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Abstract Constraint propagation is at the heart of constraint solvers. Two main
trends co-exist for its implementation: variable-oriented propagation engines and
constraint-oriented propagation engines. Those two approaches ensure the same
level of local consistency but their efficiency (computation time) can be quite
different depending on the instance solved. However, it is usually accepted that
there is no best approach in general, and modern constraint solvers implement
only one. In this paper, we would like to go a step further providing a solver
independent language at the modeling stage to enable the design of propagation
engines. We validate our proposal with a reference implementation based on the
Choco solver and the MiniZinc constraint modeling language.
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1 Introduction

Constraint propagation which lies at the heart of constraint programming solvers
has been extensively studied during the last decades [1,16]. Several fix-point rea-
soning algorithms exist [10]; they are mainly represented by modern variants of
arc-consistency algorithms [1,2,4]. For a given algorithm, several ways of propa-
gating constraints exist ; they are named orientations in the following. The ori-
entation defines the information to store in order to propagate domain reductions
through the constraint network, e.g., modified variables or constraints likely to
provide filtering. The most widely used orientations are based on variable orienta-
tion or constraint orientation. For instance, IBM CPO [21], Choco [6], Minion [11]
and or-tools [24] use a variable-oriented algorithm, while Gecode [22], SICStus
Prolog [5] and JaCoP [23] use a constraint-oriented algorithm. The design of a
propagation engine, and more generally a constraint solver, requires choices and
compromises in order to combine adaptability (to solve a wide range of problems)
with efficiency (to solve them efficiently). Unfortunately, modifying such a central
element is challenging. Constraint propagation strategies are tightly related to the
solver implementation. It may be a tedious task to implement an algorithm that is
correct, efficient, compliant with the specific interface of the solver, and coded in
the solver’s implementation language. Presumably, only the developers of a solver
can safely modify the propagation mechanism. Consequently, propagation engines
tend to become monolithic and relatively closed at the modeling stage. Then, even
if giving access to constraint propagation algorithms has no purpose for a begin-
ner, it has a strong motivation for an advanced modeler or a tool developer. The
former may want to optimize the resolution process without an in-depth knowl-
edge about the underlying solver. The latter may want to rapidly prototype new
propagation strategies before a complex phase of internal development.

In this paper, we propose a solver-independent language able to configure con-
straint propagation at the modeling stage. Our contribution is threefold. First,
we present a Domain Specific Language (DSL) to ease constraint propagation
engine configuration. We show that it enables expressing a large variety of exist-
ing propagation strategies. Second, we exploit the basic properties of our DSL in
order to ensure both completeness and correctness of the produced propagation
engine. Third, we present a concrete implementation of our DSL based on Choco
and an extension of the MiniZinc [20] language. Finally we show that the over-
head induced by the DSL and its implementation is operationally acceptable for
prototyping propagation engines.

In the following, Section 2 recalls the fundamentals of constraint propagation,
as well as state-of-the-art improvements in constraint propagation algorithms. Sec-
tion 3 is dedicated to the description of the DSL. Section 3.1 defines the set of
required techniques and services the underlying solver has to implement to fully
support the DSL. Section 3.2 presents and discusses the details of the language.
Section 3.3 depicts the guarantees of the DSL. Section 3.4 presents its integra-
tion into MiniZinc and discusses the possible limitations of our approach. Finally,
Section 4 evaluates the DSL on both parsing and solving stages and shows, on a
use-case, how helpful prototyping propagation engines can be.
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2 Constraint Programming Background

Constraint programming is based on relations between variables, which are stated
by constraints. A Constraint Satisfaction Problem (CSP) is defined by a triplet
〈V,D, C〉 and consists of a set of variables V, their associated domains D, and a
collection of constraints C. The domain D(v) ∈ D associated with a variable v ∈ V
defines a finite set of integer values v can be assigned to. An assignment of a
variable v to a value x is the reduction of its domain to a singleton, D(v) = {x}.
A constraint c ∈ C is defined over a set of variables V (c) ⊆ V. It is equipped with
a Boolean function which states wether an assignment of all its variables V (c) is
valid according to its semantic. A constraint c is said to be satisfiable if there
exists a valid assignment of its variables. A solution to a CSP is an assignment of
all variables of V such that all the constraints of C are simultaneously satisfied. A
constraint is characterized by its behavior regarding modifications of the domains
of variables. A constraint c is equipped with one or more filtering algorithms,
called propagators. The set of propagators of a CSP is denoted P. A propagator
p ∈ P removes, from the domains D, values that do not correspond any more
to a valid assignment. Such a reasoning is achieved through a dedicated method,
named revise(p, v),1 which filters the variables of the propagator p according to a
modification of the variable v and returns the set of modified variables. Let V (p)
be the set of variables of p, and P (v) be the set of propagators associated with a
variable v, and P (c) be the set of propagators of c.

Constraint programming is based on constraint propagation [10,18]. Propaga-
tors (associated with constraints) perform domain reductions on variables. Trans-
mitting those domain reductions through the constraint network is necessary be-
cause they may affect the validity of constraints assignments. The transmission
process is called propagation [1]: it consists in scheduling and executing the propa-
gators that may deduce, from those reductions, new value removals. The process is
iterated until no further modification is identified or a domain is wiped out. In order
to be efficient, modern constraint solvers need to implement trendy features [16].
For this purpose, they have to deal explicitly or implicitly with a fine-grained
information which, at least, has to consider each pair propagator-variable 〈p, v〉,
p ∈ P and v ∈ V (p). Such an association is called an arc [3] and will be denoted
a = 〈p, v〉. We add the following notations to ease arc manipulation: A(v) denotes
the arcs connected to variable v ∈ V; A(p) denotes the arcs connected to propa-
gator p ∈ P; Given an arc a = 〈p, v〉, V (a) denotes its variable v, P (a) denotes its
propagator p.

