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Abstract 

The Gauss Newton method of least squares minimization for non-linear 

parameter estimation is revisited for parameters with different physical units. A 

normalization of each parameter with respect to its nominal value, that is at 

iteration number k-1, is implemented, which leads to a linear tangent model. This 

model uses the sensitivity matrix composed of the scaled sensitivity coefficients. 

It is decomposed under a singular values form and the covariance matrix of 

iterate number k is calculated. When the scaled standard deviation of one 

parameter estimates takes a too large value, inversion of the tangent model 

becomes ill-posed. Regularization is made by giving the smallest singular values 

infinite levels, which allows keeping the total number of parameters to be 

estimated unchanged : this regularization leads to a better conditioned problem in 

the following iterations until convergence of the residuals is reached. The 

corrresponding algorithm is tested  in the case of two very ill posed-examples. 

This type of estimation performs very well when compared to the Lebenverg 

Marquardt algorithm.  
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1. Introduction 

 
Since the introduction of the least-squares method by C.F. Gauss, many developments 

have allowed present researchers and engineers to  use minimization algorithms for the 

solution of non linear inverse problems. The progress in computer technology is of 

course part of this story. The initial Gauss Newton (GN) iterative method was designed 
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for minimizing the euclidian distance between experimental data and the output of a 

model. This minimization is achieved by adjusting parameters at each step of an iterative 

process. It is efficient for weakly non linear parameter estimation problems. It is 

especially designed to exploit the special structure of the Hessian matrix and gradient 

vector appearing in the least-squares formulation. Later on, the so-called Levenberg 

Marquardt (LM) algorithm achieved robustness by combining the steepest gradient 

descent method  and the quadratic convergence rate of the Gauss Newton (GN) iterate 

(second-order series expansion of the objective function). Different versions of this type 

of combination exist, one of the most interesting ones being based on Singular Value 

Decomposition (SVD) of the Jacobian matrix, see Gill and Murray [1].  

 

Following such ideas, the regularization is achieved by preventing the Hessian matrix to 

become non positive-definite through appropriate modification of its singular values. 

Recently, Finsterle and Kowalsky [2] came back to this idea and pushed it forward 

considering a truncated singular matrix. Small eigenvalues result from a lack of 

sensitivity to some parameters or from a high degree of correlation between some of 

them. They are directly responsible for the instability or singularity of the Hessian matrix 

and a damping is applied to them before inversion. Tonkin and Doherty [3] followed the 

works of Lawson and Hanson [4] and used also truncated singular value decomposition. 

The strategy is slightly different as the eigenvectors corresponding to vanishingly small 

eigenvalues are not considered in the inversion problem (the iteration increment is not 

computed from the projections of the solution vector onto these eigenvectors, in order to 

avoid noise amplification). This results in a lowering of the dimensionality of the inverse 

problem which leads to the concept of super parameters. In such a strategy, the 

regularizing parameter is chosen in order to set the condition number (the ratio between 

the largest and the smallest singular values, if the Eucilidian norm is used) of the 

regularized matrix to a lower value than the corresponding number of the original matrix 

[4]. 

 

What is presented here stems from these previous works, but differs because the physical 

dimensions of the quantities at stake in the Parameter Estimation Problem (PEP) are 

considered. This leads to a dimensionless form of the model and parameter structure and 

of a dimensionless form of the sensitivity matrix. As a consequence, a rescaling is 

implemented at each iteration of the non linear least squares minimization 

 

So, we consider here a Parameter Estimation Problem based on a single output 
moy  at 

time t , the independent variable, for a model that is non linear with regard to its 

parameters gathered in a column vector α of dimensions )1( ,n . This vector is 

composed of 
n  parameters )to1 (where  njj   with physical dimensions : 

 

);( αtymo     (1) 
 

The output  
moy  of this state-space model can derive from conservation equations 

(the heat equation and its associate conditions, for example) and on a constitutive law 

(Fourier law, for example). Once m discrete measurements 
iy  at times 

it  are available, 

the preceding model can be put into a column vector form: 



 

);( αtμy mo
 with  εyy  mo

   (2a, b) 

 

where the dimensions of 
moy , y  and ε  are (m, 1) and ε  is a noise vector. Let us note 

that in this case all the coefficients of these three vectors have the same physical unit (a 

temperature, if 
moy  is observed through a thermococouple measurement y).  

 

The definition of the parameters )to1 (where  njj   depends on the objective of 

the estimation. However their number  may be too large:  only  a prior dimensional 

analysis of model (1 or 2a) can show that this is not the case through a calculation of its 

number of degrees of freedom. This does not require the knowledge of the nominal value 
nom

αα   of the parameter vector since it is only based on the mathematical form of 

function  . As a consequence the corresponding scaled sensitivity matrix *
S  , see J.V. 

Beck et K.J. Arnold [5], composed of the n  scaled sensitivity column  vectors 

jk,
j
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αtμ
S calculated around a nominal value 

nomα , is not   

mathematicaly singular ( 0)(det * S ), even if the corresponding estimation 

problem  may be ill-posed, because of the presence of errors in the measurements.   

 

So in order to make estimation of the parameters possible a parsimonious choice of the 

parameters to be estimated, as well as a scaling of each of them using a dimensional 

analysis approach, are presented in section 2. Derivation of a tangent linear model and its 

declination within the framework of the singular value decomposition (SVD) of the local 

and scaled sensitivity matrix is made in section 3. The corresponding implementation in 

a specific non linear least squares minimization technique based on scaled and 

dimensionless local parameters is dealt with in section 4 and the derived PETIR 

algorithm (Parameter Estimation Through Iterative Rescaling) is presented in section 5. 

The notion of target parameters, that is the parameters that are primarily looked for by 

the inverter in an experimental characterization process is introduced in section 6.  

