagonal parameter vector'. Then tangent model ( 8) is written in these two new bases, using equations [START_REF] Hay | Thermal-diffusivity measurement of ceramic coatings at high temperature using "front-Face" and "rear-Face[END_REF], [START_REF] Morozov | On the solution of functional equations by the method of regularization Soviet Mathematics[END_REF] and [START_REF] Hanson | A numerical method for solving Fredholm integral equations of the first kind using singular values[END_REF]: [START_REF] Hansen | Truncated Singular Value Decomposition Solutions to Discrete Ill-Posed Problems with Ill-Determined Numerical Rank[END_REF] where n I designates the identity matrix of size n. A first order-approximation of differential model [START_REF] Hansen | Truncated Singular Value Decomposition Solutions to Discrete Ill-Posed Problems with Ill-Determined Numerical Rank[END_REF] 

n T T mo I V V U U p W z    because d d
z U β y y   ) ( nom mo (16a)
where z is the projected measurement vector:

ε U z z T mo   (16b)
The residual vector is linearized at each step, that is for any value of parameter vector β around its nominal value nom β , taking equations (13b), (15b), (15c) and (16a) into account:

) ( ) ( with ) ( ) ( ) ( x V W z U β r β r β y y β r T lin lin mo      (17) 
So the least squares criterion ( 5) is rewritten using the linearized residuals:

T J V W A x A z β r β lin     with ) ( ) ( 2 2 (18a)
The least-square solution of (18a), that is the estimate x ˆ of x is explicit and can be written thanks to equation (16a):

  )) ( ( 1 1 1 nom mo T T ˆβ y y U W V z W V z A A A x        (18b)
Return into the initial parameter domain is implemented next:

x R β β nom nom   (19) 
The variance-covariance matrix of the scaled parameters x ˆ can be easily calculated for a i.i.d. noise ε , that is for

m I ε 2 ) ( cov    : T ˆV W V x 2 2 ) ( cov     (20)
The estimation is unbiased for the tangent model, that is

exact ˆβ β  ) ( E
, where E (.) designates the expectation of a random variable.

Construction of the PETIR algorithm in the parametric domain of dimension n

One chooses an initial value for the PETIR (Parameter Estimation Through Iterative Renormalization) algorithm:

1    (0) (0) x β β nom (21)
Parameter vector x is redefined at each iteration using tangent model (18b) and ( 19). At iteration (k -1),

) 1 (  k β
has been calculated and one writes:

) ( diag with ) 1 ( ) 1 ( ) ( ) 1 ( ) 1 ( ) (        k k k k k k β R x R β β ( 22 
)
and

      ) ( ; ; ) 1 ( ) 1 ( ) ( ) ( 1 ) 1 ( ) ( ) ( ) 1 ( ) (          k mo T k k k k k k k k β y y U z z W p p V x (23a, b, c) and   T k k k k * ˆ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) (      V W U β S (23d)
One shows, using equations (23):

      ) ( ) 1 ( ) 1 ( 1 ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) (           k mo T k k k k k k β y y U W V R β β ( 24 
)
The pseudo-inverse, at iteration (k-1), of * S ,

T T * * T * * U W V S S S S 1 1 ) (     
is of course present in equation (24).

Definition of target parameter(s)

The objectives of the person in charge of the estimation of parameters of a non linear model, once noisy measurement of its output are available, can be very diverse:

-a first objective can be the rational discrimination between different candidates for a model of a constitutive law. Models of different mathematical structures can be developed for the same experiment: this structure either depends on the choice made for the solution technique of a differential balance or can imply different numbers of parameters or degrees of freedom, according to the assumptions made related to various phenomena. The parsimony principle [START_REF] Sober | Reconstructing the Past. Parsimony, Evolution, and Inference[END_REF], which states that the best model is the one with the lowest number of parameters, constitutes a rational guideline for a PEP, and will be followed using the regularization technique presented further on.

-another objective can be the identification of the system using a given structure for the model. In this case all the parameters, a priori, are looked for with an equal precision.