Algorithm 1 Arc-oriented propagation algorithm

1: Q initialized with all the arcs A(v) connected to current decision variable v
2: while Q 6= ∅ do
3: a← remove(Q) . remove and retrieve an arc from Q
4: Q← Q ∪ {A(w) | w ∈ revise(P (a), V (a))} . push all the arcs associated with the

variables modified by propagator P (a)
5: end while

1 On the one hand, event-based arc-oriented engines and variable-oriented engines input
the modified variable to the propagator. On the other hand, event-based propagator-oriented
engines need to explicitly compute (or to explicitly maintain) the modified variables.
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Algorithm 1 depicts the generic sketch of a constraint propagation procedure
when reasoning with an arc representation. The propagation algorithm is triggered
by a domain reduction, for instance when a decision is applied (line 1). Next, until
there is no arc to revise in the data structure Q, an arc a is removed from Q
(line 3) and, all the arcs associated with the variables modified by the filtering
algorithm of the P (a) propagator are added to Q (line 4). The revision of the
propagator P (a) may detect a failure, for instance a domain becomes empty, and
make the algorithm stop. Implementation details are not provided here for sake of
simplicity.

The way Q is oriented may have an influence on the way propagators will be
implemented. The orientation is stated by the kind of items Q handles. Alterna-
tives to arcs are to schedule variables [2] (Algorithm 2) or, to schedule propaga-
tors [5] (Algorithm 3). In the case of a variable-oriented propagation algorithm,
when a variable is removed from Q (line 3), its propagators have to be executed
sequentially and the modified variables are added to Q (line 4). In the case of a
propagator-oriented propagation algorithm, when a propagator is removed from
Q (line 3), it is executed and all the propagators for which at least one variable
has been modified are added to Q (line 4). The worst case complexity remains
unchanged in all cases. This means the worst total number of operations applied
is equivalent, even if the maximum number of items added into Q may vary, and
the execution order as well. In Algorithm 1, Q may contain at most O(n × m)
arcs, while only O(n) (resp. O(m)) may be stored by Algorithm 2 (resp. Algo-
rithm 3). Indeed, Algorithms 2 and 3 require to respectively compute the propa-
gator to apply (revise(P (a), v), line 4 of Algorithm 2) and the modified variable
(revise(p, V (a)), line 4 of Algorithm 3).

Algorithm 2 Variable-oriented propagation algorithm
1: Q initialized with the current decision variable v
2: while Q 6= ∅ do
3: v ← remove(Q)
4: Q← Q ∪ {

⋃
a∈A(v) revise(P (a), v)}

5: end while

Algorithm 3 Propagator -oriented propagation algorithm

1: Q initialized with all the propagators P (v) connected to current decision variable v
2: while Q 6= ∅ do
3: p← remove(Q)
4: Q← Q ∪ {P (w) | w ∈

⋃
a∈A(p) revise(p, V (a))}

5: end while

Global constraints in constraint solvers have brought up the importance of care-
fully organizing execution of propagators with respect to their complexity. Thus, it
has been shown that it is worth scheduling propagators of global constraints care-
fully. On the one hand, in variable-oriented solvers, this is achieved for instance,
by adding a queue dedicated to coarse propagation [6,11]. Such a mechanism can
be improved, for instance by applying watched literals [12] to propagators. On the
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other hand, [16] introduced the notion of staged propagators (combining several
distinct propagators into a single one with an internal state variable) and proposed
a range of priorities to discriminate propagators, in propagator-oriented solvers.
[14] introduced advisors as an additional concept. Obviously, these approaches are
very similar: they aim at reducing the number of scheduling calls (i.e., for Algo-
rithms 1 to 3, the number of times an item is added in Q) and increasing filtering
efficiency.

In addition to those works on scheduling conditions, the revision ordering of
elements to propagate has also been studied. The revision ordering defines how
an element is selected and removed from the set Q. It is generally acknowledged
that a queue, which chooses the oldest item first, is a good choice for the set Q
as it guarantees fairness. However, alternatives have been proposed. On the one
side, [9] introduced dynamic element selection based on a criterion (e.g., domain
size of variable or propagator arity). On the other side, [16] proposed a priority
bucket queue, that is, a seven-level priority queue. A propagator is then sched-
uled into the most relevant queue with respect to its dynamic priority.2 Recent
progress in reducing propagation overhead has been achieved introducing propaga-
tor groups [17]. Nevertheless, it must be noted that the implementation of groups
is left to the user.

Finally, unlike search strategies that are commonly available in the forms of
portfolios or combinators [21], propagation engines are more likely imposed on
users in constraint solvers. Such a statement depends much on the fact that defin-
ing a propagation algorithm still remains a difficult task. In addition to global
knowledge of a solver architecture, it takes an expert programmer in order not to
deteriorate the performance and correctness of the solver. For these reasons, we
introduce a Domain Specific Language (DSL) to prototype a propagation engine
algorithm, in a fast and robust fashion.

3 A DSL to describe Propagation Engines

In order to provide a convenient expression, or declaration, of a propagation engine
by a user, we introduce a Domain Specific Language [7]. First, we give a list of
solver requirements to fully benefit from the DSL. Second, we introduce the DSL
in two steps: (1) declaration of groups of arcs and (2) structure and combination
of these groups. Then, we list the properties and guarantees of our DSL, and
sketch how it can be implemented. Finally, we briefly present MiniZinc [20] and
we describe its extension to support our DSL.

3.1 Requirements

A few characteristics are required to fully benefit from the DSL. Presumably, due
to their positive impact on efficiency, modern constraint solvers already implement
these techniques:

2 Dynamic priority combines arity and priority to provide an accurate evaluation of a prop-
agator execution cost [16].
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Fig. 1: The DSL entry point.
〈propagation engine〉 ::= 〈group decl〉+ 〈structure decl〉 ;

– Staged propagators [16]: propagators are discriminated thanks to their priority.
The priority should determine which propagator to run next: lighter propaga-
tors (in the complexity sense) are executed before heavier ones.

– Grouped propagators [17]: a controller propagator is attached to each group of
propagators;

– Open access to variable and propagator properties: for instance variable car-
dinality, propagator arity or propagator priority.

Note that properties mentioned in the latter point may be evaluated dynamically
during propagation. Obviously, dynamic evaluation comes at a cost and may re-
quire specific data structures [9].