 

Regularization of the PETIR algorithm is defined in section 7: it does not relate to 

Truncated Singular Value Decomposition (TSVD) usually used in function estimation 

techniques since the inverter can not reduce the number of parameters in a parameter 

estimation procedure. On the contrary, the number of singular values is kept unchanged 

and the smallest singular values are given an infinite level, which implies a zero 

amplification of the corresponding components of the noise content of the right singular 

modes. This regularization technique is coined ILSVD (Infinite Levels Singular Value 

Decomposition) in this paper. 

 

Section 8 is devoted to the implementation of the regularized PETIR-ILSVD technique 

to two-parameter estimation test cases, met in characterization problems, either in heat 

transfer or in solid rheology. These two  studies  are based on synthetic noisy signals 

corresponding each to an observation domain and to a model whose inversion is very ill-



posed. Comparison of our inversion technique with the original Levenberg Marquardt 

algorithm shows that it performs very well for characterization applications with a 

parameter vector of relatively low dimension.  

 

 

2. Conditions for a physically sound estimation 

 

2.1 Getting a parsimonious model 

 

The original physical model (1) involves 2 n'n  quantities with a physical 

dimension ( n  parameters, time t and an output variable y).  A dimensional analysis, see 

Vaschy–Buckingham π theorem [6],  allows a reduction of this number to 'nn   and 

equation (1) becomes: 

 

 ****
mo ty α;        with     12 and  /yytt mo

*
mo

*    (3) 

 

where all quantities with a star superscript are dimensionless and *
α is a mathematical 

column  vector composed of 2n  dimensionless parameter groups that are 

mathematically independent. Parameter 1  has the same dimension as 
moy  and 2 is a 

frequency (inverse of some physical characteristic time). Of course, we have now 

'nn  . 

 

Since the dependent ( y ) and independent (time t ) variables are measured with 

instruments that deliver signals with physical units, model (3) can be put under a 

parsimonious form: 

 

  T*
n

***
mo 212121 where );();(   ββtηαtμy   (4) 

 

In this equation, the vector function η  is the structure of the model, see E. Walter and L. 

Pronzato [7],  and column vector β  is composed of two parameters 1  and 2  (with 

physical dimension) and of 2n  dimensionless parameter groups, the 
*
j 's.  

 

2.2 Getting a statistically sound estimation during iterative minimization  
 

Once the n parameters defined, iterative non linear minimization of the square of the 

norm of the residuals has to be implemented: 

 

);()(and)()(with)()()()(
2

βtηβyβyyβrβrβrβrβ  momo
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In this expression, the Euclidian norm )(βyy mo  of the residual vector r  is 

defined in the output domain. However, if the stability in the solution of the inversion 



has to be studied, one notes that the corresponding norm of the estimation error 
exact

ββ   is not really defined in the parameter (input) domain, since it depends on the 

physical units of 1  and 2 . So, we propose, at iteration number k  in the minimization 

of (5), a rescaling of parameter vector β  to make all the n  components of its new form 

x  dimensionless. At each iteration number k, this vector, whose norm is now 

mathematically sound, is redefined around a local value )(knom
ββ   considered as 

'nominal': 
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Let us note that in the neighbourhood of the exact value, that is for 
exactnom ββ  , each 

dimensionless parameter can be related to the logarithm of its dimensional counterpart 

scaled by its exact value: 
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This procedure is implemented at each iteration, with the calculation of the new scaled 

sensitivity matrix which is put under its Singular Value Decomposition form [3]. This 

factorization  enables an efficient regularization of this dimensionless PEP once the 

smaller singular value becomes too low with respect to the standard deviation   of the 

noise on signal y, in the case of an independent identically distributed (i.i.d.)  noise ε  

[8]. The performances of this  procedure are tested on two different physical PEPs in 

section 7. 

 

3. Tangent linear model 

 

The differential relationship between parameter vector β  and its dimensionless 

normalized form x is: 
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So, model (5) is also put under its local differential tangent form: 
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where the scaled sensitivity matrix *
S  is formed of n column-vectors, the scaled 

sensitivity vectors 
*
jS : 
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The 'compact' singular value decomposition of the nominal scaled sensitivity matrix 
*
nomS  is written: 

  

 T*
nom VWUS   with    ),(dimdim     ;),(dim nnnm  VWU         (10) 

  

where :          -  W  is the (diagonal) matrix of the singular values of *
nomS  

                     -  U  gathers its first  n left singular vectors   

                     -  V  is the matrix of its n right singular vectors  

 

So, tangent model (8) becomes:                           

 

xVWUy dd T
mo                         (11)  

 

The m theoretical outputs of this model are projected onto the output space whose basis 

is composed by the left singular vectors (dimension mn  ): 

 

mo
T

momomo yUzzUy dddd     (12) 

 

Column vector moz can be called the 'diagonal output'. A change of basis is implemented 

next in the space of the scaled parameters (dimension n) : 

 

 pVx dd            (13a) 

 

Integration of this equation between nominal and current states yields: 

 

 pVx              (13b) 

 

because equation  (6) shows that 0nom
x  and, as a consequence, 0nom

p . 

 

Column vector p  can be called the 'diagonal parameter vector'. Then tangent model (8) 

is written in these two new bases, using equations (11), (12) and (13): 

 

n
TT

mo IVVUUpWz  becausedd    (14) 

     

where nI  designates the identity matrix of size n. A first order-approximation of 

differential model (14) around its nominal value yields :     

 

)()( nomnom
momo ppWzxz   and hence:      pWxz )(mo   (15a, b) 



 

Integration of equations (12) yields: 

 

)()()( xzUβyβy mo
nom

momo        (15c) 

 

Let us note that vectors β , x  and p  are just dummy variables in equations (13b), (15b) 

and (15c). 