-a last objective, which is the only one considered below, can be the indirect measurement of one parameter of a model, for example the thermal diffusity of a material in a flash experiment, see A. Degiovanni [START_REF] Degiovanni | Thermal Diffusivity and Flash Method[END_REF] and B. Hay et al. [START_REF] Hay | Thermal-diffusivity measurement of ceramic coatings at high temperature using "front-Face" and "rear-Face[END_REF], the remaining ones being either 'unwished' or 'nuisance' parameters. This kind of parameter can be called a 'target parameter' and the inverter-experimenter wants to minimize the relative error of this specific parameter. So, not all the n parameters j  of β are looked

for, but only one of its subset. Let us assume that it is parameter number j 1 that is the target one. One can show using (20):

    T k k k k ˆ) 1 ( 2 ) 1 ( ) 1 ( 2 ) ( ) ( cov      V W V x  (25) 
and the relative (scaled) standard deviation of this target parameter is:

    2 1 ) ( ) ( ) ( 1 1 1 1 ) ( cov ) ( / j j k k j k j x     (26)
So, during iterative rescaling, the following criteria have to be checked at each iteration: i) the residuals should decrease until they reach a minimum level not lower than the measurement noise. This is the Morozov's discrepancy principle [START_REF] Morozov | On the solution of functional equations by the method of regularization Soviet Mathematics[END_REF] :

2 ) ( ) (  m Ĵ k  β , ii) ) ( ) ( 1 1 / ) ( k j k j   
should also be calculated, in order to assess the precision of the estimation and iii) a stopping criterion should be given for the number of iterations :

max k k  . If ) ( ) ( 1 1 / ) ( k j k j   
is too large, a regularization of * S has to be made: , that is a value 'supposed to be known'.

Of course, in both cases the bias on the residuals as well as on ) ( 1 k j  , together with the standard deviation of this parameter estimate, have to be studied in the following iterations. Regularization of type b) is difficult to implement because there are multiple ways to define the n parameters present in β so, we focus here on case a) only.

PETIR Regularization by making at least one singular value infinite (ILSVD) for a non linear parameter estimation problem

Truncated singular value decomposition (TSVD) can be used for solving a linear function estimation problem, that is, for example, the solution of the following integral equation : 

' t t' u t t K t y a mo d ) ( ) ' , ( ) ( 0   ( 27 
)
' t t' f t t K S j a i j i mo i d ) ( ) ' , ( with ) , ( 0     β S β t η y (29a, b)
where

f i t a  (Fredholm equation) or i i t a 
(Volterra equation). So solution of the corresponding discrete linear inverse problem consists in replacing the exact but unstable ordinary least square solution:

y U W V y S S S y S β T T T ˆ1 1 - ) (      (30)
where  S is the pseudo inverse of the sensitivity matrix S (which is supoposed to be of full rank) and ) ( V W U , , its compact SVD deconvolution form already defined in [START_REF] Degiovanni | Thermal Diffusivity and Flash Method[END_REF] (replacing * nom S by S ) by its truncated SVD (TSVD) form, see R.J. Hanson [START_REF] Hanson | A numerical method for solving Fredholm integral equations of the first kind using singular values[END_REF] and P.C. Hansen [START_REF] Hansen | Truncated Singular Value Decomposition Solutions to Discrete Ill-Posed Problems with Ill-Determined Numerical Rank[END_REF] :

y U W V β T trunc trunc trunc trunc ˆ1   (31) 
where only the n u  first columns of

) ( V W U , ,
, corresponding to the largest singular values, have been kept in than in β ˆ, the parameterization (28) will be made with fewer functions (u is the regularization hyperparameter) :

) ( ) ; ( ) ( 1 t f , s t u t u ˆj n u i j trunc param       β ( 32 
)
It is important to note here that all the j  parameters in the estimation have the same physical dimensions. Hence the reduction of their number does not cause any practical problem.