To be more flexible and more accurate, we assume that all arcs from A, the set
of arcs of a CSP, are explicitly accessible. This is achieved by explicitly represent-
ing all of them and associating them with watched literals [12] or advisors [14].
Explicit representation of all the arcs comes with a memory overhead: O(|V|×|P|)
additional objects are required, each of them maintaining two pointers (to a vari-
able and a propagator). On the other hand, arcs bring flexibility by providing
access to properties of both their variable and their propagator. Moreover, they
may be organized by variables, propagators, or properties (for instance, propaga-
tors priority).

3.2 Domain Specific Language

A program in the DSL defines a global ordering over the set of arcs A. The DSL is
divided in two parts (Figure 1): first, the group of arcs definition, second, propaga-
tion engine structure description based upon these groups. This two-step process
decouples groups and their combination. We discuss these two parts individually
in the following.

The syntax is presented in standard BNF adopting the following conventions:
typewriter tt indicates a terminal; italic 〈it〉 indicates a non-terminal; brackets
[e] indicate e optional; double brackets [[a-z]] indicate a character from the given
range; the Kleene plus e+ indicates a sequence of one or more repetitions of e; the
Kleene star e? indicates a sequence of zero or more repetitions of e; ellipsis e,...
indicates a non empty comma-separated sequence of e; alternation a|b indicates
alternatives.

3.2.1 Group assignment declaration

We now present the part of the DSL dedicated to group declaration. The notion
of group is defined in [17]. The aim of groups is simple but powerful: controlling
the execution of groups of propagators by deferring scheduling and execution of
these propagators to user-supplied routines. Here, we replace propagators by arcs.
Groups of arcs are defined with assignment rules (Figure 2). The user only knows
variables or constraints at the modeling stage. Consequently, variables and con-
straints and their respective properties can be freely referenced in this part of the
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Fig. 2: Group definitions
〈group decl〉 ::= 〈id〉 : 〈predicates〉;
〈id〉 ::= [[a-zA-Z]][[a-zA-Z0-9]]?
〈predicates〉 ::= 〈predicate〉 | true

| (〈predicates〉 ((&& | ||) 〈predicates〉)+)
| !〈predicates〉

〈predicate〉 ::= in(〈var id〉 | 〈cstr id〉)
| 〈attribute〉 〈op〉 (〈int const〉 — "string" )

〈op〉 ::= == | != | > | >= | < | <=
〈attribute〉 ::= var[.(name|card)]

| cstr[.(name|arity)]
| prop[.(arity|priority|prioDyn)]

〈int const〉 ::= [+−][[0-9]][[0-9]]?
〈var id〉 ::= -?〈id〉
〈cstr id〉 ::= -?〈id〉

DSL. However, propagators are not modeling objects, so they can be referenced
only through their properties. We focus below on properties available in many
constraint solvers.

A group is declared by an identifier and a list of predicates. The identifier
〈id〉 is a unique name starting with a letter, for instance G1. A predicate is a
Boolean-valued function A → {true, false} and defines a group membership.
A predicate is in extension if its declaration is based on a specific variable or
constraint (pointed out with var id and cstr id). Every arc associated with the
variable or the constraint is a candidate for the group. For instance, in(v1) defines
a set of arcs A such that for all a ∈ A, V (a) = v1; in(c1) defines a set of arcs
B such that for all a ∈ B, P (a) ∈ Pc1 . A predicate is said to be in intension
if its declaration is based on properties. Any arc of the resulting set satisfies the
properties. Intension predicates are defined by an attribute 〈attribute〉, an operator
〈op〉 and an integer value or a string expression. An 〈attribute〉 refers to a property
of a variable (var.name, the name of the variable; var.card, its cardinality), a
constraint (cstr.name, the name of the constraint; cstr.arity, its arity) or a
propagator (prop.arity, the arity of the propagator; prop.priority, its static
priority; prop.prioDyn, its dynamic priority). For instance, prop.priority < 4
defines a set of arcs C such that the priority of all propagators involved in arcs of
C is strictly less than 4. Predicates can be composed with logical operators &&, ||
and !.

The 〈group decl〉 may be adapted to each solver implementation by extending
〈attribute〉, that is, adding new properties of constraints and variables. 〈group decl〉
can be model-dependent, by naming variables and constraints of a specific problem,
or totally independent by filtering only on properties. The aim of 〈group decl〉 is to
define sets of arcs. This part of the DSL is evaluated in an imperative way: group
definitions are evaluated top-down and left-to-right. Indeed, several predicates can
return true for the same arc, but an arc can only belong to a single group. So,
once an arc belongs to a group, it is not a candidate anymore for other groups
defined later.

3.2.2 Structure declaration

The second part of the DSL (Figure 3) covers the data structure definition based
upon groups of arcs. The objective here is twofold: “where” to store an arc and
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Fig. 3: Data structure of the propagation engine
〈structure〉 ::= 〈struct ext〉 | 〈struct int〉
〈struct ext〉 ::= 〈coll〉 of {〈elt〉,...} [key 〈comb attr〉]
〈struct int〉 ::= 〈id〉 as 〈coll〉 of {〈many〉} [key 〈comb attr〉]
〈elt〉 ::= 〈structure〉

| 〈id〉 [key 〈attribute〉]
〈many〉 ::= each 〈attribute〉 as 〈coll〉 [of {〈many〉}]

[key 〈comb attr〉]
〈coll〉 ::= queue(〈qiter〉)

| [rev] list(〈liter〉)
| [max] heap(〈qiter〉)

〈qiter〉 ::= one | wone
〈liter〉 ::= 〈qiter〉 | for | wfor
〈comb attr〉 ::= (〈attr op〉.)?〈ext attr〉
〈ext attr〉 ::= 〈attribute〉 | size
〈attr op〉 ::= any | min | max | sum

“how” to select an arc. The structure declaration results in building a hierarchical
tree structure based on a collection 〈coll〉.

A 〈coll〉 is implemented by an abstract data type (ADT) and is a collection of
other ADT and arcs. Thus, there is no guarantee that a 〈coll〉 exclusively handles
arcs. An ADT defines how its items will be scheduled and removed for revision.
There are three of them: queue, list and heap. Each of them comes with an itera-
tor which describes the traversing strategy. A queue is a first-in-first-out collection
of items. A list is a statically ordered collection of items (rev reverses the list).
A heap is a dynamically ordered collection of items according to a criterion (the
default comparison function is ≤, the keyword max changes it to ≥).