 

 

 

 

 

4. Linear least squares using measurements and tangent model 

 

Projection of the measurement (output) vector εβyy  )( exact
mo  into the left singular 

basis, in the same way as (15c), yields: 

 

zUβyy  )( nom
mo     (16a) 

 

where z is the projected measurement vector: 

 

εUzz
T

mo       (16b) 

 

The residual vector is linearized at each step, that is for any value of  parameter vector β  

around its nominal value nom
β , taking equations (13b), (15b), (15c) and (16a) into 

account: 

 

)()(with)()()( xVWzUβrβrβyyβr
T

linlinmo         (17) 

 

So the least squares criterion (5) is rewritten using the linearized residuals: 

 
TJ VWAxAzβrβ lin  with)()(

22
  (18a) 

 

The least-square solution of (18a), that is the estimate x̂  of x is explicit and can be 

written thanks to equation (16a): 

 

  ))((111 nom
mo

TTˆ βyyUWVzWVzAAAx  
    (18b) 

 

Return into the initial parameter domain is implemented next:  

 

xRββ ˆˆ nomnom       (19) 

 



The variance-covariance matrix of the scaled parameters x̂  can be easily calculated for a 

i.i.d. noise ε , that is for mIε
2)(cov  : 

 
Tˆ VWVx

22)(cov        (20) 

 

The estimation is unbiased for the tangent model, that is exactˆ ββ )(E , where E (.) 

designates the expectation of a random variable. 

 

 

 

    

5. Construction of the PETIR algorithm in the parametric domain of dimension n 

 

One chooses an initial value for the PETIR (Parameter Estimation Through Iterative 

Renormalization) algorithm:    

 

1 (0)(0)
xββ ˆˆ nom            (21) 

 

Parameter vector x is redefined at each iteration using tangent model (18b) and (19). At 

iteration (k - 1), )1( k
β̂ has been calculated and one writes: 
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(23a, b, c)  

 

and                 Tkkkk* ˆ )1()1()1()1( )(   VWUβS                               (23d) 

 

One shows, using equations (23): 

 

     )( )1()1(1)1()1()1()1()(   k
mo
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The pseudo-inverse, at iteration  (k-1), of *
S , TT**T**

UWVSSSS
11)(     is of 

course present in equation (24).  

 

6. Definition of target parameter(s) 

 

The objectives of the person in charge of the estimation of parameters of a non linear 

model, once noisy measurement of its output are available, can be very diverse: 

  

- a first objective can be the rational discrimination between different candidates for a 

model of a constitutive law. Models of different mathematical structures can be 



developed for the same experiment: this structure either depends on the choice made for 

the solution technique of a differential balance or can imply different numbers of 

parameters or degrees of freedom, according to the assumptions made related to various 

phenomena. The parsimony principle [9], which states that the best model is the one with 

the lowest number of parameters, constitutes a rational guideline for  a PEP, and will be 

followed using the regularization technique presented further on. 

 

- another objective can be the identification of the system using a given structure for the 

model. In this case all the parameters, a priori, are looked for with an equal precision. 

 

- a last objective, which is the only one considered below, can be the indirect 

measurement of one parameter of a model, for example the thermal  diffusity of a 

material in a flash experiment, see A. Degiovanni [10] and B. Hay et al. [11], the 

remaining ones being either 'unwished' or 'nuisance'  parameters. This kind of parameter 

can be called a 'target parameter' and the inverter-experimenter wants to minimize the 

relative error of this specific parameter. So, not all the n parameters j of β  are looked 

for, but only one of its subset. Let us assume that it is parameter number  j1 that is the 

target one. One can show using  (20):  
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and the relative (scaled) standard deviation of this target parameter is: 
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So, during iterative rescaling, the following criteria have to be checked at each iteration: 

 

i) the residuals should decrease until they reach a minimum level not lower than 

the measurement noise. This is the Morozov's discrepancy principle [12] :  
2)( )( mˆJ k β ,  

ii) )()(

11
/)( k

j
k

j
ˆˆ   should also be calculated, in order to assess the precision of the 

estimation and  

iii) a stopping criterion should be given for the number of iterations : maxkk  . 

 

If )()(

11
/)( k

j
k

j
ˆˆ   is too large, a regularization of *

S  has to be made: 

 

a) either by modifying  at least one of its singular values, 

b) or by locking one of the parameters, noted 
0j

 here, to either its current value 

)1(

0

k
j

̂ or to its nominal value nom
j0

 , that is a value 'supposed to be known'. 

 



Of course, in both cases the bias on the residuals as well as on )(

1

k
j

̂ , together with  the 

standard deviation of this parameter estimate, have to be studied in the following 

iterations. Regularization of type b) is difficult to implement because there are multiple 

ways to define the n parameters present in β   so, we focus here on case a) only. 

 

 

7. PETIR Regularization by making at least one singular value infinite (ILSVD) for 

a non linear parameter estimation problem 

 

Truncated singular value decomposition (TSVD) can be used for solving a linear 

function estimation problem, that is, for example, the solution of the following integral 

equation : 
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mo d)()',()(
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where function )(tu  (an input) is looked for starting from measured values of its noisy 

output y  at m times it  (see equation 2b).  If fta  , where ft  is the final time of 

measurement, equation (27) is a Fredholm integral equation of the first kind, while ta   

corresponds to a Volterra integral equation of the first kind.  