Such is not the case in the regularization of the non linear estimation problem of type a (see section 5 above) since the number n of parameters cannot be decreased and no column or line can be removed in the matrices

) ( V W U , ,
of the SVD decomposition of the local scaled sensitivity matrix given by equation [START_REF] Degiovanni | Thermal Diffusivity and Flash Method[END_REF]. So, once regularization of type a has been applied in the iterative estimation given by equation (24), only the diagonal matrix W based on the singular values, called j w here (with j = 1 to n, with * S of full rank) is modified:

      ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 1 1 1 1 1 1 1           k mo T k k reg k k k k reg β y y U W V R β β (33a) where   1 ) 1 (   k reg

W

is a diagonal matrix whose diagonal is:

    0 0 1 1 diag ) 1 ( ) 1 ( 1 
1 ) 1 (              k u k k reg w / w / W (33b)
This means that only the first u singular values of 

W

given by (33b) while, contrary to the linear function estimation case (31), the matrices of the left and right singular values are kept unchanged in the regularized estimation process given by (33a).

This kind of regularization using infinite levels in the singular value decomposition (ILSVD) of the scaled sensitvity matrix can be considered as an alternative to TSVD to parameter estimation problems. Contrary to TSVD, the number of estimated parameters does not need to be reduced in ILSVD regularization. We will use the notation ILSVDu now on for designing a regularization where u singular values are kept, while the n -u smaller ones have been given an infinite level.

A similar regularization path is used in the Levenberg Marquardt minimization technique, see P.E. Gill and W. Murray [START_REF] Gill | Algorithms for the solution of the nonlinear least-squares problem[END_REF], which implies larger and larger -but not infinite -arbitrary penalty weighting on singular values in order to ensure decreasing residuals. Unfortunately, in pathological ill-posed problems such the ones studied in the next section, this algorithm fails in producing good estimates.

Application to two non linear physical examples

We propose to test the PETIR algorithm with ILSVD regularization by applying it to two simple models stemming from two different scientific fields. The first one is a model used in thermal characterization of a low-weight insulating material whose thermal conductivity is looked for. The second one is a phenomenological model used to describe the mechanical behavior of polymers in a tensile test.

Parameter estimation tests will be performed starting from perfectly known simulated data, with added synthetic noise, using three type of algorithms:

-the classical Gauss-Newton (GN) method (without any regularization), -Levenberg-Marquardt (LM) algorithm [START_REF] Gill | Algorithms for the solution of the nonlinear least-squares problem[END_REF] based on SVD formulation of the sensitivity matrix with random weighting on singular values (integrated in a Matlab ® leasqr.m file). This algorithm is very robust and has been used by the authors during several years. It works with a non-scaled sensitivity matrix, -the present scaled-sensitivity approach (PETIR, that is iterative rescaling) coupled with SVD formulation with regularization through infinite level values (ILSVD).

A characterization model in heat transfer

The following simple model is considered :

  ) ( exp - ) ( exp ) , ( 2 3 2 1      / t / t t    β (34)
As explained in [15, page 317], this model corresponds to the 1D rear-face temperature response  (kelvin) to a flash stimulation of a three-layer material sample composed of a low-weight insulating material (no capacity, thickness e i and conductivity  i , thermal resistance R = e i / i for a unit area) which is sandwiched between two identical copper layers (thickness e c , volumetric heat capacity c c  , heat capacity C c for a unit area). Heat losses (convection and linearized radiation) are present and are taken into account in the model by an identical heat transfer coefficient h on both faces. The three parameters in the β vector are:

h R h C C Q c c 2 1 ; ; 2 3 2 1        (35) 
We consider the following 'exact values' of these parameters: 

i i c c c             Physically speaking, 1
 (kelvin) is the adiabatic temperature reached for long times in the absence of any heat loss (case h = 0), and 2  (second) is a time constant. It is quite obvious that a high value of the target parameter, thermal resistance R, will makes the two exponentials very close in model (34), making the estimation problem very ill-posed.

