
HAL Id: hal-00867578
https://hal.science/hal-00867578

Submitted on 30 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deterministic graph grammars
Didier Caucal

To cite this version:
Didier Caucal. Deterministic graph grammars. Jörg Flum, Erich Grädel, Thomas Wilke. Logic and
Automata - History and Perspectives, Amsterdam University Press, pp.169-250, 2008, Texts in Logic
and Games, 9789053565766. �hal-00867578�

https://hal.science/hal-00867578
https://hal.archives-ouvertes.fr

Deterministic graph grammars

Didier Caucal1

1 IGM–CNRS, university of Paris-Est
5 Bd Descartes
77454 Marne-la-Vallée, France

caucal@univ-mlv.fr

1 Introduction

Context-free grammars are one of the most classical and fundamental no-
tions in computer science textbooks, in both theoretical and applied set-
tings. As characterizations of the well-known class of context-free languages,
they are a very prominent tool in the field of language theory. Since context-
free grammars are powerful enough to express most programming languages,
they also play an important role in compilation, where they form the basis
of many efficient parsing algorithms.
A similar notion can be adapted to the more general setting of grammars
generating graphs instead of words. In this case, grammar rules no longer
express the replacement of a non-terminal letter by a string of terminal
and non-terminal letters, but that of a non-terminal arc (or more generally
hyperarc) by a finite graph (or hypergraph) possibly containing new non-
terminals, thus generating larger and larger graphs. It is still relevant to call
such grammars context-free, since the replacement of a given non-terminal
is independent of the context in which it is performed, i.e. the remain-
der of the graph it is applied to, which is left unchanged. Also, whenever
two non-terminals can be replaced, the corresponding derivation steps are
independant. Consequently, starting from a given graph, it is possible to de-
scribe any sequence of productions (a derivation) as a derivation tree. This
intuitively explains why many notions suitable for the study of context-free
word grammars extend to context-free (also called hyperedge-replacement)
graph grammars (see for instance [Ro 97]).

In this paper, we are concerned with the specific setting where the consid-
ered sets of grammar rules are deterministic, meaning that there is only
one production rule for every non-terminal hyperarc. Consequently, from
a given axiom, a grammar does not generate a set of graphs (which could
be called a ‘context-free’ graph language), but a unique graph up to iso-
morphism called a regular graph. This is an important restriction, which
entails another crucial conceptual difference with word grammars. Note

2 D. Caucal

that grammars generating a unique finite graph are trivial: they are equiv-
alent to grammars containing a unique rule, or even no rule if any finite
graph is allowed as an axiom. As a result and contrary to the case of words,
we are not interested in graphs generated after a finite derivation sequence,
but in graphs generated ‘at the limit’ i.e. after an infinite number of steps
(see Figure 2.8 and Figure 2.9).
These deterministic graph grammars correspond to the finite systems of
equations over graph operators originally defined by Courcelle [Co 89], and
whose least solutions, called equational graphs, are the regular graphs. This
kind of graphs was first considered by Muller and Schupp [MS 85] : they
showed that the connected components of the transition graphs of pushdown
automata are the connected graphs of finite degree whose decomposition by
distance from a vertex yields finitely many non-isomorphic connected com-
ponents. These graphs are exactly the connected regular graphs of finite
degree [Ca 90] (see also Section 5).

This work is a first attempt at a general survey of deterministic graph gram-
mars and the class of graphs they generate. We focus on providing some
of the basic tools to reason about deterministic graph grammars, and on a
structural study of their generated graphs.
First, Section 2 presents the necessary definitions as well as some examples
of grammars and their generated graphs. We also define a canonical repre-
sentant of the set of isomorphic graphs generated by a given grammar.
Second, as is the case for word grammars, we need to provide a collection of
normal forms before being able to conveniently write more involved proofs.
This is a slightly tedious but necessary task, which is addressed in Section 3,
where in particular the notions of reduced, proper and connected grammars
are defined. We provide a way to cleanly separate input and output ver-
tices in grammar rules. We also show that considering multi-hypergraphs
does not improve expressiveness. All these results are obtained via fixed-
point computations. This allows us, as a first application, to derive some
structural properties of regular graphs, namely that they only have a finite
number of non-isomorphic connected components, and that the sets of pos-
sible vertex degrees in such graphs are finite.
A problematic feature of regular graphs is that any given such graph can
be generated by infinitely many different graph grammars. In Section 4,
we investigate systematic ways to generate regular graphs, for instance ac-
cording to the length of their vertex names for pushdown graphs, or more
generally, by increasing distance from the vertices having a given colour.
This yields a notion of a canonical graph grammar associated to any regu-
lar graph (which will prove useful in the following section). It also allows us
to establish the closure of the class of regular graphs under various vertex
colouring operations.

Deterministic graph grammars 3

Section 5 builds up on all the notions and results presented in the previ-
ous sections to establish a characterization of regular graphs of bounded
degree, either in a general way by the suffix transition graphs of labelled
word rewriting systems, or in a restrictive way by the transition graphs of
pushdown automata in a weak form.
Finally in Section 6, we present a simple and strong connection between
deterministic graph grammars and context-free grammars over words, and
hence also context-free word languages: even though regular graphs may in
general have an infinite degree, the set of path labels between two regular
sets of vertices in a regular graph remains a context-free language. In this
respect, deterministic graph grammars provide a natural and powerful tool
to reason about context-free languages, and indeed several classical results
in the theory of context-free languages can be reassessed in this framework.
To summarize, deterministic graph grammars are not only finite represen-
tations of infinite graphs whose structure is regular (i.e. which have a finite
decomposition by distance), they are also to context-free languages what
finite automata are to regular languages.

Contents

1. Introduction

2. Regular graphs

2.1 Graphs

2.2 Graph grammars

2.3 Regular graphs

3. Normalizations of graph grammars

3.1 Reduced and connected form

3.2 Discarding the multiplicity

3.3 Separating the inputs with the outputs

3.4 Separating the outputs

3.5 Canonical regular graphs

4. Generation by distance

4.1 Regularity by restriction

4.2 Regularity by graduation

4.3 Regularity by accessibility

4.4 Regularity by distance

4 D. Caucal

5. Graph grammars and pushdown automata

5.1 Suffix transition graphs

5.2 Weak pushdown automata

5.3 Main result

6. Languages

6.1 Path grammars

6.2 Deterministic languages

2 Regular graphs

In this section, we introduce the notion of deterministic graph grammar
(Section 2.2) together with the family of graphs they generate: the regular
graphs (Section 2.3). We conclude by presenting several examples of regular
graphs. But first, we introduce basic notations on graphs and hypergraphs
(Section 2.1).