 

In order to write this problem in a finite-dimensional space, function )(tu is 

parameterized into a finite vector β  of arbitrary dimension mn  and its n components 

correspond to a projection of moy  over a set of n functions )21(for)( n,...,,jtf j   

that forms a basis of the parameter space: 
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Of course, the norm of the difference between the original function )(tu  and its 

parameterized form ),( βtuparam decreases with n. Substitution of (27) into (28) yields: 
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a

ijimo

i

d)()',(with),(
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where fi ta   (Fredholm equation) or ii ta   (Volterra equation). So solution of the 

corresponding discrete linear inverse problem consists in replacing the exact but unstable 

ordinary least square solution: 

 

yUWVySSSySβ
TTTˆ 11-)(      (30) 

 



where 
S  is the pseudo inverse of the sensitivity matrix S  (which is supoposed to be of 

full rank) and )( VWU ,,  its compact SVD deconvolution form already defined in (10) 

(replacing *
nomS  by  S ) by its truncated SVD (TSVD) form, see R.J. Hanson [13] and 

P.C. Hansen [14] : 

 

yUWVβ
T
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ˆ 1     (31) 

 

where only the nu   first columns of )( VWU ,, , corresponding to the largest singular 

values, have been kept in )( trunctrunctrunc ,, VWU  respectively, as well as only the u first 

lines of the square diagonal matrix truncW . Of course, since there are less many 

coefficients in truncβ̂  than in β̂ , the parameterization (28) will be made with fewer 

functions (u is the regularization hyperparameter) : 
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It is important to note here that all the j  parameters in the estimation have the same 

physical dimensions. Hence the reduction of their number does not cause any practical 

problem.  

 

Such is not the case in the regularization of the non linear estimation problem of type a 

(see section 5 above) since the number n of parameters cannot be decreased and no 

column or line can be removed in the matrices )( VWU ,, of the SVD decomposition of 

the local scaled sensitivity matrix given by equation (10). So, once regularization of type 

a has been applied in the iterative estimation given by equation (24), only the diagonal 

matrix W  based on the singular values, called jw  here (with  j = 1 to n, with *
S of full 

rank) is modified: 
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where   1)1( k
regW  is a diagonal matrix whose diagonal is:  
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This means that only the first u singular values of )1( k
W  are kept (u < n), while the      

(n - u) following ones are given an infinite level in )1( k
regW and consequently a zero value 

in its inverse   1)1( k
regW  given by (33b) while, contrary to the linear function estimation 

case (31), the matrices of the left and right singular values are kept unchanged in the 

regularized estimation process given by (33a).  



 

This kind of regularization using infinite levels in the singular value decomposition 

(ILSVD) of the scaled sensitvity matrix can be considered as an alternative to TSVD to 

parameter estimation problems. Contrary to TSVD, the number of estimated parameters  

does not need to be reduced in ILSVD regularization. We will use the notation ILSVDu 

now on for designing a regularization where u singular values are kept, while the n - u 

smaller ones have been given an infinite level. 

 

A similar regularization path is used in the Levenberg Marquardt minimization 

technique, see P.E. Gill and W. Murray [1], which implies larger and larger - but not 

infinite - arbitrary penalty weighting on singular values in order to ensure decreasing 

residuals. Unfortunately, in pathological ill-posed problems such the ones studied in the 

next section, this algorithm fails in producing good estimates. 

 

8. Application to two non linear physical examples 

 

We propose to test the PETIR algorithm with ILSVD regularization by applying it to two 

simple models stemming from two different scientific fields. The first one is a model 

used in thermal characterization of a low-weight insulating material whose thermal 

conductivity is looked for. The second one is a phenomenological model used to describe 

the mechanical behavior of polymers in a tensile test.  

Parameter estimation tests will be performed starting from perfectly known simulated 

data, with added synthetic noise, using three type of algorithms: 

 

-  the classical Gauss-Newton (GN) method (without any regularization), 

 

- Levenberg-Marquardt (LM) algorithm [1] based on SVD formulation of the 

sensitivity matrix with random weighting on singular values (integrated in a 

Matlab
®
 leasqr.m file). This algorithm is very robust and has been used by the 

authors during several years. It works with a non-scaled sensitivity matrix,  

 

- the present scaled-sensitivity approach (PETIR, that is iterative rescaling) coupled 

with SVD formulation with regularization through infinite level values (ILSVD). 

 

8.1 A characterization model in heat transfer 

 

The following simple model is considered : 

 

 )(exp-)(exp) ,( 2321  /t/tt β     (34) 

 

As explained in [15, page 317], this model corresponds to the 1D rear-face temperature 

response   (kelvin) to a flash stimulation of a three-layer material sample composed of a 

low-weight insulating material (no capacity, thickness ei and conductivity i , thermal 

resistance R = ei /i  for a unit area) which is sandwiched between two identical copper 

layers (thickness ec, volumetric heat capacity cc , heat capacity Cc  for a unit area). Heat 

losses (convection and linearized radiation) are present and are taken into account in the 



model by an identical heat transfer coefficient h on both faces. The three parameters in 

the β  vector are:  

 

    
hRh

C

C

Q c

c

2
1;;

2
321        (35)

   

We consider the following 'exact values' of these parameters:  
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Physically speaking, 1 (kelvin) is the adiabatic temperature reached for long times 

in the absence of any heat loss (case h = 0), and 2  (second) is a time constant. It 

is quite obvious that a high value of the target parameter, thermal resistance R, 

will makes the two exponentials very close in model (34), making the estimation 

problem very ill-posed. 
  
The exact values are:  

   T
Texactexactexactexact ... 66671021631482321  β   

The purpose of this experiment is to obtain the thermal conductivity of the material 

through the estimation of the j 's by an inverse technique applied on the transient 

measurements of .  So, 2  and 3  must be estimated independently. This estimation is 

possible if the time interval is well chosen, at least after the time of occurrence of the 

maximum of the thermogram. To test the robustness of our method, we propose to work 

on a shorter interval (80% of the time of the maximum). Furthermore, the initial values 

necessary to start the iterations are chosen far enough from the exact values, respectively 

+40%, -80% et +80% for each parameter j : 

 Tinit ... 03204324073β   

Figure 1 shows the theoretical moy thermogram  as well as the three scaled sensitivity 

functions 
*
jS  to these three parameters, for the exact values of the parameters. One can 

note that the three sensitivity coefficients seem to be two by two proportional. 