The exact values are:

    T T exact exact exact exact . . . 6667 1 0 216 3148 2 3 2 1      β
The purpose of this experiment is to obtain the thermal conductivity of the material through the estimation of the j  's by an inverse technique applied on the transient measurements of . So, 2

 and 3

 must be estimated independently. This estimation is possible if the time interval is well chosen, at least after the time of occurrence of the of the thermogram. To test the robustness of our method, we propose to work on a shorter interval (80% of the time of the maximum). Furthermore, the initial values necessary to start the iterations are chosen far enough from the exact values, respectively +40%, -80% et +80% for each parameter The RSdCor (Relative Standard deviation -Correlation) matrix is a composite matrix derived from equations ( 25) and (26) made of the scaled standard deviations of the parameters in the main diagonal :

      2 1 1 2 1 1/2 ) ( var / ) ( var / / j j * / j exact j j exact j ˆx ĵ                   S S T        (36a)
and of the correlation coefficients (scaled covariance between parameters) for the offdiagonal terms :

) ( var ) ( var )/ , ( cov j i j i j i       (36b)
All these coefficients are calculated with the exact values of the parameters and for the following values of the standard deviation of the noise is the maximum temperature reached (it occurs past the last time of measurement and is not shown in figure 1).

The relative standard deviations for each parameter are large, respectively 627%, 192% and 329%, see figure 1, which confirms the quasi proportionality between sensitivity coefficients noticed above, and all the correlation coefficients are close to one, which means that some correlation exists between the parameters of the problem. This clearly shows that the original parameter estimation problem is ill-paused. 

. Estimation by PETIR-ILSVD for a noiseless signal, using reduced and nonreduced sensitivity matrices

Estimation is first performed for a thermogram without noise, with m = 1000 points in time for the estimation interval. Figure 2 shows the exact temperature response, the recalculated response, once convergence has been reached for the least square minimization, as well as the corresponding residuals for the PETIR-ILSVD2 estimation (a) and for the Levenberg-Marquardt (LM) estimation (b).

The corresponding relative variation of the estimation error for each of the three parameters, as a function of the iteration number k, is given for both PETIR-ILSVD2 and LM techniques in Figure 3a. It shows that the proposed method (PETIR and ILSVD with 1 infinite value, that is u = 2) yields lower residuals than the Levenberg-Marquardt (LM) method [START_REF] Gill | Algorithms for the solution of the nonlinear least-squares problem[END_REF] with a lower number of iterations (8 iterations for PETIR compared to 37 for LM) and with a better accuracy since the relative errors Remark : An alternate way of using the ILSVD technique, is to apply it on the SVD decomposition of the non-scaled sensitivity matrix S. This consists in using a modified version of equations (33):

      ) ( ) 1 ( ) 1 ( 1 ) 1 ( ) 1 ( ) 1 ( ) (           k mo T k k reg k k k dim reg ' ' ' ˆβ y y U W V β β (37a)     0 0 1 1 diag ) 1 ( ) 1 ( 1 
1 ) 1 (              k u k k reg ' w / ' w / ' W (37b) with:   j k o , j nom j n k      r f 2 1 ) ( ) ; ( with   t β t η S S S S S  and T V' W' U' S  (37c)
This type of inversion technique does not use rescaling of the PETIR type and is just an ILSVD regularized version of the Gauss-Newton algorithm.

As expected, if the non-scaled sensitivity curves are used for the estimation, the results are worse, see figure 3b, than for the scaled PETIR case, see figure 3a. The errors on the estimated parameters are 63%, 95% and 174% and the number of iterations until convergence (18 iterations) increases too for the ILSVD2 (but not PETIR) technique, see figure. 3b.

Estimation by PETIR-ILSVD for a thermogram corrupted by noise and effect of number of infinite levels

If an additive noise is added to the exact thermogram of figure 1 (i.i.d. noise of standard deviation

K 0429 0.   
, that is a signal/noise ratio close to 10, see section 7.1), one gets a synthetic noisy signal. Application of the two estimation techniques to this signal yields a convergence which is achieved in 8 iterations by PETIR-ILSV2 and 38 for LM (see figures 4 c). The relative errors are equal to 3.3%, 1.3% and 1.8% for PETIR-ILSV2 and 25%, 10% and 19% for LM. The corresponding residuals are shown in figures 4a (PETIR-ILSVD2) and 4b (LM). So, this rescaling/ILSVD method is very precise here even with a high level of noise and an ill-conditioned scaled sensitivity matrix.