Basic iterators one and wone are defined for any 〈coll〉. one picks and removes
one element from a 〈coll〉. wone, short version of ‘while one’, calls one until the
〈coll〉 becomes empty. A list comes with two extra iterators: for and wfor. for
sequentially picks and removes elements in the list in increasing order of an index.
for does not allow going backwards into the list nor interrupting the traversing.
The 〈coll〉s are mutable; New items may be scheduled in a 〈coll〉 during an itera-
tion. Since the for iterator does not allow going backward, there is no guarantee
that the 〈coll〉 is empty at the end of the iteration. Thus, we introduce wfor, short
version of ‘while for’, which calls for until the 〈coll〉 becomes empty.

A heap requires the declaration of a comparison criterion (which is optional
for list). The criterion must be static for a list and dynamic for a heap. As said
earlier, there is no guarantee that a 〈coll〉 exclusively handles arcs. The sorting
criterion should be defined by (a) a key and an 〈attribute〉 for an arc or (b) a key

and a 〈comb attr〉 for a set of items. The evaluation of a set is done by evaluating
arcs of the set (combining 〈attr op〉). An extension of 〈attribute〉, named 〈ext attr〉,
is introduced in Figure 3. An 〈ext attr〉 allows to reach any item’s attribute in a
collection of items, such as its size. For instance, Figure 4 depicts a heap-based
propagation engine declaration. The top-level heap requires its composed items to
be comparable. All the arcs of G1 are evaluated by returning the cardinality of
their variable (Line 2). The second group is a list of arcs of G2. The evaluation
of a list is not possible and it should be delegated to one of its component arcs.
Thus, an arc of G2 is selected arbitrarily (any) to get the cardinality of its variable
(Line 3). The keyword any indicates both to delegate the criteria evaluation to an
item of list and to select it arbitrarily.
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Fig. 4: Heap-based propagation engine.

1. heap(wone) of {
2. G1 key var.card,
3. list(for) of {G2} key any.var.card
4. }

(a) Declaration.

heap

G1
list

G2

(b) Tree representation

Fig. 5: Example of regular structure.

1. G as list(wfor) of{
2. each prop.priority as queue(for) of{
3. each var as list(for)}
4. }

(a) Declaration.

list

queue queue

listlist

vi

... ...

...

(b) Tree representation.

Now we describe how to use abstract data structures in a complete structure.
The entry point of a structure declaration is 〈structure〉. A 〈structure〉 defines
the top-level structure which pilots the propagation. A 〈structure〉 can be defined
either in extension (〈struct ext〉) or in intension (〈struct int〉).

A 〈struct ext〉 defines a collection 〈coll〉 which is composed of a list of elements
〈elt〉. An 〈elt〉 can either reference a group identifier and an ordering instruction
(〈id〉 [key 〈attribute〉]) or another 〈structure〉. Figure 4 depicts a heap that handles
arcs of G1 and a list.

A 〈struct int〉 defines a regular structure based on a single quantifier each-as.
A 〈struct int〉 allows to express, in a compact way, nested structures, whereas
〈struct ext〉 would require a more verbose expression and more likely introduce er-
rors. 〈struct int〉 expresses that the arcs of a group must be spread into collections
under specific conditions, given by an attribute. It takes a set of arcs defined by a
group identifier as input and generates as many 〈coll〉 as required by the 〈many〉
instruction, possibly nested. 〈many〉 induces a loop over 〈attribute〉 values and
groups items with the same 〈attribute〉 value together in the same 〈coll〉. Figure 5
shows a nested regular structure declaration. The construction of the data struc-
ture takes G as input: as many sets of arcs as prop.priority among arcs of G are
created (Line 2). Remind that [16] defines 7 priorities. Then, all sets are considered
one by one and their arcs are organized by variables in lists. All lists are added
into the queue which corresponds to the desired priority. The queues are put to-
gether in the top-level list. The assignment to the right collection may be achieved
dynamically during the resolution process when using a dynamic criterion.
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3.3 Properties and Guarantees of the DSL

We now describe all the properties and guarantees supported by our DSL proposal.

Solver independent description. Our DSL does not rely on specific solver require-
ments (beyond those listed in Section 3.1) and it can be implemented on top of
a range of different constraint solvers. When only a part of these requirements is
supported by the solver, the DSL is restricted accordingly. First of all, we assume
that solvers provide full access to variable and propagator properties because these
are at the heart of most of the criteria used to schedule propagation. If a solver
does not support the arc representation, the expressivity of the DSL would be
limited to the solver orientation (variable or propagator, cf. Section 2) and group
declarations. In other words, the DSL expresses propagation policies according to
several supported propagation engine orientations. If a solver represents arcs but
does not support group declaration then the expressivity of the DSL is reduced
to the revision order of the unique top-level set of arcs. Variable-oriented solvers
are presumably better prepared for arc representation, as theirs propagators are
informed of the exact modified variable. Propagator-oriented solvers, on the other
hand, recover the modified variables, thanks to advisors for example.3

Expressivity. Our DSL covers commonly used data structures and characteristics
(from simple queue of items to seven-bucket queues). Moreover, it goes beyond
them by combining them together and with access to solver properties. This en-
ables the description of a great variety of propagation engines in a concise way,
including mixing orientations.

Extensibility. The DSL can be extended in two ways. First, new attributes can
be introduced to make group definition more concise. Second, new collections and
new iterators can provide new propagation schemes. In particular, this gives the
opportunity to declare incomplete propagation, such as those described in [13].

Ensured coverage. All the arcs of a model are represented within the propagation
engine. The expressivity of our DSL allows descriptions of incomplete propagation
engines (in which one or more arcs may be absent). Thus, the resulting propagation
engine may ignore a subset of A, and consequently, a subpart of the model. This
lack of coverage can be detected, and the user warned or the execution stopped.
Alternatively, a last generic group can collect arcs not assigned to any group to
ensure coverage.