The RSdCor (Relative Standard deviation - Correlation) matrix is a composite matrix 

derived from equations (25) and (26) made of the scaled standard deviations of the 

parameters in the main diagonal : 
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 (36a) 

and of the correlation coefficients (scaled covariance between parameters) for the off-

diagonal terms : 

)(var)(var)/ ,(cov jijiji
ˆˆˆˆ      (36b) 

All these coefficients are calculated with the exact values of the parameters and for the 

following values of the standard deviation of the noise K04290. . This 

corresponds to a quite low signal to noise ratio (SNR)  /max close to 10, where 

K42090.max   is the maximum temperature reached (it occurs past the last time 

of measurement and is not shown in figure 1). 

The relative standard deviations for each parameter are large, respectively 627%, 192% 

and 329%, see figure 1, which confirms the quasi proportionality between sensitivity 

coefficients noticed above, and all the correlation coefficients are close to one, which 

means that some correlation exists between the parameters of the problem. This clearly 

shows that the original parameter estimation problem is ill-paused.  

 
 

Relative Standard deviation -

Correlation matrix for the exact values 

of the parameters and a noise of 

standard deviation K04290.  
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Fig. 1 - Thermogram and Sensitivity Curves / Relative Sytandard deviation - Correlation matrix 

 

8.1.1. Estimation by PETIR-ILSVD for a noiseless signal, using reduced and non-

reduced sensitivity matrices 

 

Estimation is first performed for a thermogram without noise, with m = 1000 points in 

time for the estimation interval. Figure 2 shows the exact temperature response, the 

recalculated response, once convergence has been reached for the least square 

minimization, as well as the corresponding residuals for the PETIR-ILSVD2 estimation 

(a) and for the Levenberg-Marquardt (LM) estimation (b). 



 

The corresponding relative variation of the estimation error for each of the three 

parameters, as a function of the iteration number k, is given for both PETIR-ILSVD2 and 

LM techniques in Figure 3a. It shows that the proposed method (PETIR and ILSVD with 

1 infinite value, that is u = 2) yields lower residuals than the Levenberg-Marquardt (LM) 

method [1] with a lower number of iterations (8 iterations for PETIR compared to 37 for 

LM) and with a better accuracy since the relative errors exact
j

exact
jj

ˆ  )/(   values at 

convergence are: 3.5%, 1% and 1.8%  for PETIR against  45%, 31% and 55% for LM. 

 

 
 

(a) PETIR-ILSVD2 (u = 2 singular values kept) (b)  LM 
 

Fig. 2-  Exact and reconstructed thermograms and Residuals curves (Exp = model output 

without any noise,  The: reconstructed signal after convergence of estimates, Res 

= residuals)  

            

 

  
(a) Case of a scaled sensitivity matrix for 

PETIR-ILSV2 and LM 
(b) Case of a non-scaled sensitiity matrix for 

ILSVD2 and LM 
Fig. 3 - Relative error of the estimates (%) versus number of iterations, estimation from a 

signal without any noise. 

 

 



Remark : An alternate way of using the ILSVD technique, is to apply it on the SVD 

decomposition of the non-scaled sensitivity matrix S. This consists in using a modified 

version of equations (33): 

 

 

     )( )1()1(1)1()1()1()( 
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This type of inversion technique does not use rescaling of the PETIR type and is just an 

ILSVD regularized version of the Gauss-Newton algorithm. 

 

As expected, if the non-scaled sensitivity curves are used for the estimation, the results 

are worse, see figure 3b, than for the scaled PETIR case, see figure 3a. The errors on the 

estimated parameters are 63%, 95%  and 174% and the number of iterations until 

convergence (18 iterations)  increases too for the  ILSVD2 (but not PETIR)  technique, 

see figure. 3b. 

 

8.1.2. Estimation by PETIR-ILSVD for a thermogram corrupted by noise and 

effect of number of infinite levels 

 

If an additive noise is added to the exact thermogram of figure 1 (i.i.d. noise of standard 

deviation K04290. , that is a signal/noise ratio close to 10, see section 7.1), one 

gets a synthetic noisy signal. Application of the two estimation techniques to this signal 

yields a convergence which is achieved in 8 iterations by PETIR-ILSV2 and 38 for LM 

(see figures 4 c). The relative errors are equal to 3.3%, 1.3% and 1.8% for PETIR-ILSV2 

and 25%, 10% and 19% for LM. The corresponding residuals are shown in figures 4a 

(PETIR-ILSVD2) and 4b (LM). So, this rescaling/ILSVD method is very precise here 

even with a high level of noise and an ill-conditioned scaled sensitivity matrix.  

 

Finally, some tests have been performed by keeping only the largest singular value of 
*

S (2 infinite values, that is ILSVD1) and the corresponding variation of the 

estimation error of the three parameters with the iteration number are shown in figure 4d 

and compared to the LM case. The estimation errors with a single singular value kept (u 

= 1)  are higher than in the previous case (u = 2) , which suggests that our problem 

exhibits two and not one degrees of freedom.  

 

 



  
(a) Synthetic noisy signal, reconstructed 

signal and residuals - PETIR-ILSVD2 
(b) Synthetic noisy signal, reconstructed 

signal and residuals - LM 

 
 

(c) Estimation errors for PETIR-ILSVD2 

and LMinversions 
(d) Estimation errors  for PETIR-

ILSVD1and LM inversions 
 

 

Fig. 4 - Effect of number of singular values kept on relative estimation errors (%) and 

comparison between PETIR-ILSVD and Levenberg Marquardt, estimation from 

a noisy signal 

 

8.2 A characterization model in solid rheology 

 

In solid rheology, characterization of materials depends  on a pertinent identification of 

their constitutive law. We consider here the one-directional stress ( ) – strain (  ) 

relationship for a tensile test. In such a test, the structure of the model is generally not 

known. As a consequence, optimal parameter estimation techniques should be able to  

discriminate between competing models through a correct estimation of its parameters 

and of the uncertainties (bias and standard deviations) associated to it. 