Finally, some tests have been performed by keeping only the largest singular value of * S (2 infinite values, that is ILSVD1) and the corresponding variation of the estimation error of the three parameters with the iteration number are shown in figure 4d and compared to the LM case. The estimation errors with a single singular value kept (u = 1) are higher than in the previous case (u = 2) , which suggests that our problem exhibits two and not one degrees of freedom. 

A characterization model in solid rheology

In solid rheology, characterization of materials depends on a pertinent identification of their constitutive law. We consider here the one-directional stress ( )strain (  ) relationship for a tensile test. In such a test, the structure of the model is generally not known. As a consequence, optimal parameter estimation techniques should be able to discriminate between competing models through a correct estimation of its parameters and of the uncertainties (bias and standard deviations) associated to it.

In the case of semi-crystalline polymers, the mechanical model must take into account multiple phenomena (elasto-visco-plasticity as well as hardening or damaging effects). This is a difficult problem which has often led to derive more or less phenomenological models such as the G'sell-Jonas stress-strain relationship [START_REF] Cotta | Determination of the plastic behaviour of solid polymers at constant true strain rate[END_REF]. It has the following form for an experiment where the strain rate is kept at a constant level:

   ) ( exp ) (- exp 1 ) (- exp 1 p ε h V L W k       (37a)
The exact values of the different parameters are introduced (see Table 1 further on):

  T exact exact exact exact exact exact exact p h V L W k  β (37b)
This fitting model has no physical basis and relies on a parameter vector β of dimension 6, 5 parameters being dimensionless and the dimension of the last one, k , being the same as  (expressed in Pascal). Relation (37a) is hence written as the generic starting relation (4).

Parameter estimation with relation (37a) provides a second good academic test-case to illustrate how the PETIR algorithm works. The ill-conditioning of this overparameterized model is pathological here, since combining multiple exponentials allows to 'connect the dots' or mimic any curve, especially in the present case where a simple monotonous curve has to be fitted (see the black dotted line in figure 5).

Besides, a theoretical model having a different structure and requiring only 3 parameters has been proved to produce the exact same output, see S. André et al. [START_REF] André | From the thermodynamics of constitutive laws to thermomechanical experimental characterization of materials: An assessment based on inversion of thermal images[END_REF].

As in the preceding example of section 7.1, the exact values gathered in the dimensional exact β vector, see Table 1, have been used to generate the data using model (37) and an i.i.d. noise of standard deviation Let us note that the signal to noise ratio has the same order of magnitude, equal to 10 here, as in the case of 7.1. Since the signal is monotonically increasing (no absolute maximum), the 'maximum' amplitude of the signal is replaced by the plateau value (30 MPa) of the curve of Fig. 5 (in the range of 0.2-0.4 strain) in its numerator. This plasticity plateau corresponds to the yield stress where the material flows without any need for an additional force. Its denominator is the previous standard deviation   of the added noise.

Obviously, we have The RSdCor matrix illustrates that at the exact point, parameters 3 and 4 can be obtained only with a high relative error (21.7% and 48% respectively). This is caused by reduced sensitivities close to zero for these two parameters in the whole range of the independent variable  , see figure 5. This PEP is strongly non linear and one can easily imagine that other nominal points would imply pathological features (non uniqueness of the solution) which would result in a severe failure for any non-regularized estimation algorithm.

The application of the algorithm will be made from initial guesses chosen as

exact j exact j init j C     
, where the following values are considered for C : 0.05, 0.15, 0.25 (for all parameters), the sign being randomly assigned to each of the 6 parameters.