3 A solver core refactoring is required to fulfill those preliminary conditions and fully benefit
from the DSL expressivity. Such a refactoring is a very critical task for developers. We believe
event-based constraint solvers are more prone to supporting arc-oriented filtering algorithm. In
addition, such a refactoring not only brings more flexibility into constraint solvers but opens
new perspectives in the resolution process. Naturally, this does not question native engines
(i.e., not DSL-driven engines), but it comes in addition to these ones. It may simplify the
design of propagator groups as well.
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Unique propagation. One arc may satisfy multiple predicates and be eligible to
different groups. The top-bottom left-right evaluation of the DSL ensures that each
arc is only represented once in the propagation engine. Thus, an event occurring
on a variable cannot be treated more than once. This ensures that our DSL does
not change the complexity of the standard propagation phase.

Conformance. Arcs related to no pair (p,v) of the model are not represented within
the propagation engine. Thanks to this property, no senseless arc is scheduled and
propagated during the propagation process. This preserves the time complexity of
the propagation engine.

Completeness. Completeness is ensured by a top-level collection with a “while”
condition, such as wone and wfor. Whatever the substructure iterators are, the
top-level group ensures that there is no pending event before terminating its exe-
cution. Selecting one or for may remove the completeness guarantee. However, [13]
precisely explains how incomplete propagation could be useful.

Reliability. Our DSL makes it possible to describe ill-formed, yet still syntactically
correct, propagation engines. For instance: a group may be empty, a group defi-
nition may be unused in the structure declaration, a structure may nest 〈many〉
based on the same 〈attribute〉, a structure may contain no arc or only one arc,
etc. However, we check this and the user is warned against such rule violations.
Further work could be to automatically apply the corresponding simplifications
(suppress empty groups, flatten unnecessary nested definitions, etc.).

Complexity. Both “Conformance” and “Unique propagation” properties ensure to
maintain the complexity of the propagation engine algorithm. However, the decla-
ration of ill-formed propagation engines or excessive usage of dynamic criteria may
have a non negligible impact on the global performance of a propagation engine.
Users should be aware of such degradation induced by the generalization of the
architecture during the prototyping of the propagation engine and its evaluation.
But, nevertheless the DSL prevents from creating engines which do not end, and
thus usable for the purpose of prototyping.

3.4 Implementation

We now present an implementation of the DSL. Extending a modeling language is
a natural way to implement our DSL: it provides access to model objects, such as
variables and constraints, but maintains solver independence. We selected MiniZ-
inc [20] to be extended with our DSL. It is a simple yet expressive CP modeling
language. It is suitable for modeling problems for a range of solvers. Then, we
selected ANTLR4 to interpret the grammar. It enables a clear separation between
the lexical analyzer (the lexer), the recognition of sentence structure (the parser)
and the translation into solver instructions (the tree parser). That simplifies the
reusability of the lexer and the parser, only the tree parser needs to be adapted
to solvers.

4 http://www.antlr.org/
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Fig. 6: MiniZinc model of the magic sequence extended with our DSL .
1: include "globals.mzn";
2: annotation name(string: s);
3: annotation engine(string: s);
4: int: n;
5: array [0..n - 1] of var 0..n: x;
6: constraint count(x,0,x[0])::name("c0");
7: constraint forall (i in 1..n - 1) (count(x, i, x[i]));
8: solve
9: :: engine("
10: G1: in(\"c0\");
11: All: true;
12: list(wone) of {queue(wone) of{G1},
13: All as queue(wone) of {each cstr as list(wfor)}};
14: ")
15: satisfy;

In practice, we need to add the propagation engine description inside the MiniZ-
inc model. This is made with two kinds of annotations: the first one to add the
description of the propagation engine, the second one to point out a constraint
by naming it. Even though MiniZinc enables the definition of complex annota-
tions, such as the ones used to declare search strategies, the annotations presented
here are basic, i.e., based on strings. This protects against reliance on a specific
modeling language. Figure 6 shows an example of a MiniZinc model, where the
propagation engine declaration has been added. Lines 1, 4-8 and 15 detail a classi-
cal model for the magic sequence problem (prob019, [19]) of size 5. The required
annotations for naming constraints (line 2) and describing the engine (line 3) must
be declared in the header of the model. The first constraint (line 6) is annotated
by ::name("c0") to name it. Lines 9-14 describe the propagation engine behavior:
two groups are defined. The first group G1 (Line 10) stores arcs involved in the
constraint named "c0"; the second group All (Line 11) retains remaining arcs,
thanks to the top-bottom left-right evaluation. Then, the structure of the propa-
gation engine is defined by the top-level list composed of two queues (Line 12-13).
The first queue stores arcs of group G1 (Line 12); the second one is composed of
lists of arcs, organized by constraints (Line 13). This propagation engine forces to
always treat arcs occurring on the constraint "c0" before treating other arcs.

MiniZinc comes with a low-level solver-input language called FlatZinc. FlatZinc
is the target language which MiniZinc models are translated into.5 However, the
MiniZinc to FlatZinc translation may induce a reformulation of defined constraints
based upon primitive constraints. To focus on the DSL and its applicability, only
built-in constraints and overloaded global constraints (that is, supported by the
solver) can be used. Global constraints that rely on predicate definitions (See [20]
for more details) are excluded: even if an original declaration could be trans-
formed the same way constraints are decomposed, there is no guarantee that the
resulting declaration fulfills the original intention. Indeed, consider a description
asking for propagating as late as possible an AllDifferent constraint that ulti-
mately through reformulation might be transformed into a clique of differences:
this would be counterproductive and misleading. This is mainly due to predicates

5 Annotations for describing the engine and naming constraint are transmitted to the FlatZ-
inc model when the MiniZinc model is flattened.
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and attributes related to group definition our DSL imposes. For instance, in the
case of a DSL-driven engine based on priority, organizing arcs by priority may
have dissimilar behavior: either it includes a global constraint, with potentially
high priority, or its reformulation is based on a set of built-in constraints, with
potentially low, and distinct, priorities. A recommended approach could be that
MiniZinc supports our DSL, and provides, together with global constraint reformu-
lation, a default structure declaration for each reformulation, based on the built-in
constraints. In addition, the impact of a reformulation on the efficiency of propa-
gation has not yet been addressed formally, and by itself represents an interesting
research subject. We believe the introduction of the DSL is a good starting point
for modelers and developers to prototype specific propagation engines.