 

In the case of semi-crystalline polymers, the mechanical model must take into account 

multiple phenomena (elasto-visco-plasticity as well as hardening or damaging effects). 

This is a difficult problem which has often led to derive more or less phenomenological 

models such as the G’sell-Jonas stress-strain relationship [16]. It has the following form 

for an experiment where the strain rate is kept at a constant level: 

 



    )(exp)(-exp1)(-exp1 pεhVLWk     (37a) 

 

The exact values of the different parameters are introduced (see Table 1 further on): 

 

 Texactexactexactexactexactexactexact phVLWkβ  (37b) 

 

This fitting model has no physical basis and relies on a parameter vector β  of dimension 

6, 5 parameters being dimensionless and the dimension of the last one, k , being the same 

as   (expressed in Pascal). Relation (37a) is hence written as the generic starting 

relation (4).  

 

Parameter estimation with relation (37a) provides a second good academic test-case to 

illustrate how the PETIR algorithm works. The ill-conditioning of this over-

parameterized model is pathological here, since combining multiple exponentials allows 

to 'connect the dots' or mimic any curve, especially in the present case where a  simple 

monotonous curve has to be fitted (see the black dotted line in figure 5). 

 

Besides, a theoretical model having a different structure and requiring only 3 parameters 

has been proved to produce the exact same output, see S. André et al. [17]. 

 

As in the preceding example of section 7.1, the exact values gathered in the dimensional 
exact

β  vector, see Table 1, have been used to generate the data using model (37) and an 

i.i.d. noise of standard deviation MPa3 has been added to generate the synthetic 

stress signal moy  in figure 5. This pseudo-experimental signal is plotted 

versus the dependent variable, here the strain t , to use the generic notation 

already presented in sections 1 and 2.   

 
Let us note that the signal to noise ratio has the same order of magnitude, equal to 10 here, 

as in the case of 7.1. Since the signal is monotonically increasing (no absolute maximum), 

the 'maximum' amplitude of the signal is replaced by the plateau value (30 MPa) of the 

curve of Fig.5 (in the range of 0.2-0.4 strain) in its numerator. This plasticity plateau 

corresponds to the yield stress where the material flows without any need for an additional 

force. Its denominator is the previous standard deviation   of the added noise. 

 

Obviously, we have *
kS  here. The RSdCor (Relative Standard deviation - 

Correlation) matrix also calculated at this point, and valid for a non-regularized Gauss 

Newton least-squares minimization, clearly shows that the original parameter estimation 

problem is ill-posed: 
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Fig. 5 - Exact and noisy output signals and scaled sensitivities for an exact value of β   

 

The RSdCor matrix illustrates that at the exact point, parameters 3 and 4 can be obtained 

only with a high relative error (21.7% and 48% respectively). This is caused  by  reduced 

sensitivities close to zero for these two parameters in the whole range of the independent 

variable  , see figure 5. This PEP is strongly non linear and one can easily imagine that 

other nominal points would imply pathological features (non uniqueness of the solution) 

which would result in a severe failure for any non-regularized estimation algorithm. 

 

The application of the algorithm will be made from initial guesses chosen as 
exact
j

exact
j

init
j C   ,  where the following values are considered for C : 0.05, 0.15, 

0.25 (for all parameters), the sign being randomly assigned to each of the 6 parameters. 

 

Results of inversion of a noiseless signal are presented in Tables 1 and 2, for two different 

values of C. The value of the square root of the least squares criterion (5), )( β̂J  at 

convergence is given in these tables where maxk  denotes the number of iterations required 

for convergence. 

 

 

 

 

 



Table 1- Noiseless signal, C=0.05. Lines 5 to 8 give the relative error in % (with respect to 

exact values) 

 

 

 

  

1  2  3  4  5  6  
)( β̂J  

)( maxk  

 exact
j  K=0.29 MPa W = 35.3 L= 0.12 V = 5 h = 0.4 p = 2.27  

1 init
j  27.55 37.065 0.114 5.25 0.418 2.3835  

2 GN
j̂  29 35.3 0.12 5 0.4 2.27 

10
-12  

(6) 
3 LM

jreg̂  29 35.3 0.12 5 0.4 2.27 
10

-12  

(9) 
4 5ILSVD

jdim̂  29 35.27 0.1203 5.02 0.44 2.27 
0.02  

(5) 

5 5error ILSVD
jdim̂  0 % 0.06% 0.28% 0.46% 0.01% 0 % 0.7  (6) 

6 
4error ILSVD

jdim̂  <0.5% 1% 5.8% 5.1% <0.5% <0.5% 0.8  (4) 

7 
3error ILSVD

jdim̂  <0.5% 4.7 % 5.2% 5.2% <0.5% <0.5% 2  (5) 

8 
2error ILSVD

jdim̂  1.6% 5.0% 5.0% 5.0% 3.3% 1.8% 9.2  (4) 

 

8.2.1. Some general results in the case of a non noise-corrupted signal 

 

The case of an infinite signal to noise ratio is considered first. In this case, the estimation 

error have no stochastic component and can be considered as a pure bias for the 

estimation technique used. The following interesting features can be observed: 

 

-  When the initial parameter vector init  is not too far from the exact values (C=0.05, 

Table1), the classical non-regularized Gauss Newton (GN) method, based on either a 

dimensional or a scaled-reduced sensitivity, converges to the exact parameter values 

with the same precision as the Levenberg-Marquardt (LM) regularized algorithm, see 

lines 2 and 3. If regularization is applied to the GN method using ILSVD5 applied on 

the non scaled (dimensional) sensity matrix  (replacement of the lowest singular 

value by an infinite level), errors of bias type are generated on the estimated 

parameters, see lines 5 to 8 for columns 2 , 3 , 4 . This illustrates the effect of 

such a reduction. In this case where a dimensional sensitivity matrix is used, this 

deterioration can be very important, which will argue in favour of using a rescaled-

sensitivity approach. 