2.1 Graphs

Let IN be the set of natural numbers and IN+ = IN−{0}. A set in bijection
with IN is called countable. For a set E, we write |E| its cardinal, 2E

its powerset and for every n ≥ 0, En = { (e1, . . ., en) | e1, . . ., en ∈ E }
is the set of n-tuples of elements of E. Thus E∗ =

⋃
n≥0 En is the free

monoid generated by E for the concatenation : (e1, . . ., em)·(e′1, . . ., e
′
n) =

(e1, . . ., em, e′1, . . ., e
′
n), and whose neutral element is the 0-tuple (). A fi-

nite set E of symbols is an alphabet of letters, and E∗ is the set of words
over E. Any word u ∈ En is of length |u| = n and is also represented by a
mapping from [n] = {1, . . ., n} into E, or by the juxtaposition of its letters:
u = u(1). . .u(|u|). The neutral element is the word of length 0 called the
empty word and denoted by ε.
A multi-subset M of E is a mapping from E into IN where for any e ∈ E,
the integer M(e) is its multiplicity (the number of occurrences of e in
M). A multi-subset M of E is also represented by the functional subset
{ (e, M(e)) | e ∈ E ∧ M(e) 6= 0 } of E×IN+ : if (e, m) , (e, n) ∈ M then
m = n. The cardinal of M is |M | =

∑
e∈E M(e), and M is said to be

finite if its support M̂ := { e ∈ E | M(e) 6= 0 } is finite. By extension we

write e ∈ M for e ∈ M̂ . A finite multi-subset M can also be described
by a subset of E where each e ∈ E appears M(e) times. For instance the
multi-subset defined by a 7→ 3, b 7→ 1, x 7→ 0 otherwise, is represented
by {(a, 3) , (b, 1)} or directly by {a, a, a, b}. For instance {2, 2, 2, 5} is the
multi-subset of the decomposition into prime factors of 40. A subset P ⊆ E
corresponds to the multi-subset { (e, 1) | e ∈ P } and vice-versa.
Given multi-subsets M and N , we define the multi-subset

Deterministic graph grammars 5

sum M + N by (M + N)(e) := M(e) + N(e),
difference M − N by (M − N)(e) := max{M(e) − N(e), 0},
union M ∪ N by (M ∪ N)(e) := max{M(e), N(e)},
intersection M ∩ N by (M ∩ N)(e) := min{M(e), N(e)},

restriction M|P to P ⊆ E by M|P (e) :=

{
M(e) if e ∈ P ,
0 otherwise;

we will also write M|−P for M|E−P .

The inclusion M ⊆ N means that M(e) ≤ N(e) for every e ∈ E.
Let F be a set of symbols called labels, ranked by a mapping ̺ : F −→ IN
associating to each label f its arity ̺(f), and such that

Fn := { f ∈ F | ̺(f) = n } is countable for every n ≥ 0.
We consider simple, oriented and labelled hypergraphs: a hypergraph G is
a subset of

⋃
n≥0 FnV n , where V is an arbitrary set, such that

its vertex set VG := { v ∈ V | FV ∗vV ∗ ∩ G 6= ∅ } is finite or countable,
its label set FG := { f ∈ F | fV ∗ ∩ G 6= ∅ } is finite.

Any fv1. . .v̺(f) ∈ G is a hyperarc labelled by f and of successive vertices
v1, . . ., v̺(f) ; it is depicted for

̺(f) ≥ 2 as an arrow labelled f and successively linking v1, . . ., v̺(f) ;
̺(f) = 1 as a label f on vertex v1 and f is called a colour of v1 ;
̺(f) = 0 as an isolated label f called a constant.

This is illustrated in the next figure.

(x) (y) (z)

f

h
c

g

Figure 2.1. The hypergraph {fxyz , gxy , hx , c} .

Note that a vertex v is depicted by a dot named (v) where parentheses are
used to differentiate a vertex name from a vertex label (a colour).
Note that a hyperarc X is a word whose first letter X(1) is its label, and
for 1 < i ≤ |X |, the i-th letter X(i) is its (i − 1)-th vertex; to avoid such
a shift, we also write a hyperarc as the word fY where f is its label and
Y is its vertex word.
Observe that a hypergraph is finite if and only if it has a finite vertex set.
The transformation of a hypergraph G by a function h from VG into a set
V is the following hypergraph:

h(G) := { fh(v1). . .h(v̺(f)) | fv1. . .v̺(f) ∈ G } .
An isomorphism h from a hypergraph G to a hypergraph H is a bijection

from VG to VH such that h(G) = H , and we write G
h
∼ H or G ∼ H if

we do not specify the bijection.
The restriction of a hypergraph G to a subset P ⊆ VG is the sub-hypergraph
of G induced by P :

6 D. Caucal

G|P := G ∩ FP ∗ .
So G|P = IdP (G) where IdP := { (v, v) | v ∈ P } is the identity on P .
For a hypergraph G, the edge relation ←→

G

is the binary relation on the

vertex set VG defined by
X(i) ←→

G

X(j) for any X ∈ G and i 6= j ∈ {2, . . ., |X |} .

We denote by ←→
G

n with n ≥ 0 the n-fold composition of ←→
G

, with

←→
G

0 := Id
VG

the identity on VG , and by ←→
G

∗ :=
⋃

n≥0←→
G

n the

reflexive and transitive closure of ←→
G

. As usual s and t are connected

vertices in G if s ←→
G

∗ t , and G is a connected hypergraph if the vertices

of G are connected.
The degree of a vertex s of a hypergraph G is

dG(s) := |{ (X, i) | X ∈ G − F1 VG ∧ 2 ≤ i ≤ |X | ∧ X(i) = s }| .
Note that the colouring does not affect the degree.
We say that a hypergraph G is of finite degree (or locally finite) if dG(s) < ω
for any vertex s ∈ VG , and G is of bounded degree (or globally finite) if
max{ dG(s) | s ∈ VG } < ω.
For a subset E ⊆ F of labels, we write

VG,E := { v ∈ V | EV ∗vV ∗ ∩ G 6= ∅ } = VG ∩ EV ∗
G

the set of vertices of G linked by a hyperarc labelled in E.
A graph G is a hypergraph without constants and without labels of arity
strictly greater than 2 : FG ⊂ F1 ∪ F2 .
Hence a graph G is a set of arcs av1v2 identified with the labelled tran-
sition v1

a
−→

G

v2 or directly v1
a
−→ v2 if G is understood, plus a set of

coloured vertices f v. For instance, the finite graph:

{r
b
−→ p , p

a
−→ s , p

b
−→ q , q

a
−→ p , q

b
−→ s , i r , g p , h p , f s , f t}

has vertices p, q, r, s, t , colours f, g, h, i and arc labels a, b , and is repre-
sented below; we omit the names of the vertices to give a representation up
to isomorphism.

b

a

i

h

g f

f

b

a b

Figure 2.2. A finite graph.

A tuple (v0, a1, v1, . . ., an, vn) for n ≥ 0 and v0
a1−→
G

v1 . . . vn−1
an−→
G

vn is

a path from v0 to vn labelled by u = a1. . .an ; we write v0
u

=⇒
G

vn or

directly v0
u

=⇒ vn if G is understood. For E ⊆ F ∗
2 , we write v

E
=⇒

G

v′ if

v
u

=⇒
G

v′ for some u ∈ E.

Deterministic graph grammars 7

Given a graph G and vertex sets P, Q ⊆ VG , we write L(G, P, Q) the
language of path labels from a vertex in P to a vertex in Q :

L(G, P, Q) := { u ∈ F ∗
2 | ∃ p ∈ P ∃ q ∈ Q p

u
=⇒

G

q } .