Algorithm 4 presents the operational semantics of the propagation engine dec-
laration in Figure 6, lines 9-14. It shows interpretations of the main steps of the
DSL parsing and, the main steps of a resolution based on a DSL-driven engine. The
main program, not detailed here, calls the two first procedures (Group assign-
ment declaration and Structure declaration) during the parsing phase and
the two last procedures (Schedule and Propagate) during the resolution phase.
First, the group assignment declaration (lines 1-10) consists in an iteration over the
arcs of the model to assign each of them to a group. The assignment predicate of
G1 is evaluated first because it is declared first. Second, the structure declaration
(lines 11-22) consists in a sequence of structure construction and initialization,
from the bottom-level structures (q1 and ls) to the top-level one (l1). Note that
arcs of the group G1 are organized by constraints in an intermediary structure
(line 17). Algorithm 4 also suggests how to interpret the two main functions a
propagation engine comes with: how to schedule an arc (lines 23-34) and how to
select an arc for propagation (lines 35-50). Nested structures imply that schedul-
ing an arc forces to schedule any group between the arc and the top-level group.
When an arc has to be selected for revision, the explicit or implicit order between
groups depicted during the declaration is preserved, iterators behave similarly. For
instance, the arcs of G1 must be treated before any other arcs (lines 37-40). When
q1 is empty then, q2 is empty too. The wfor iterator declared in Figure 6 line 13,
is transformed into a combination of a while-loop and a for-loop (lines 43-47).

Basically, groups define a hierarchy of nested partitions of the arcs, and each
propagation policy is implemented by a specific container iterator. This way, the
operational semantics of any propagation engine defined in the DSL corresponds to
a tree of containers and their corresponding nested iterators. Our implementation
is based on this tree of containers and their iteration methods.

4 Experimental Evaluation

Most of the time, the data structures used to build a propagation engine have
very low complexities. For instance, a circular queue or a bitset provides add() and
remove() operations in constant time, a binary heap provides add(), extractMin()
and update() operations in O(logn) time, where n is the size of the heap. Even
though these operations are critical, the efficiency of the resolution phase is more
linked to the order in which propagators are executed. There can be an overhead
in parsing the DSL, due to both the data loading and guarantee checks. But, the
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Algorithm 4 Evaluation scheme of propagation engine described in Figure 6

Require: Arcs: set of arcs of the model
1: procedure Group assignment declaration . Figure 6, lines 10-11
2: Declare G1, All as set of arcs
3: for each arc a in Arcs do
4: if a is associated with a propagator of c0 then . Predicate of G1
5: move a to G1
6: else if true then . Predicate of All, i.e., remaining arcs
7: move a to All
8: end if
9: end for

10: end procedure

Require: G1, All: set of arcs
11: procedure Structure declaration . Figure 6, lines 12-14
12: Declare q1 as queue
13: Fill q1 with arcs of G1
14: Declare q2 as queue
15: Declare ls as array of lists
16: Declare m as map
17: Map arcs of All to constraints in m
18: Fill ls with sets of arcs defined by m
19: Fill q2 with lists of ls
20: Declare l1 as list
21: Fill l1 with queues q1, q2
22: end procedure

Require: a: an arc
23: procedure Schedule . Operations to execute on arc scheduling
24: Declare tmp as schedulable object
25: tmp← a
26: repeat
27: if tmp is not present in its group then . if tmp is not already scheduled
28: Add tmp to its group . the selection of the group may be dynamic
29: tmp← group of tmp
30: else
31: return . tmp is already scheduled, so do the higher level groups
32: end if
33: until c is the top level group . The top-level group belongs to itself
34: end procedure

35: procedure Propagate . Operations to execute on a propagation call
36: while l1 is not empty do
37: while q1 is not empty do
38: Pop the first arc a of q1 and execute it . i.e., revise(P(a), V(a))
39: Execute P(a) with arcs involving V(a)
40: end while
41: while q2 is not empty do
42: Pop a list l of q2
43: while l is not empty do . while-loop and ...
44: for i in 1...size(l) do . ... for-loop to ensure “wfor” behavior

45: Remove and execute the ith arc a of l, if present . i.e., revise(P(a), V(a))
46: end for
47: end while
48: end while
49: end while
50: end procedure

overhead of using an interpreted propagation engine should be limited to indirec-
tions induced by group composition and criteria evaluations.

All the following experiments were done on a Macbook Pro with a 6-core In-
tel Xeon at 2.93Ghz running on MacOS 10.6.8, and Java 1.6.0 35. The empirical
results are based on 20 runs (the standard deviation is always less than 5%) and
the tables report parsing times (time spent parsing the MiniZinc file) in millisec-
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onds and solving times in seconds. The evaluation of our DSL and its interpretation
have been implemented in Java for Choco [6]. Choco is a Java library for constraint
programming. The source code has been refactored to support the prerequisites
listed in Section 3.1. Furthermore, three native (i.e., not DSL-driven) propaga-
tion engines are implemented in the library: a propagator-oriented one prop, a
variable-oriented one var and a seven-queue dynamic priority one 7qd [16]. The
first experimental evaluation is made on a basis of 39 examples extracted from 21
problems6 of the MiniZinc [20] distribution. More details on these benchmarks are
available on demand. They give both an evaluation of the parsing phase and the
position of interpreted propagation engines among native propagation ones. Then,
we present a small use-case, based on the Golomb ruler problem. It presents how
prototyping propagation engines can be easily achieved using the DSL.

4.1 Engine descriptions

This section gives a simulation of three state-of-the-art native engines (prop, var
and 7qd) with the help of the DSL, and then compares the treatment of MiniZinc
files with and without engine declaration. For each native engine, its DSL-driven
version is guaranteed to build the same tree search and to preserve the order and
the number of propagator executions. This enables us to exemplify the expressivity
of our DSL.