 

- When the number of infinite levels increases (up to 4 over a total of 6 parameters), 

the bias increases (lines 5 to 8). Parameters 2 , 3  and 4  are clearly those which 

cannot be estimated through inversion of measurements. It can also be noted that an 

appropriate regularization is obtained even when only u = 3 or even 2 singular values 

are kept unchanged:  down to three parameters kept, the estimation bias increases for 



the three “bad” parameters 
2 , 

3  and 
4  but the other ones remain properly 

estimated. When only 2 singular values are kept unchanged, a bias also begins to 

affect parameters 
1 , 

5  and 
6 . This illustrates that the present ILSVD method 

constitutes a tool for the determination of the exact number of degree of freedom of a 

model. So, aside the technical aspects associated with the regularization of the 

PETIR algorithm, this type of approach in parameter estimation allows to grasp some 

objective quantitative indicators showing the interest of the parsimony principle.  

-  

Table 2 - Noiseless signal, C=0.15. Lines 3 to 4 give the relative error in % (with 

respect to exact values) for dimensional ILSVD3 and scaled PETIR-

ILSVD3 algorithms. 

 

 

  1  2  3  4  5  6  
)( β̂J

 

)( maxk  

 exact
j  K=0.29 MPa W = 35.3 L= 0.12 V = 5 h = 0.4 p = 2.27  

1 init
j  33.35 30 0.138 4.25 0.5 1.93  

2 
LM

jreg̂  29 35.3 0.12 5 0.4 2.27 
10

-9 

(21) 

3 

 
3error ILSVD

jdim̂  

 

14.8 % 15 % 230 % 15 % 23 % 12.5 % 
55

   

(6) 

4 

 
3error ILSVD
jscaled̂  

 
0.5 % 

 

 

13.7 % 16.1 % 15.6 % 0.7 % 0.3 % 
7.8   

(5) 

Finally, when the initial parameter vector init
β  is selected more distantly from the exact 

one (C=0.15, see Table2), the difference between the dimensional (ILSVD3, line 3) or 

scaled (PETIR-ILSVD3, line 4) versions of the regularization technique becomes 

apparent. The optimum value u = 3 for the regularization hyperparameter found 

previously has been kept. There is a clear superiority, in terms of estimation biases on all 

the pareameters, of the scaled PETIR-ILSVD3 version.  

 

We can note that in all cases considered in Table 2, the present regularized 

algorithm behaves worse than the SVD-based LM algorithm. This is absolutely 

normal for non noisy simulations since in the LM algorithm, only an arbitrary 

penalty weight is applied on the singular values that do not yield a decrease of 

residuals at each iteration, but none of them is eliminated. In our algorithm, 

several (3 here) singular values are replaced by infinite levels and a bias is 

generated. But it can be observed that without such truncation, a pure SVD (GN) 



algorithm does not converge. Here the PETIR-ILSVD3 algorithm  (line 4) 

converges very rapidly (5 iterations instead of 21 for LM algorithm), and 

produces a good fit (small residuals), and good estimates of the parameters that 

are identifiable in this experiment and at least, a good order of magnitude for the 

remaining ones. 
 

8.2.2. Comparison of estimation by PETIR-ILSVDu and LM algorithms for a 

signal corrupted by noise  and effect of choice of hyperparameter u 

 

We use here noised synthetic signals similar to the one presented in figure 5 (signal to 

noise ratio close to 10) with a starting point for the parameter vector corresponding to C 

= 0.15 for all simulations.  

 

Table3: Statistical results (over 25 repeated estimations leading to convergence) for the 6 

parameters – Average estimates, relative standard deviation, and relative error 

with respect to the exact values  

   1  2  3  4  5  6  

 regularized 

PETIR 

versions 
(lines 1-4, 

6-9 and 11-14 ) 

 

exact
j  

 
K=0.29 MPa W = 35.3 L= 0.12 V = 5 h = 0.4 p = 2.27 

1 ILSVD5 
j̂  28.4 39.7 0.1 -0.6 0.41 2.3 

2 ILSVD4 
j̂  28.7 34.2 0.1 4.3 0.45 2.2 

3 ILSVD3 
j̂  28.8 30.4 0.1 4.2 0.44 2.3 

4 ILSVD2 
j̂  27.4 30.0 0.1 4.3 0.49 2.1 

5 LM ̂  27.3 35.2 0.2 2,8 0.47 2.2 

6 ILSVD5 (%)jˆ
ˆ/s

j




 7.2 10.6 127.2 -2268 27.6 6.3 

7 ILSVD4 (%)jˆ
ˆ/s

j




 
0.6 5.6 1.0 0,4 1.3 0.7 

8 ILSVD3 (%)jˆ
ˆ/s

j




 
0.5 0.2 0.1 0.1 1.1 0.6 

9 ILSVD2 (%)jˆ
ˆ/s

j




 
0.1 0.0 0.0 0.0 0.0 0.1 

10 LM (%)jˆ
ˆ/s

j




 3.4 10.7 28.3 64.5 3.6 1.5 

11 ILSVD5 (%)/)( exact
j

exact
jj

ˆ  
 2.2 13.5 16.6 112.9 2.7 0.7 

12 ILSVD4 (%)/)( exact
j

exact
jj

ˆ    1.2 2.4 18.6 15.0 12.2 1.0 
13 ILSVD3 (%)/)( exact

j
exact
jj

ˆ    0.6 13.0 16.1 15.6 10.9 0.4 
14 ILSVD2 (%)/)( exact

j
exact
jj

ˆ    5.7 14.4 14.8 14.8 23.2 5.8 
15 LM (%)/)( exact

j
exact
jj

ˆ    5.8 0.7 66.9 43.5 18.6 3.1 

 
 