Results of inversion of a noiseless signal are presented in Tables 1 and2 

Some general results in the case of a non noise-corrupted signal

The case of an infinite signal to noise ratio is considered first. In this case, the estimation error have no stochastic component and can be considered as a pure bias for the estimation technique used. The following interesting features can be observed:

-When the initial parameter vector init  is not too far from the exact values (C=0.05, Table1), the classical non-regularized Gauss Newton (GN) method, based on either a dimensional or a scaled-reduced sensitivity, converges to the exact parameter values with the same precision as the Levenberg-Marquardt (LM) regularized algorithm, see lines 2 and 3. If regularization is applied to the GN method using ILSVD5 applied on the non scaled (dimensional) sensity matrix (replacement of the lowest singular value by an infinite level), errors of bias type are generated on the estimated parameters, see lines 5 to 8 for columns 2  , 3  , 4  . This illustrates the effect of such a reduction. In this case where a dimensional sensitivity matrix is used, this deterioration can be very important, which will argue in favour of using a rescaledsensitivity approach.

-When the number of infinite levels increases (up to 4 over a total of 6 parameters), the bias increases (lines 5 to 8). Parameters 2  , 3  and 4  are clearly those which cannot be estimated through inversion of measurements. It can also be noted that an appropriate regularization is obtained even when only u = 3 or even 2 singular values are kept unchanged: down to three parameters kept, the estimation bias increases for 

Finally, when the initial parameter vector init β is selected more distantly from the exact one (C=0.15, see Table2), the difference between the dimensional (ILSVD3, line 3) or scaled (PETIR-ILSVD3, line 4) versions of the regularization technique becomes apparent. The optimum value u = 3 for the regularization hyperparameter found previously has been kept. There is a clear superiority, in terms of estimation biases on all the pareameters, of the scaled PETIR-ILSVD3 version.

We can note that in all cases considered in Table 2, the present regularized algorithm behaves worse than the SVD-based LM algorithm. This is absolutely normal for non noisy simulations since in the LM algorithm, only an arbitrary penalty weight is applied on the singular values that do not yield a decrease of residuals at each iteration, but none of them is eliminated. In our algorithm, several (3 here) singular values are replaced by infinite levels and a bias is generated. But it can be observed that without such truncation, a pure SVD (GN) algorithm does not converge. Here the PETIR-ILSVD3 algorithm (line 4) converges very rapidly (5 iterations instead of 21 for LM algorithm), and produces a good fit (small residuals), and good estimates of the parameters that are identifiable in this experiment and at least, a good order of magnitude for the remaining ones. The corresponding results of this procedure of the Monte Carlo type [START_REF] Maillet | Errors in the thermal diffusivity measured by the flash method: comparison between theory and experiments (Les erreurs sur la diffusivité thermique mesurée par méthode flash: confrontation théorie-expérience) The European Physical Journal[END_REF] are summarized in Table 3 for different versions of PETIR-ILSVDu algorithm (u = 2 to 5) as well as for the LM estimations, in terms of different indicators:

-mean value of the estimations of the different parameters:

6 to 1 for 1 1     j N ˆN p p j j   (39a) 
-relative statistical standard deviation of the estimates:

  6 to 1 for 1 1 2 1 2            j N / s j N p p j j j ˆj      (39b)
-mean relative error of the estimates:

exact j exact j j ˆ   / ) (  (39c) 
Before discussing the results of Table 3, several points deserve to be noted:

-we have shown in the preceding section that the LM algorithm used is always able to produce a good fit with low residuals but here, in the presence of noise, and in such an ill-conditoned problem, it does not produce estimates as good as the best ILSVDu version of PETIR.

-whatever the inverse method used, relative errors on estimates can go from 0 to up to 100%. In other words, if model (37a) is used for mechanical characterization of a material with a 'blind' LM algorithm for estimation, the results could be meaningless.

-the GN algorithm with a dimensional sensitivity matrix never converges if noise is present in the signal. The GN re-scaled algorithm converges sometimes and when it does, it allows a good fit of the "experimental" signal: it behaves like the LM algorithm with parameters estimates which can vary within very far apart bounds.

The efficiency of the ILSVDu algorithm has been checked in Table 3, where only u singular values have been kept in the iterative equations (33a) and (33b).