Given colours i, f ∈ F1, we define L(G, i, f) := L(G, V
G,i

, V
G,f

) as the
path labels from the set VG,i of vertices coloured by i to the set VG,f of
vertices coloured by f .
For instance taking the previous graph, its path labels from i to f is
b(ba)∗(a + bb).
Hence a finite graph G with two colours i and f is a finite automaton
recognizing the language L(G, i, f). For any (finite) alphabet T ⊂ F2 , the
family

Rat(T ∗) := { L(G, i, f) | |G| < ω ∧ FG ∩F2 ⊆ T ∧ i, f ∈ F1 }
of languages over T recognized by the finite automata coincides with the
family of regular languages over T .
A graph G without vertex label i.e. such that FG ⊂ F2 is called an
uncoloured graph.

The family of hypergraphs ordered by inclusion ⊆ forms a complete partial
order: its least element is the empty graph ∅ and any sequence (Gn)n ≥ 0

(not necessarily increasing) with a finite label set
⋃

n≥0 FGn
has a least

upper bound
⋃

n≥0 Gn .
If we fix a finite or countable set V of vertices and a finite set E ⊂ F of
labels, the family G(V, E) of subsets of

⋃
n≥0 EnV n with En = E∩Fn for

any n ≥ 0, is the set of hypergraphs G with VG ⊆ V and FG ⊆ E. Such
a set G(V, E) is a complete lattice: ∅ is the least element,

⋃
n≥0 EnV n is

the greatest element, and every subset H ⊆ G(V, E) has a supremum
⋃
H

and an infimum
⋂
H .

A multi-hypergraph G is a multi-subset of
⋃

n≥0 FnV n where V is an
arbitrary set; each hyperarc X ∈ G is depicted G(X) times.

f

g
c c c(x)

h

h
(z)(y)

f

Figure 2.3. The multi-hypergraph {fxyz , fxyz , gxy , hx , hx , c , c , c}.

The vertex set VG and the label set FG of a multi-hypergraph G are the
sets defined on its support Ĝ i.e. VG:=V bG

and FG:=F bG
.

The transformation of any multi-graph G by any function h from VG into
a set is extended in a natural way:

h(G)(X) :=
∑

h(Y)=X G(Y) for any hyperarc X
assuming that the sum is always finite.
Given f ∈ F1 and v ∈ V , the sequence {(fv, n)}n≥1 is increasing for the

8 D. Caucal

inclusion but it has no least upper bound because an infinite multiplicity is
not allowed.

2.2 Graph grammars

A hypergraph grammar R is a finite set of rules of the form fx1. . .x̺(f) −→H
where fx1. . .x̺(f) is a hyperarc joining pairwise distinct vertices x1 6= . . . 6=
x̺(f) and H is a finite multi-hypergraph; we denote by

NR := { f ∈ F | fX ∈ Dom(R) } the non-terminals of R :
the labels of the left hand sides,

TR := { f ∈ F − NR | ∃ P ∈ Im(R), fX ∈ P } the terminals of R,
the labels of R which are not non-terminals,

FR := NR ∪ TR the labels of R,

̺(R) := max{ ̺(A) | A ∈ NR } the arity of R,
the maximal arity of its non-terminals.

We use grammars to generate simple graphs (without multiplicity). Hence
in the following, we may assume that any terminal hyperarc of any right
hand side is of multiplicity 1, otherwise we replace R by

{ (X, <H>) | (X, H) ∈ R }
where <H> is obtained from H by removing the multiplicity of the ter-
minal hyperarcs:

<H> := H|NRV ∗
H

∪ (H ∩ TRV ∗
H) .

Remark that multiplicities of non-terminal hyperarcs are usually not in-
troduced when working with graph grammars. As explained in the next
subsection, they are in all generality necessary to ensure the unicity of the
graph generated (see also Figure 2.6). In the next section, we will see that
any graph grammar can be transformed into an equivalent grammar where
multiplicities do not need to be taken into account.
Starting from any hypergraph, we want a grammar to generate a unique
hypergraph up to isomorphism. So we restrict ourselves to deterministic
grammars, meaning that there is only one rule per non-terminal:

(X, H) , (Y, K) ∈ R ∧ X(1) = Y (1) =⇒ (X, H) = (Y, K).
For any rule X −→ H , we say that

VX ∩ VH are the inputs of H

and
⋃
{ VY | Y ∈ H ∧ Y (1) ∈ NR } are the outputs of H .

We will use upper-case letters A, B, C, . . . for non-terminals and lower-case
letters a, b, c . . . for terminals. We say that R is a graph grammar if the
terminals are of arity 1 or 2. An example is given below.

Deterministic graph grammars 9

;

a

c

A B

b

d

a

a

c

B

A

A

(x) (x)

(y) (y)

(x) (x)

(y)

(z)

(y)

(z)

Figure 2.4. A (deterministic) graph grammar.

For the grammar R of Figure 2.4, we have
NR = {A, B} , TR = {a, b, c, d} , ̺(R) = 3,

and the inputs of the first (resp. second) rule are x, y (resp. x, y, z).
Given a grammar R, the rewriting −→

R

is the binary relation between multi-

hypergraphs defined as follows: M rewrites into N , written M −→
R

N , if

we can choose a non-terminal hyperarc X = As1. . .sp in M and a rule
Ax1. . .xp −→ H in R such that N can be obtained by replacing X by H
in M and by removing the multiplicity of terminal hyperarcs:

N = <(M − X) + h(H)>
for some function h mapping each xi to si, and the other vertices of H
injectively to vertices outside of M ; this rewriting is denoted by M −→

R, X

N .

The rewriting −→
R, X

of a hyperarc X is extended in an obvious way to the

rewriting −→
R, E

of any multi-subset E of non-terminal hyperarcs. A complete

parallel rewriting =⇒
R

is the rewriting according to the multi-subset of all

non-terminal hyperarcs: M =⇒
R

N if M −→
R, E

N where E is the multi-

subset of all non-terminal hyperarcs of M .
For instance, the first three steps of the parallel derivation from the graph
{Axy , 1x , 2y} according to the grammar of Figure 2.4 are depicted in the
figure below.

a

c

1

2

1

2

a

c

b

a

c

1

2

a

d
A B

A

A

a

c

b

a

c

1

2

a
c

a

a

c

d

B

B

=⇒=⇒=⇒

Figure 2.5. Parallel rewritings according to the grammar of Figure 2.4 .

The derivation =⇒
R

∗ is the reflexive and transitive closure for composition

of the parallel rewriting =⇒
R

(i.e. G =⇒
R

∗ H if H is obtained from G by

a consecutive sequence of parallel rewritings).
We can now define the graphs generated by deterministic graph grammars.

2.3 Regular graphs

Intuitively the graph (up to isomorphism) generated by a deterministic
graph grammar R from a finite graph G0 is the limit of any infinite se-

10 D. Caucal

quence of rewritings starting from G0 where every non-terminal is eventu-
ally rewritten. Formally to a sequence

(
Gi

)
i≥0

of finite multi-hypergraphs

such that for all i ≥ 0, Gi −→
R, Xi

Gi+1 and

for all X ∈ Gi with X(1) ∈ NR , there exists j ≥ i such that X = Xj ,
we associate the limit

⋃
i≥0[Gi] where for M a hypergraph,

[M] := M ∩ TRV ∗
M

designates the (simple) set of terminal hyperarcs of M .
Note that the sequence

(
Gi

)
i≥0

can be not increasing contrary to the se-

quence
(
[Gi]

)
i≥0

; in particular, even if
⋃

i≥0[Gi] is finite, the sequence(
Gi

)
i≥0

is not necessarily ultimately constant.