First we present how to declare prop, a propagator-oriented propagation en-
gine, with the DSL (Figure 7). The structure takes the overall list of arcs of the
problem as input. Then, arcs are organized by propagators in lists. Each list de-
fines an incomplete iteration (for) but the master queue ensures completeness of
the propagation (wone). Second, we present a declaration of var, a variable-ori-

Fig. 7: A propagator-oriented propagation engine.

1: All:true;
2: All as queue(wone) of {
3: each prop as list(for)
4: }

(a) Declaration.

queue

listlist

pjpi

...

(b) Tree representation.

ented propagation engine, with the DSL (Figure 8). It looks like the previous one,
but arcs are organized by variables. Finally, we present how to declare 7qd with
our DSL, a seven-queue priority dynamic propagator-oriented engine (Figure 9).
As the previous ones, it takes all arcs of the problem as input. These arcs are
distributed into queues with respect to the dynamic priority of their propagators.

6 The selected problems are: bacp, bibd, black-hole, CostasArrays, debruijn-binary,
fastfood, fillomino, ghoulomb, golomb, jobshop, langford, latin-squares,
magicseq, market split, nonogram, p1f, pentominoes, radiation, rcpsp,
slow convergence, still life.
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Fig. 8: A variable-oriented propagation engine.

1: All:true;
2: All as queue(wone) of {
3: each var as list(for)
4: }

(a) Declaration.

queue

listlist

vjvi

...

(b) Tree representation.

For each available priority, arcs are organized by propagators in lists. As the eval-
uation of the priority is dynamic, the selection of the queue to put a list in is
made through the evaluation of any arc’s propagator within a list. A top-level
list ensures both completeness of the propagation (wone) and treatment of arcs
associated with higher priority propagators before lower priority ones. Note that
the any keyword is doubled. This is necessary to delegate the evaluation of the
priority of a queue to an assessable item, any arc among its lists. The first any

points to an item of a queue, i.e., a list, the second any points to an item of the
list, i.e., an arc. This arc is the representative of the queue, and its propagator is
used for the evaluation of the queue.

Fig. 9: A priority-oriented propagation engine.

1: All: true;
2: All as list(wone) of {
3: each prop.prioDyn as queue(one) of {
4: each prop as list(for)
5: }key any.any.prop.prioDyn
6: }

(a) Declaration.

list

queue queue

listlist

aiaj

... ...

...

(b) Tree representation.

4.2 Parsing and Solving evaluations

The aim of the prototyping process is to declare and to evaluate rapidly, yet safely,
propagation engines. On the one hand, the parsing phase is not critical in a proto-
typing approach, but it should not penalize the testing process too much. On the
other hand, the resolution step is critical. Interpreted versions of engines cannot be
competitive, in terms of efficiency, with native implementations; However, we show
that the overhead is small enough to make them useful for prototyping, but espe-
cially that the runtime order among the interpreted engines is generally the same
as that of native ones. The cost of using an interpreted engine must be minimal to
validate our approach as a relevant prototype tool. Table 1 reports the overhead



Propagation Engine Prototyping with a Domain Specific Language 17

of parsing MiniZinc files for the DSL interpreted propagation engine compared to
their native version. The parsing operation includes file loading, lexical analysis,
sentence structure recognition and the translation into solver instructions. Table 1
also reports overhead of solving examples with interpreted propagation engines
compared to their native versions. The runtime excludes the parsing time. This
step is critical, and the cost of using such an approach must be small enough to
validate it as a good prototype tool.

Table 1: Average overheads induced by using the DSL, over 39 examples.
Engine Parsing Solving

avg. std. dev. avg. std. dev.
prop 28.56% 19.34 9.33% 7.29
var 28.75% 20.15 7.01% 5.29
7qd 28.07% 17.64 13.20% 7.63

As expected, every single operation of the parsing is impacted by the addition
of propagation engine declarations, and globally the parsing phase requires about
28.46% more time, on average (arithmetic mean of the runtime overhead). The
details show that there is a direct relation between the parsing time overhead
and the number of arcs: the more arcs there are, the longer the parsing takes,
for instance this is the case for the problems slow convergence, non non fast,
latin-squares, debruijn binary and bibd for which the parsing time requires
at least 50% overhead. However, even if the overhead seems to be important, the
parsing time is negligible compared to the solving phase (less than 200ms, excepted
for slow convergence). Moreover, this overhead comes not only from the necessity
of arc representation in memory and property checking but it also depends on how
arcs are organized. For instance, in examples where the number of variables is small
compared to the number of propagators, parsing the DSL version of var is faster
than the other ones. Finally, we observe that parsing prop and 7qd is comparable.
Organizing arcs by propagators is a common operation for the two declarations.

Concerning the solving phase, we can observe that the global average overhead
of using an interpreted propagation engine is about 9.81% (arithmetic mean of the
runtime overhead). Such overheads presumably come from lack of optimization
interpreted versions suffer from. In an interpreted version, when an arc is scheduled
for propagation, the list it belongs to should also be scheduled, if it was not already.
In the native version, the second operation is natively supported. In a programming
language that support direct optimization (such as C), the overheads may be more
easy to reduce.

var and prop have smaller overheads than 7qd. But, the DSL introduces two
sources of potential weaknesses: multiple criteria evaluation and nested data struc-
tures. This is particularly the case for 7qd which comes at a larger cost. In the
native version, the evaluation of the prioDyn is done efficiently by requesting di-
rectly the propagator. In the interpreted version, each arc is evaluated on schedul-
ing. Consequently, even though the native version of 7qd has been shown to be
very competitive, its interpreted version is penalized. As expected, basing engines
on the DSL comes at a cost. But, it might be noticed that for 38 out of 39 (97.4%)
examples, the runtime order among the interpreted engines is the same as the
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Fig. 10: Heap-based propagation engine.

1: All: true;
2: All as heap(wone) of {
3: each var as list(for) key any.var.card
4: };

(a) Declaration.

heap

list list ...

vi vj

(b) Tree representation

runtime order among native engines. Moreover native versions of such propaga-
tion engines are very hard to implement efficiently. Although the DSL introduces
memory and time overheads, it preserves guarantees and comes with an accept-
able cost. Our next step is to study the contribution of the DSL on a use case and
highlight how easy testing various propagation schemas can be.