For PETIR-ILSVD5, convergence is rarely achieved, the PEP remains seriously illconditioned. As soon as 2 singular values have been given infinite levels, convergence is systematically obtained and in fewer iterations (of the order of 5) than the LM algorithm (of the order of 8).

 ) with a very good precision, that is with an error lower than 1%. The other four parameters ( 2  , 3  , 4

 and 5  ) have the proper order of magnitude (errors of the order of 15%). Figure 6 illustrates this for ILSVD3, the estimates having been produced through the previous 25 repeated simulations. The relative statistical standard deviation reached for each parameter is very low (see also Table 3,line 8).

It means that the regularized PETIR algorithm find always roughly the same estimates whereas it is not the case for LM where a very large dispersion is observed (see also Table 3, line 10).

When the ILSVD2 case is considered, the variance of the estimated parameter becomes very low but the properly estimated parameters ( 1 and 6  ) are obtained with higher errors (ten percent or higher). This can be explained by the fact that only 2 internal degrees of freedom, represented by only two non-zero diagonal parameters p j in equation (23b), exist whereas 6 parameters are looked for. 

Conclusion

In this paper, we proposed a non linear parameter estimation method, called PETIR (Parameter Estimation Through Iterative Rescaling) where the parameter vector is redefined by scaling at each iteration step. This local scaling allows us to get rid of the physical units of the different parameters: these units make the use of norms for the corresponding sensitivity vectors incoherent. Even if all the parameters are dimensionless, this rescaling also allows us to deal with very different order of magnitudes for them, without encountering any specific numerical difficulty.

A special kind of SVD-based regularization has been implemented: it differs from Truncated Singular Value Decomposition often used in linear inverse function estimation problems because the number of right singular vectors has to be equal to the number of parameters and cannot be decreased. The alternative proposed here is to replace the smallest singular values by infinite levels. We coined this technique Infinite Levels SVD (ILSVD).

This type of PETIR regularization has been tested on two different models used for characterization in heat transfer and in solid rheology. It can be applied to all kind of problem in engineering science. When applied to noisy signals, it produces better estimates than the current Levenberg-Marquardt algorithm based on the SVD of the dimensional sensitivity matrix. This new algorithm allows the estimation of parameters even for highly ill-conditioned scaled sensitivity matrices. Conversely, it shows that robust convergence can be achieved in very poorly conditioned cases with very good residuals, with a number of internal degrees of freedom smaller than the number of parameters of the model, since the estimates are necessarly strongly correlated: this should question the inverter-experimenter about the pertinent character of the model he uses and may lead him to adopt more parsimonious models or at least models which are not underdetermined with respect to the information contained in the data.

Future work will consist in taking the bias caused by truncation into account for optimizing the number of singular values to be kept unchanged.
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 4 Fig. 4 -Effect of number of singular values kept on relative estimation errors (%) and comparison between PETIR-ILSVD and Levenberg Marquardt, estimation from a noisy signal
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 5 This pseudo-experimental signal is plotted versus the dependent variable, here the strain   t , to use the notation already presented in sections 1 and 2.
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Fig. 6 -

 6 Fig. 6 -Relative errors on the 6 parameter estimates stemming from 25 different realizations of the additive noise on the same output of the model with the corresponding implementation of the LM and PETIR-ILSVD3 estimation algorithms.
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 77 Figure 7 below gives an example of estimation results for an experiment with the same signal over noise ratio and a starting point chosen with C=0.25, using the PETIR-ILSDV3 algorithm. ). It presents the relative variation

  

4. Linear least squares using measurements and tangent model

  

	Integration of equations (12) yields:						
								y	mo	(	β	)		y	mo	(	β	) nom		U	z	mo	(	x	)	(15c)
	Let us note that vectors β , x and		p are just dummy variables in equations (13b), (15b)
	and (15c).																							
	Projection of the measurement (output) vector		y		y	mo	β ( exact	)		ε	into the left singular
	basis, in the same way as (15c), yields:				
								around its nominal value yields :
	z	(	x	)		z	nom		W	(	p		p	nom	)	and hence:	z	(	x	)		W	p	(15a, b)
	mo						mo																		mo