It is easy to check that this limit does not depend on the order of the rewrit-
ing. In particular, we can use the parallel rewriting =⇒

R

which provides a

canonical rewriting order similar to the leftmost rewriting for context-free
grammars.
The example below illustrates that without multiplicities, the unicity of the
limit graph no longer holds.

; ;

=⇒ =⇒ =⇒

Graph grammar:

Parallel rewritings:

(1)

(2)

(1)

(2)

(1)

(2)

B

(1)

(2)

Ab

(1)

(2)

(1)

(2)

Ab

A

A

a

c

b

a

c

B Cb

a

c

A Ab

a

c

b

C

C

C

B

B

c

c

a

B C

a

bb

Figure 2.6. Parallel rewritings producing multiplicity.

We will see in next section that, though multiplicities are crucial in ensuring
the unicity of the generated graph, they can be omitted provided that the
grammar respects a certain normal form (see Subsection 3.2).
A hypergraph G is generated by a grammar R from a hypergraph H if G
is isomorphic to a hypergraph in the following set:

Rω(H) := {
⋃

n≥0[Hn] | H0 = H ∧ ∀ n ≥ 0, Hn =⇒
R

Hn+1 } ;

note that the vertices of H appear in any hypergraph of Rω(H).
For instance by continuing infinitely the derivation of Figure 2.5, we get a
graph depicted in the next figure.

Deterministic graph grammars 11

b

d

1

2

a

c

a

a

c

Figure 2.7. Graph generated by the grammar of Figure 2.4 .

Remark that the definition of Rω(H) does not fix a particular naming of
the vertices of the graph generated by R. A canonical naming is provided
in Section 3.5 .

A regular hypergraph is a hypergraph generated by a (deterministic) gram-
mar from a finite hypergraph.

The regular hypergraphs are the hyperedge replacement equational hyper-
graphs in the sense of [Co 89], which are defined as the smallest solutions of
finite systems of equations involving a set of hypergraph operators.
A regular graph is a regular hypergraph which is a graph: it is generated by
a graph grammar from a finite hypergraph. We give below some examples
of regular graphs.

The grammar R reduced to the unique rule

A1234 −→ {a21 , b25 , A2345}
and represented below:

a

(1) (2) (3) (4) (1) (2) (3) (4)

A A

b

(5)

generates from its left hand side the following regular graph:

aaaaaa

b b b b

which can be drawn without crossing edges as the following regular graph:

12 D. Caucal

a

b

Figure 2.8. A regular graph.

Another example of graph grammar is the grammar reduced to the following
rule:

A

(2)

(1)

(2)

A

(1)

a

b

A

c

d

generating from its left hand side the following regular graph:

a

b

a

b

a

c

d a

a

d a

c

b

a

a

d

Figure 2.9. Another regular graph.

Deterministic graph grammars 13

The grammar reduced to the following rule:

c

A

A

(2)

(1)

(2)

A

(1)

a

b

generates from its left hand side the following regular graph:

a

cb

a a

b

c b

c

Finally the graph grammar reduced to the following rule:

A A A

b

a

a

b

(1)
(1)

(2)

(3)

(4)

(2)

(3)

(4)

generates from its left hand side the regular graph below, where each vertex
is of infinite in-degree:

a

b

a b

b

b a

a b

ab

a

14 D. Caucal

3 Normalizations of graph grammars

In this section, we present several elementary transformations to normalize
hypergraph grammars. The first normalization gives an equivalent gram-
mar with a constant axiom such that each non-terminal is accessible and
generates a non empty graph which is connected except for the axiom and
possibly another constant (cf. Proposition 3.5).
This normalization is extended to get ride of multiplicities both in the def-
inition of the graph grammar and in its derivation relation. To ensure that
multiplicities are not needed, we ask that any non-terminal hyperarc ap-
pearing in a right hand side of a rule contains a vertex which is not an
input (cf. Proposition 3.10).
Finally we extend this second normalization by separating as much as possi-
ble for each right hand side the inputs and the outputs (cf. Theorem 3.12).
All these basic transformations are expressed in a powerful and natural way
as fixed point computations. These normalizations are used to derive prop-
erties on the generated graphs: any regular graph has a finite number of
non-isomorphic connected components, and a finite number of vertex de-
grees (cf. Propositions 3.4 and 3.13).
Finally we give a canonical vertex naming for the regular graphs (cf. Sub-
section 3.5).

3.1 Reduced and connected form

We begin by transforming any grammar into a reduced form.
We say that a grammar R is reduced if R = ∅ or there exists a constant
non-terminal Z ∈ Dom(R)∩F0 called the axiom such that the following
three conditions are satisfied:

(i) for all H ∈ Im(R), Z 6∈ FH

(ii) for all A ∈ NR there exists H such that Z =⇒
R

∗ H and A ∈ FH

(iii) Rω(X) 6= {∅} for every X ∈ Dom(R) ;

the axiom is a non-terminal constant which by condition (i) does not ap-
pear in the right hand sides of the rules, condition (ii) means that each
non-terminal is accessible from the axiom, and condition (iii) expresses
that R generates a non empty hypergraph from any non-terminal hyperarc .
By condition (iii), the grammar ∅ (with no rule) is the unique reduced
grammar generating the empty graph ∅.
By conditions (i) and (ii), a non empty reduced grammar has a unique ax-
iom.
For instance the grammar of Figure 2.4 is not reduced, but it becomes re-
duced by adding the rule Z−→ Axy.
We say that a hypergraph G is generated by a reduced grammar R if
R = G = ∅ or if the reduced grammar R is non empty and generates

Deterministic graph grammars 15

G from its axiom.
Any regular graph can be generated by a reduced grammar.

Lemma 3.1. Any regular hypergraph can be generated in an effective way
by a reduced grammar.

Proof. Let G be a hypergraph generated by a deterministic grammar R
from a finite multi-hypergraph G0 .
We take a new constant Z ∈ F0 − FR and we complete R into

R := R ∪ {(Z, G0)}.
The set

E :=
⋃
{ FK ∩NR | Z =⇒

R

∗ K }

of accessible non-terminals from Z is the least fixed point of the following
equation:

E = {Z} ∪ { Y (1) ∈ NR | ∃ (X, H) ∈ R, X(1) ∈ E ∧ Y ∈ H } .

The set
E := { X(1) ∈ E | R

ω
(X) 6= {∅} }

of productive accessible non-terminals is the least fixed point of the following
equation:

E = { X(1) ∈ E | ∃ P, (X, P) ∈ R ∧ P ∩ (E ∪TR)V ∗
P 6= ∅ } .

The following grammar:

S := { (X, P|(E ∪TR)V ∗
P
) | (X, P) ∈ R ∧ X(1) ∈ E }

is reduced and generates G. q.e.d. (Lemma 3.1)

The ‘standard’ construction in the proof of Lemma 3.1 is illustrated below.