4.3 Golomb ruler: a use case

We now present, on a use case, how easy it is to declare propagation engine proto-
types. The process is the following: starting from common propagation engines, we
declare state-of-the-art propagation engines, and finally we try out two additional
strategies using our DSL.

The Golomb ruler problem (prob006, [19]) is defined “as a set of m integers

0 = a1 < a2 < · · · < am such that the m(m−1)
2 differences aj − ai, 1 ≤ i < j ≤ m

are distinct. Such a ruler is said to contain m marks and is of length am. The
objective is to find optimal (minimum length) or near optimal rulers”. [9] showed
that propagating through the selection of the smallest cardinality variable is a
good strategy to improve the resolution of the Golomb ruler. We instrumented
the MiniZinc model to declare the propagation engines, and generated two FlatZ-
inc files, one with m = 10 and the other with m = 11. Using the set of global
constraints of Choco, the problem of size m = 10 is modeled with 55 variables and
57 constraints (one allDifferent constraint, 11 binary inequalities and 45 ternary
equations), the search strategy is based on variables a, preserving the lexicographic
ordering and choosing the lower bound of each decision variable.

First, we introduce the declaration of propagation engines used to resolve the
Golomb ruler problem. In addition to prop, var and 7qd presented before, we
declare heap-var, heap-var-prio and 2-coll.

First of all, heap-var (Figure 10) is a variable oriented propagation engine
based on a heap, as described in [9]. Arcs are organized by variables into lists, then
all lists are put into a heap. The list that contains the smallest cardinality variable
is selected for propagation. The selection is repeated until the heap becomes empty.
Then, we declare heap-var-prio (Figure 11), a variant of heap-var where arcs of
a variable are sorted with respect to their priority. The idea is to execute first, for a
variable, the lighter propagators. This should help in discriminating AllDifferent

propagators and other binary and ternary propagators. Finally, we declare 2-coll

(Figure 12), a composition of two collections in a list. The first collection is based
on M, arcs involving the mark variables a. They are put in a list sorted with respect
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Fig. 11: Variant of the heap-based propagation engine.

1: All: true;
2: All as heap(wone) of {
3: each var as list(for) of {
4: each prop.priority as list(for)
6: key any.prop.priority
5: } key any.any.var.card};

(a) Declaration.

heap

list list

listlist

aiaj

... ...

...

(b) Tree representation

Fig. 12: Two-collection propagation engine.

1: M: in(mark);
2: A: true;
3: list(wfor) of {
4: list(wfor) of {M key var.name},
5: queue(wone) of {A}
6: };

(a) Declaration.

list

M
queue

A

(b) Tree representation

Table 2: Various engines for Golomb ruler.
Engine m = 10 m = 11

time (sec.) pex (106) time (sec.) pex (106)

prop 3.83 10.085 76.70 191.894
var 2.99 10.305 55.50 192.034
7qd 3.19 10.860 60.67 200.108
heap-var 2.79 10.717 53.09 196.525
heap-var-prio 3.31 11.242 59.84 207.973
2-coll 2.69 9.975 52.48 185.921

to their name in increasing order. Thus arcs involving ai are treated before those
on ai+1. The wfor keyword ensures an iterative sweep propagation and a local
fix-point (there is no pending events on arcs of M). The second collection is a
queue that handles the remaining arcs (those involved in the differences variables)
and ensures a local fix-point (wone).

Table 2 shows the results for the various declared propagation engines. It re-
ports the solving time (time in seconds) and the number of propagator executions
(pex) for m = 10 and m = 11. Even though, in some cases, there is no correlation
between the number of propagator executions and the solving time (for instance
7qd requires about 5.9% less checks than prop but takes 23.2% more time), efficient
propagation engines run fewer executions. First, we observe the same result as [9]:
the selection of the smallest cardinality variable allows us to efficiently solve the
problem. Furthermore, discriminating propagators of a variable using priority, in
heap-var-prio, does not seem necessary; this postpones AllDifferent propaga-
tor executions too late. Finally, the 2-coll engine is the most efficient strategy: it
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is very close to heap-var but it does not require evaluation of a dynamic criterion
and should scale better. It is based on one list and one queue that have constant
complexity operations.

But, more importantly, it is how prototyping has been simplified thanks to
the DSL. Thrice we have been able to define, in a few lines, a specific behavior,
with the help of variables, constraints and their properties, to produce a safe
interpreted propagation engine, and to evaluate it in a given constraint solver.
This simplifies the evaluation process and promotes the study of revision ordering
within constraint satisfaction problems.

5 Conclusion and Future Work

Our first motivation, in this paper, was to provide a tool that simplifies propagation
engine configuration within a constraint solver. First, we recalled the propagation
algorithm variants (arc-, variable- and propagator-oriented), the widespread im-
plementation choices in modern solvers and how revision ordering can be statically
or dynamically adapted, using convenient propagation sets or groups of propaga-
tors. Then, we have presented a portable and extensible Domain Specific Language
that enables concise, yet powerful, descriptions of propagation engine behaviors
without any specific knowledge of a programming language. We have also listed
the prerequisites to fully benefit from this DSL and the properties it provides.
Then, we ensured that DSL-driven propagation engines satisfy the same guaran-
tees as any native ones. Finally, we evaluated the overhead of parsing and executing
DSL-driven propagation engines for prototyping. We showed the expressiveness of
the DSL and the flexibility benefit of implementing it in a solver. In addition
of commonly used propagation engine declarations, it enables the expression of
dedicated propagation schemas.

Enabling propagation configuration also comes with limitations, and this paves
the way for future work. First of all, engine definition in the DSL could be ana-
lyzed (detection of ill-formed engines, optimization with rewriting rules, etc.). We
should also study how to adapt the declarations in presence of constraint reformu-
lations: the main restriction to reformulation in the DSL is due to predicates and
attributes related to group definition, and alternatives should be proposed. This
would help to fully integrate our DSL into Constraint Programming standardiza-
tion. Another future work is to study real-life problems with the help of the DSL,
and its interaction with global constraints and decision strategies.
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