N = 25 simulations of the synthetic signals have been made corresponding each to a 

realization of a randomly generated i.i.d. noise with the same standard deviation as 

above. The corresponding results of this procedure of the Monte Carlo type [18] are 

summarized in Table 3 for different versions of PETIR-ILSVDu algorithm (u = 2 to 5) as 

well as for the LM estimations, in terms of different indicators: 

 

- mean value of the estimations of the different parameters: 
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- relative statistical standard deviation of the estimates: 
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  (39b) 

 

- mean relative error of the estimates: 
 

exact
j

exact
jj

ˆ  /)(       (39c) 

 

 

Before discussing the results of Table 3, several points deserve to be noted: 

 

- we have shown in the preceding section that the LM algorithm used is always able to 

produce a good fit with low residuals but here, in the presence of noise, and in such an 

ill-conditoned problem, it does not produce estimates as good as the best ILSVDu 

version of PETIR.  

 

- whatever the inverse method used, relative errors on estimates can go from 0 to up to 

100%. In other words, if model (37a) is used for mechanical characterization of a 

material with a 'blind' LM algorithm for estimation, the results could be meaningless. 

 

- the GN algorithm with a dimensional sensitivity matrix never converges if noise is 

present in the signal. The GN re-scaled algorithm converges sometimes and when it 

does, it allows a good fit of the “experimental” signal: it behaves like the LM algorithm 

with parameters estimates which can vary within very far apart bounds. 

 

The efficiency of the ILSVDu algorithm has been checked in Table 3, where only u 

singular values have been kept in the iterative equations (33a) and (33b).  

 

For PETIR-ILSVD5, convergence is rarely achieved, the PEP remains seriously ill-

conditioned. As soon as 2 singular values have been given infinite levels, convergence is 

systematically obtained and in fewer iterations (of the order of 5) than the LM algorithm 

(of the order of 8).  



If u = 3 singular values are kept unchanged, two parameters can be measured (
1  and 

6 ) with a very good precision, that is with an error lower than 1%. The other four 

parameters  (
2 , 

3 , 
4  and 

5 ) have the proper order of magnitude (errors of the order 

of 15%).  

 

Figure 6 illustrates this for ILSVD3, the estimates having been produced through the 

previous 25 repeated simulations. The relative statistical standard deviation  reached for 

each parameter is very low (see also Table 3, line 8).  

 

It means that the regularized PETIR algorithm find always roughly the same estimates 

whereas it is not the case for LM where a very large dispersion is observed (see also 

Table 3, line 10).  

 

When the ILSVD2 case is considered, the variance of the estimated parameter becomes 

very low but the properly estimated parameters ( 1  and 
6 ) are obtained with higher 

errors (ten percent or higher). This can be explained by the fact that only 2 internal 

degrees of freedom, represented by only two non-zero diagonal parameters pj in equation 

(23b), exist whereas 6 parameters are looked for. 

 

 
Fig. 6 - Relative errors on the 6 parameter estimates stemming from 25 different 

realizations of the additive noise on the same output of the model with the 

corresponding implementation of the LM and PETIR-ILSVD3 estimation  

algorithms. 

 

Figure 7 below gives an example of estimation results for an experiment with the same 

signal over noise ratio and a starting point chosen with C=0.25, using the PETIR-

ILSDV3 algorithm. ). It presents the relative variation   )1()1()1()(   k

j

k

j

k

j

k

j
ˆ/ˆˆx̂   of 

the parameters with respect to the iteration number k, as well as the relative 



decrease   )()()( )1()1()(  kkk J/JJ βββ  of the norm of the residuals. The 

iterative process converges very quickly (9 iterations here) and the mean of the residuals 

is equal to zero at convergence. 

 

 
 

Fig. 7-  PETIR-ILSVD3 applied to a signal with SNR=10 

(a) Recalculated and noisy output signals and residuals 

(b) Relative variation of the square root of the least-squares 

criterion and of the estimated parameters between successive 

iterations 

                    

 

9. Conclusion 

 

In this paper, we proposed a non linear parameter estimation method, called PETIR 

(Parameter Estimation Through Iterative Rescaling) where the parameter vector is 

redefined by scaling at each iteration step. This local scaling allows us to get rid of the 

physical units of the different parameters: these units make the use of norms for the 

corresponding sensitivity vectors incoherent. Even if all the parameters are 

dimensionless, this rescaling also allows us to deal with very different order of 

magnitudes for them, without encountering any specific numerical difficulty. 

 

A special kind of SVD-based regularization has been implemented: it differs from 

Truncated Singular Value Decomposition often used in linear inverse function estimation 

problems because the number of right singular vectors has to be equal to the number of 

parameters and cannot be decreased. The alternative proposed here is to replace the 

smallest singular values by infinite levels. We coined this technique Infinite Levels SVD 

(ILSVD).  



 

This type of PETIR regularization has been tested on two different models used for 

characterization in heat transfer and in solid rheology. It can be applied to all kind of 

problem in engineering science. When applied to noisy signals, it produces better 

estimates than the current Levenberg-Marquardt algorithm based on the SVD of the 

dimensional sensitivity matrix. This new algorithm allows the estimation of parameters 

even for highly ill-conditioned scaled sensitivity matrices. Conversely, it shows that 

robust convergence can be achieved in very poorly conditioned cases with very good 

residuals, with a number of internal degrees of freedom smaller than the number of 

parameters of the model, since the estimates are necessarly strongly correlated: this 

should question the inverter-experimenter about the pertinent character of the model he 

uses and may lead him to adopt more parsimonious models or at least models which are 

not underdetermined with respect to the information contained in the data. 

 

Future work will consist in taking the bias caused by truncation into account for 

optimizing the number of singular values to be kept unchanged.  
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