⇓ E = {Z, A, B} , E = {Z, A}

Axiom:

Grammar:

;Z
baA

(x) (x)

A

;
(x) (x)

B B
;

(x) (x)

C
c

CA

(x) (x)

b
B

BA
a

Figure 3.1. Reduction of a grammar.

Another form of grammar is to be proper :
VX ⊆ VG for all X ∈ Dom(R) and for all G ∈ Rω(X)

meaning that any vertex of the left hand side X of any rule, is a vertex
of its right hand side and is a vertex of a terminal hyperarc of any graph

16 D. Caucal

obtained by a derivation from X . For instance the grammar of Figure 2.4
is proper but the following grammar:

Axy −→ {axz , Azy}
is not proper because the vertex y of Axy does not belong to any graph
of Rω(Axy).

Lemma 3.2. Any regular hypergraph can be generated in an effective way
by a proper and reduced grammar.

Proof. Let G be a regular hypergraph. We may assume G 6= ∅ because
∅ is a proper and reduced grammar generating ∅. By Lemma 3.1, G is
generated by a reduced grammar R from its axiom Z.
For every rule Ax1. . .x̺(A) −→ PA in R, we define the set Keep(A) of
indices 1 ≤ i ≤ ̺(A) such that xi is useful : xi ∈ VG for all G ∈
Rω(Ax1. . .x̺(A)).
This collection of sets Keep(A) is the least fixed point of the following re-
cursive system:

Keep(A) := { i ∈ [̺(A)] | PA ∩TR V ∗
PA

xi V ∗
PA

6= ∅ ∨ ∃ BY ∈ PA ,

B ∈ NR ∧ ∃ 1 ≤ j ≤ |Y | , Y (j) = xi ∧ j ∈ Keep(B) } .

To each A ∈ NR, we associate a new symbol A′ of arity |Keep(A)|.
To each non-terminal hyperarc Ay1. . .y̺(A) (with A ∈ NR), we associate
the following hyperarc:

h(Ay1. . .y̺(A)) := A′yi1 . . .yip

with {i1, . . ., ip} = Keep(A) and i1 < . . . < ip .
We complete h by the identity: h(X):=X for any terminal hyperarc X .
Finally we extend h by union to any multi-hypergraph H : h(H) := { h(X) | X ∈
H }. We define the following grammar:

h(R) := { (h(X), h(H)) | (X, H) ∈ R } .

The grammar h(R) is proper, reduced and generates G from its axiom
h(Z) = Z ′. q.e.d. (Lemma 3.2)

The construction in the proof of Lemma 3.2 is illustrated in the figure below.

Keep(A) = {1, 2} , Keep(B) = {2}⇓

B A

A

; A′
B′

;

A′ A′

B′

A

B

A

;

AZ ;

Z′

A′

A′

a

a

(x)(x)

(y) (y)

(x)

(y)

(x)(x)

(x)

(y)

(y)(y)

(y)(y)(z) (z)

Figure 3.2. Transformation of a grammar into a proper grammar.

Deterministic graph grammars 17

We now want to generate regular hypergraphs using grammars in two parts:
a set of rules producing only connected graphs, and a set of rules whose left
hand sides are constants.
Note that for any reduced grammar generating a connected hypergraph, the
axiom is the unique non-terminal of null arity.
A connected grammar R is a proper grammar such that

for all X ∈ Dom(R) − F0 and all G ∈ Rω(X), G is connected.
In particular for every rule (X, H) ∈ R with X 6∈ F0 , we have H ∩ F0 = ∅.
Let us extend Lemma 3.2.

Lemma 3.3. Any regular hypergraph can be generated in an effective way
by a connected and reduced grammar.

Proof. Let G 6= ∅ be a regular hypergraph.
By Lemma 3.2, G is generated by a proper and reduced grammar R from
its axiom Z.
For every rule Ax1. . .x̺(A) −→ HA in R and for every 1 ≤ i ≤ ̺(A), we
associate the set Con(A, i) of vertices in HA which are connected to xi in
Rω(Ax1. . .x̺(A)).
This collection of sets Con(A, i) is the least fixed point of the following
recursive system:

Con(A, i) = {xi} ∪
⋃
{ VX | X ∈ HA ∧ X(1) ∈ TR

∧ VX ∩ Con(A, i) 6= ∅ }

∪ { X(j) | ∃ Y ∈ Dom(R), Y (1)X ∈ HA

∧ ∃ k, X(k) ∈ Con(A, i) ∧ xj ∈ Con(Y (1), k) } .

We complete these sets by defining for any A ∈ NR the set
Con(A) := { Con(A, i) | 1 ≤ i ≤ ̺(A) } ∪ {∅} .

To each non-terminal hyperarc X ∈ Dom(R) and to each P ∈ Con(X(1)),
we associate a new symbol X(1)P of arity |P ∩ {x1, . . ., x̺(X(1))}|, and the
hyperarc

XP := X(1)P xi1 . . .xip

with {xi1 , . . ., xip
} = P ∩{x1, . . ., x̺(X(1))} and i1 < . . . < ip .

In particular X∅ = X(1)∅ is a constant.
This permits to define the following grammar:

I := { (X , { XP | P ∈ Con(X(1)) }) | X ∈ Dom(R) }
which splits each X ∈ Dom(R) into hyperarcs according to Con(X(1)).
For each rule (X, H) of R, there is a unique hypergraph KX such that
H =⇒

I

KX , and we denote

≪X≫ := VKX
−

⋃
Con(X(1))

the set of vertices of HX which are not connected to an input (a vertex in
VX). The following grammar:

18 D. Caucal

S := { (XP , (KX)|P − F0) | X ∈ Dom(R) ∧ P ∈ Con(X(1)) − {∅} }

∪ { (X∅ , (KX)|≪X≫ | X ∈ Dom(R) }

generates from XP the connected component of Rω(X) containing P 6= ∅,
and S generates from X∅ the remaining part of Rω(X).
In particular G ∈ Sω(Z∅).
The grammar S is connected but it is not necessarily reduced.
However by applying Lemma 3.1, we get an equivalent connected and re-
duced grammar of axiom Z∅. q.e.d. (Lemma 3.3)

The transformation of Lemma 3.3 is illustrated below.

⇓ Con(Z) = {∅} , Con(A) = { {x, p} , {y, q} , ∅}

; AA

b

c
Z

;
Ax a

Ax

;
Ay Ayb

Z∅

A∅ A∅

c

A A

A∅A∅

Ay AyAxAx

a
(p)

(q)

(x)

(x)

(y)

(x)

(y)

(y)

(x)

(y)

Figure 3.3. From a proper grammar to a connected grammar.

A regular graph can have an infinite number of connected components as
shown in the figure below.

Grammar:

Graph generated from its non-terminal:

(x)(x)

a a a

a a a

aA A A

Figure 3.4. A non connected regular graph.

An even simpler example is given by the graph grammar reduced to the
unique rule Z −→ {axy , Z} which generates from the constant Z the
infinite repetition of an a-arc.
However these two regular graphs have only a unique connected component
up to isomorphism. Let us generalize this property.

Deterministic graph grammars 19

Proposition 3.4. A regular hypergraph has a finite number of non-isomorphic
connected components.