Table 1 -

 1 Noiseless signal, C=0.05. Lines 5 to 8 give the relative error in % (with respect to exact values)

													1		2		3		4		5		6	(	k	) (β Ĵ )
																max
			exact j						K=0.29 MPa W = 35.3 L= 0.12	V = 5	h = 0.4 p = 2.27
	1		init j						27.55	37.065	0.114	5.25	0.418	2.3835
	2		GN j						29	35.3	0.12	5	0.4	2.27	10 -12 (6)
	3		LM reg	j						29	35.3	0.12	5	0.4	2.27	10 -12 (9)
	4		ILSVD j dim	5					29	35.27	0.1203	5.02	0.44	2.27	0.02 (5)
	5	error ILSVD j dim 	5	0 %	0.06%	0.28%	0.46%	0.01%	0 %	0.7 (6)
	6	error ILSVD j dim 	4		<0.5%	1%	5.8%	5.1%	<0.5%	<0.5% 0.8 (4)
	7	error ILSVD j dim 	3	<0.5%	4.7 %	5.2%	5.2%	<0.5%	<0.5%	2 (5)
	8	error ILSVD j dim 	2			1.6%	5.0%	5.0%	5.0%	3.3%	1.8%	9.2 (4)

8.2.2. Comparison of estimation by PETIR-ILSVDu and LM algorithms for a signal corrupted by noise and effect of choice of hyperparameter u

  We use here noised synthetic signals similar to the one presented in figure5(signal to noise ratio close to 10) with a starting point for the parameter vector corresponding to C = 0.15 for all simulations. N = 25 simulations of the synthetic signals have been made corresponding each to a realization of a randomly generated i.i.d. noise with the same standard deviation as above.

		Table3: Statistical results (over 25 repeated estimations leading to convergence) for the 6
		parameters -Average estimates, relative standard deviation, and relative error
		with respect to the exact values
															1		2		3		4		5		6
		regularized											
		PETIR versions (lines 1-4, 6-9 and 11-14 )						exact j  		K=0.29 MPa W = 35.3 L= 0.12 V = 5 h = 0.4	p = 2.27
													
	1	ILSVD5								j				28.4	39.7	0.1	-0.6	0.41	2.3
	2	ILSVD4								j				28.7	34.2	0.1	4.3	0.45	2.2
	3	ILSVD3								j				28.8	30.4	0.1	4.2	0.44	2.3
	4	ILSVD2								j				27.4	30.0	0.1	4.3	0.49	2.1
	5	LM											27.3	35.2	0.2	2,8	0.47	2.2
	6	ILSVD5			s	ˆ/ j 		j		(%)		7.2	10.6	127.2	-2268	27.6	6.3
	7	ILSVD4			s	ˆ/ j 		j	(%)		0.6	5.6	1.0	0,4	1.3	0.7
	8	ILSVD3			s	ˆ/ j 		j	(%)		0.5	0.2	0.1	0.1	1.1	0.6
	9	ILSVD2			s	ˆ/ j 		j	(%)		0.1	0.0	0.0	0.0	0.0	0.1
	10 LM			s	ˆ/ j 		j	(%)		3.4	10.7	28.3	64.5	3.6	1.5
	11 ILSVD5	(	/ ˆ  ) exact j j  	exact j	(%)	2.2	13.5	16.6	112.9	2.7	0.7
	12 ILSVD4	(	/ ˆ  ) exact j j  	exact j	(%)	1.2	2.4	18.6	15.0	12.2	1.0
	13 ILSVD3	(	/ ˆ  ) exact j j  	exact j	(%)	0.6	13.0	16.1	15.6	10.9	0.4
	14 ILSVD2	(	/ ˆ  ) exact j j  	exact j	(%)	5.7	14.4	14.8	14.8	23.2	5.8
	15 LM	(	/ ˆ  ) exact j j  	exact j	(%)	5.8	0.7	66.9	43.5	18.6	3.1