Proof. Let G 6= ∅ be a regular hypergraph. By Lemma 3.3, G is generated
by a connected and reduced grammar R from its axiom Z.
We restrict R to the following grammar:

S := { (X, H) ∈ R | X 6∈ F0 } .
The grammar S preserves the connectivity:

Sω(K) is connected for any connected hypergraph K 6∈ NR ∩F0.
Any connected component of G is isomorphic to a hypergraph of the fol-
lowing set:⋃

{ Sω(K) | ∃ H ∈ Im(R), K conn. comp. of H − (NR ∩F0) }
which has a finite number of non-isomorphic hypergraphs. q.e.d. (Prop. 3.4)

Let us normalize the constant rules.
A grammar R is strongly reduced if R is a reduced grammar with at most
two non-terminal constants (i.e. |NR ∩ F0| ≤ 2), and such that

(X, H) ∈ R ∧ X 6∈ F0 =⇒ H ∩ F0 = ∅ .
Note that this last condition is already satisfied if R is connected. Let us
extend Lemma 3.3.

Proposition 3.5. Any regular hypergraph can be generated in an effective
way by a connected and strongly reduced grammar.

Proof. Let G 6= ∅ be a regular hypergraph. By Lemma 3.3, G is generated
by a connected and reduced grammar R from its axiom Z.
We extract in R the following constant rules:

R0 := { (X, Y) | ∃ H, (X, H) ∈ R ∧ X ∈ F0 ∧ Y ∈ FH ∩NR ∩F0 }
in order to determine the following subset of ‘non-repetitive’ constant non-
terminals:

NRep := { A ∈ NR ∩ F0 | (A, A) 6∈ R+
0 } − {Z}.

First we restrict R to the rules of its non-repetitives constant non-terminals:
I := { (X, H) ∈ R | X ∈ NRep } .

To each X ∈ NRep, we derive a hypergraph HX such that
X =⇒

I

∗ HX ∧ FHX
∩NRep = ∅

and we define the following grammar:
I ′ := { (X, HX) | X ∈ NRep } .

By rewriting according to I ′, we remove the non-repetitive constant non-
terminals in R.
For each X ∈ F0 − NRep , we associate a hypergraph H ′

X such that
X R o =⇒

I′
H ′

X

with VH′
X

∩ VH′
Y

= ∅ for every X 6= Y in F0 − NRep .
The following grammar:

S := { (X, H) ∈ R | X 6∈ F0 } ∪ { (X, H ′
X) | X ∈ F0 − NRep } .

20 D. Caucal

remains connected, reduced and generates G from its axiom Z.
The set of ‘repetitive’ constant non-terminals is

Rep := { A | (A, A) ∈ R+
0 } = (NR ∩ F0) − (NRep ∪ {Z}) .

If Rep = ∅ then S suits with NR ∩ F0 = {Z}.
Otherwise we take a new constant Y 6= Z and the following graphs:

K0 := (H ′
Z)|−F0

the image of Z in S without constants,

and K :=
⋃
{ (H ′

X)|−F0
| X ∈ Rep } .

The following grammar:
S′ := { (X, H) ∈ S | X 6∈ F0 } ∪ { (Z , K0 ∪ {Y }) , (Y , K ∪ {Y }) }

remains connected and S′ generates G from Z.
By restriction to the accessible non-terminals from Z using Lemma 3.1, we
get an equivalent grammar which is strongly reduced. q.e.d. (Proposition 3.5)

The transformation of Proposition 3.5 is illustrated below.

⇓ Rep = {A, B} , NRep = {C}

Z
c

Z A C

A CB
b

; A B
a

; C
c

;
a b c

Y Y Y

Figure 3.5. From a reduced grammar into a strongly reduced one.

3.2 Discarding the multiplicity

In this section, we construct for any reduced grammar a finite graph of its
output dependencies by rewritings from the axiom. This permits to decide
whether every derivation from the axiom is only on simple hypergraphs
(without multiplicity). Then we present a normal form that allows to get
ride of multiplicity. In a first time in Lemma 3.8, we show that any gram-
mar is equivalent to one where right hand sides are hypergraphs and not
multi-hypergraphs. In a second time, we show in Proposition 3.10 that any
grammar is equivalent to a grammar where each non-terminal hyperarc ap-
pearing in a right hand side contains a vertex which is not an input. For
a grammar in this normal form, the generated graph can be defined using
only hypergraphs and not multi-hypergraphs.

Let R be any reduced grammar.
An output link C of R is a multi-hypergraph of at most two hyperarcs
which are non-terminals and with a common vertex:

|C| ≤ 2 ∧ FC ⊆ NR ∧ (X, Y ∈ C =⇒ VX ∩ VY 6= ∅) ;

Deterministic graph grammars 21

we denote [C]∼ := { D | C ∼ D } the closure of C by isomorphism.
The output dependency graph Out(R) of R is

Out(R) := G|{ s | [Z]∼ −→
G

∗
s }

the graph G below and restricted to its vertices accessible from [Z]∼ :
G := { [C]∼ −→ [D]∼ | C, D output links ∧ ∃ H, C −→

R

H

∧ D ⊆ H ∧ (|D| = 1 ⇒ D conn. comp. of H − [H]) } .
We give below the output dependency graph of a reduced grammar.

Grammar R:

Output dependency graph Out(R):

A

;

(1)

(2)

(1)

(2)

;

(1)

(2)

(1)

(2)

ba BA BA BZ

Z A B BB

A

A

B B

B

B

Figure 3.6. Output dependency graph of a grammar.

We say that a grammar R is without multiplicity if R is reduced and every
vertex of Out(R) is a simple hypergraph. Thus

R is without multiplicity ⇐⇒ (∀ H, Z
∗
−→

R

H =⇒ H simple).

In particular, any grammar without multiplicity is simple.
We now want to transform any grammar into an equivalent grammar with-
out multiplicity. We start with preliminary normal forms presented in
Lemma 3.6 and 3.7.
We say that a grammar R is growing if R = ∅ or R generates an infinite
hypergraph from each left hand side, except possibly from its axiom Z :

for all X ∈ Dom(R) − {Z} and G ∈ Rω(X), we have |G| = ω .

Lemma 3.6. Any regular hypergraph can be generated in an effective way
by a growing, connected and strongly reduced grammar.

Proof. Let G 6= ∅ be a regular hypergraph.
By Proposition 3.5, G is generated by a connected and strongly reduced
grammar R from its axiom Z.

22 D. Caucal

We define two binary relations R0 and R1 on the non-terminal set NR as
follows:
R0 := { (X(1) , Y (1)) | ∃ H, (X, H) ∈ R ∧ Y ∈ H ∧ Y (1) ∈ NR }

R1 := { (X(1) , Y (1)) | ∃ H, (X, H) ∈ R ∧ Y ∈ H ∧ Y (1) ∈ NR

∧ VY − VX 6= ∅ }

Then the set

E := { A | ∃ B, (A, B) ∈ R∗
0 ∧ (B, B) ∈ R+

1 }

is the set of non-terminals X(1) with X ∈ Dom(R) such that the graphs
of Rω(X) are infinite. We begin with the grammar:

I0 := { (X, ∅) | X ∈ Dom(R) ∧ X(1) ∈ NR − E }
and having constructed a grammar In for n ≥ 0, we define a deterministic
grammar In+1 with Dom(In+1) = Dom(I0) and

In+1 ⊆ { (X, H) | X R o =⇒
In

H } .

Note that the right hand sides of the grammars In do not contain any non-
terminal hyperarc.
We stop with the grammar I = Im for m = min{ n | In = In+1 }.
Thus I is a grammar with Dom(I) = { X ∈ Dom(R) | X(1) ∈ NR −E }
and for every (X, H) ∈ I, H is finite and H ∈ Rω(X).
From I, we construct a deterministic grammar S such that

S ⊆ { (X, H) | X R o =⇒
I

H ∧ X(1) ∈ E }.

This grammar S is growing, connected and by restriction to the accessible
non-terminals from Z, it is strongly reduced. q.e.d. (Lemma 3.6)

We say that a grammar R is strict if
VH − VX 6= ∅ for any (X, H) ∈ R

any rule has at least one non-input vertex in its right hand side.
Starting from a growing grammar, it is enough to write every right hand
side until the grammar is strict.

Lemma 3.7. Any regular hypergraph can be generated in an effective way
by a strict, connected and strongly reduced grammar.

Proof. Let G 6= ∅ be a regular hypergraph.
By Lemma 3.6, G is generated by a growing, connected and strongly re-
duced grammar R from its axiom Z.
As R is growing, we derive each right hand side of S until we get a non
input vertex. We define

S0 := { (X, H) ∈ R | VX 6= VH }

and having defined Sn , we construct a maximal deterministic grammar

Sn+1 ⊆ Sn ∪ { (X, H) | X ∈ Dom(R) − Dom(Sn)

∧ X R o =⇒
Sn

H ∧ VX 6= VH }

Deterministic graph grammars 23

to get S := Sm for m = min{ n | ∀ (X, H) ∈ Sn , VX 6= VH }.
This grammar S is strict and generates G from its axiom Z.
Furthermore S remains connected and becomes strongly reduced by re-
striction to the accessible non-terminals from Z. q.e.d. (Lemma 3.7)

The transformations of Lemma 3.6 and Lemma 3.7 are illustrated below.

Lemma 3.6

Lemma 3.7

⇓

⇓

B

Z A A;

B

Aa

Z ;

B

aa bB B

Z ;

B

aa
B C

;
bC B

C
;

bC B

(x)

(x)

(y) (y)

(x)

(x) (x)

(x) (x) (x) (x)

(x) (x) (x)

Figure 3.7. Transformation of a grammar into a strict grammar.

To generate a regular (simple) hypergraph, we can avoid multiplicity in the
grammar.
Precisely, a simple grammar is a grammar where each right hand side is a
(simple) hypergraph.

Lemma 3.8. Any regular hypergraph can be generated in an effective way
by a simple, strict, connected and strongly reduced grammar.

Proof. Let G 6= ∅ be a regular hypergraph. By Lemma 3.7, G is generated
by a strict, connected and strongly reduced grammar R from its axiom Z.
To each non-terminal A ∈ NR−{Z} , we associate its maximal multiplicity:

m(A) := max{ H(X) | H ∈ Im(R) ∧ X ∈ H ∧ X(1) = A },
and we take new non-terminals A1, . . ., Am(A) of arity ̺(A).
This allows us to replace each right hand side H ∈ Im(R) by the following
simple hypergraph:

H ′ := { X | X ∈ H ∧ X(1) ∈ TR }

∪ { X(1)iX(2). . .X(|X |) | X ∈ H ∩ NRV ∗
H ∧ 1 ≤ i ≤ H(X) }.

24 D. Caucal

We obtain the following grammar:

S := { (Z, H ′) | (Z, H) ∈ R }

∪ { (X(1)iX(2). . .X(|X |), H ′) | (X, H) ∈ R ∧ 1 ≤ i ≤ m(X(1)) } .

This grammar S is simple, strict, connected, strongly reduced and gener-
ates G from its axiom Z . q.e.d. (Lemma 3.8)

The transformation of Lemma 3.8 is illustrated below.

; ;

;

=⇒ =⇒ω
complete binary a - tree=⇒

Grammar:

Derivation:

Equivalent simple grammar:

a a

a

a

aa

a

a

a

a

a

Z
A

A

A A

A

A

A

A

A

A

A
Z

A1

A2

A2A1

A2

A1A1

A2

Z
(x) (x)(x) (x)

(x)(x)

Figure 3.8. Transformation of a grammar into a simple grammar.

To generate a regular hypergraph, we also want to reduce the rewriting
steps to (simple) hypergraphs. This is not possible in general as shown in
Figure 2.6 and in the figure below.

=⇒ =⇒ω=⇒

Simple grammar:

Derivation:

aa

A

A AA a

a

a

A

A

a

a

A

A

a aa

a
(x)

(y)

(z)

(x)

(y)

(z)

Figure 3.9. Multiplicity by parallel rewritings.

However any regular hypergraph can be generated by a simple hypergraph
grammar whose rewriting steps are restricted to simple hypergraphs.
A grammar R is non-terminal outside if for any rule X −→ H , any non-
terminal hyperarc Y ∈ H with Y (1) ∈ NR has a vertex which is not an

Deterministic graph grammars 25

input: VY − VX 6= ∅.
The grammar of Figure 3.4 is non-terminal outside and the grammar of
Figure 3.9 is not.
With the strongly reduced property, we have removed the multiplicity by
parallel rewritings for constants. The non-terminal outside property re-
moves the multiplicity by parallel rewritings for non-constant non-terminals.

Lemma 3.9. Any non-terminal outside, simple and strongly reduced gram-
mar is without multiplicity.

Proof. Let R be any non-terminal outside, simple and strongly reduced
grammar.
By induction, we verify that the rewriting −→

R

preserves the property P (H)

of a hypergraph H to be simple and with at most one non-terminal con-
stant:

P (H) ∧ H −→
R

K =⇒ P (K).

Let X be the left hand side of the applied rule. If X is a constant then
the implication is due to R being simple and strongly reduced.
If X is not a constant then the implication is due to R being simple,
strongly reduced and non-terminal outside. q.e.d. (Lemma 3.9)

We give below another simpler grammar which is not non-terminal outside
and for which the generated graph is obtained by parallel rewritings with
multiplicity.

;;;

=⇒=⇒ =⇒

Derivation:

a

b c cbaa

bZ
A

B

A

C

B

C

Z
A B C C

c
C

(x)(x)

(x) (x)
(x)

(x)

Figure 3.10. A graph grammar which is not non-terminal outside.

We can transform any grammar into an equivalent simple non-terminal
outside grammar.

Proposition 3.10. Any regular hypergraph can be generated in an effec-
tive way by a non-terminal outside, simple, connected and strongly reduced
grammar.

Proof. Let G 6= ∅ be a regular hypergraph.
By Lemma 3.8, G is generated by a simple, strict, connected and strongly
reduced grammar R from its axiom Z.

26 D. Caucal

Recall that a connected grammar is proper.
We transform R by incrementing the arity of non constant non-terminal
hyperarcs.
For each non-terminal A ∈ NR − F0 , we take a new symbol A′ of arity
̺(A′) = ̺(A) + 1.
For each (X, H) ∈ R with X 6∈ F0, there exists a vertex x

X
∈ VH − VX

because R is strict, and we define the hyperarc:
X ′ := X(1)′X(2). . .X(|X |)x

X
.

For each H ∈ Im(R) and for each Y ∈ H , we define the following hyperarc:

Y ′ :=

{
Y if Y (1) 6∈ NR − F0

Y (1)′Y (2). . .Y (|Y |)yY if Y (1) ∈ NR − F0 ;

where y
Y

is a new vertex (not in R with y
Y
6= y

Z
for Y 6= Z).

By union, we extend to H ′ := { Y ′ | Y ∈ H }.
It remains to take

S := { (X, H ′) ∈ R | (X, H) ∈ R ∧ X ∈ F0 }

∪ { (X ′, H ′) | (X, H) ∈ R ∧ X 6∈ F0 } .

The grammar S remains simple, connected and strongly reduced of axiom
Z. And S is non-terminal outside and generates G. q.e.d. (Proposition 3.10)

The transformation of Proposition 3.10 is illustrated below.

=⇒

; ; ;

=⇒=⇒

Grammar:

Derivation:

c

c cbaba ba

a bZ A B A C B C C

Z A B C C

(y) (y)

(x) (x)

(y) (y)

(x) (x) (x)

(y) (y)

(x)

Figure 3.11. Transformation of the grammar of Figure 3.10.

3.3 Separating the inputs with the outputs

We want to extend Proposition 3.10 by separating as much as possible in
every right hand side of the grammar input and output vertices. However
we can observe that if a vertex of a left hand side X is of infinite degree in
Rω(X) then it must be also an output. We will show that a grammar can
be transformed into an equivalent one such that the non-output vertices of
every left hand side X are the inputs of finite degree in Rω(X).
A grammar R is terminal outside if for any rule X −→ H , any terminal
hyperarc Y ∈ H with Y (1) ∈ TR has a vertex which is not an input:
VY − VX 6= ∅.

Deterministic graph grammars 27

An outside grammar is a terminal outside and non-terminal outside gram-
mar.

Lemma 3.11. Any regular hypergraph can be generated in an effective way
by an outside, simple, connected and strongly reduced grammar.

Proof. Let G 6= ∅ be a regular hypergraph.
By Lemma 3.1, G is generated by a reduced grammar R from its axiom Z.
By least fixed point, we define the grammar I such that Dom(I) = Dom(R)
and

I = { (X , H ∩ TRV ∗
X) | X R o =⇒

I

H } .

We define the following grammar:
J := { (X , H ∪ {X}) | (X, H) ∈ I ∧ X 6= Z }

and the following grammar:
S := { (Z, H) | Z R o =⇒

J

H } ∪ { (X, H|−TRV ∗
X

) | X R o =⇒
J

H } .

For any X ∈ Dom(R) − {Z},
Sω(X) = { K − TRV ∗

X | K ∈ Rω(X) }
hence Sω(Z) = Rω(Z).
Furthermore S is terminal outside but not necessary reduced (due to con-
dition (iii)).
By applying the previous constructions, the obtained grammar remains ter-
minal outside and becomes non-terminal outside, simple, connected and
strongly reduced. q.e.d. (Lemma 3.11)

Let us apply the construction of the proof of Lemma 3.11 to the grammar
of Figure 2.4 completed with the rule Z−→ Axy .

;;

a

c

b

d

a

a

c

Z

(x)

(y)

(x)

(y)

(x)

(y)

(z)

(y)

(z)

(x)

A A B B

A

A

Figure 3.12. From the grammar of Figure 2.4 to a terminal outside one.

In the last figure of Section 2 and in Figure 3.9, we have regular graphs with
vertices of infinite degree. We give below another regular graph of infinite
degree.

Grammar:

Graph generated from its unique non-terminal:

A A a

(x) (x)

a

a a

28 D. Caucal

Figure 3.13. A regular graph of infinite degree.

We will see that there is no regular hypergraph of finite degree which is
not of bounded degree. To compute the vertex degrees of a hypergraph, we
separate in the right hand sides of a grammar the outputs from the inputs
of finite degree.
A degree-outside grammar R is a grammar such that the vertices of any
right hand side which are inputs and outputs are the input vertices of infinite
degree in the generated graph:
∀ (X, H) ∈ R, ∀ Y ∈ H ∩ NR V ∗

H , VX ∩ VY ⊆ { s ∈ VX | dRω(X)(s) = ω } .
The grammar of Figure 3.13 is degree-outside but the grammar below is not:
x is both an input and an output but is of finite degree in the generated
graph.

(x)

(y)

(z)

(y)

(z)

(x)

A

a

b

A

Figure 3.14. A grammar which is not degree-outside.

A degree-outside and reduced grammar generating a hypergraph of finite
degree is called an input-separated grammar : for each right hand side, any
input is not an output.
A grammar which is outside and degree-outside is a complete outside gram-
mar.
Any regular hypergraph can be generated by a complete outside grammar.

Theorem 3.12. Any regular hypergraph can be generated in an effective
way by a complete outside, simple, connected and strongly reduced grammar.

Proof. Let G 6= ∅ be a regular hypergraph.
By Lemma 3.11, G is generated by an outside, simple, connected and
strongly reduced grammar R from its axiom Z.
For any hypergraph H and any P ⊆ VH , we denote

[H, P] := |{ (Y, i) | Y ∈ H ∧ Y (1) ∈ NR ∧ 2 ≤ i ≤ |Y | ∧ Y (i) ∈ P }|
the number of non-terminal links in H on vertices in P .
To get from R a degree-outside grammar, we derive each right hand side
until we cannot separate outputs from inputs. We begin with the initial
grammar:

S0 := R
and having constructed a grammar Sn with n ≥ 0, we associate to each
rule (X, H) ∈ Sn a hypergraph KX such that

H −→
Sn

KX ∧ [KX , VX] < [H, VX]

if such a hypergraph exists, otherwise KX = H ; and we define the grammar

Deterministic graph grammars 29

Sn+1 := { (X, KX) | X ∈ Dom(R) } .
We stop with the grammar:

S := Sm for m = min{ n | Sn = Sn+1 } .
This grammar S is complete outside, simple, connected and generates G
from Z. And S becomes strongly reduced by restriction to the accessible
non-terminals from Z. q.e.d. (Theorem 3.12)

Note that the transformation of Theorem 3.12 applied directly to the gram-
mar of Figure 3.14 which is not terminal outside, and completed with the
rule Z −→ {A123}, leaves the grammar unchanged. Let us apply the trans-
formation of Theorem 3.12 to a suitable grammar.

;Z
A A

a

A

; B b

a

c

B B

c

b

Z ; B
A A

A

; B b

a

c

B

(x)

(x) (x)

(y) (y)

(x)

(x)

(x)

(x)

(y)

(x)

(y)

Outside, simple, connected and strongly reduced grammar:

Equivalent complete outside grammar:

a a a

c c

b

c

bb

a a

c c

b

c

bb

a a

c c

b

c

bb

a

a

Generated graph:

Figure 3.15. Transformation of Theorem 3.12.

The transformation of Theorem 3.12 is also illustrated below.

30 D. Caucal

⇓

;

;

Z ;

A

Z

A

A

A Bb B

b A

b

a

A

a

a a a
b

b
b

b

(x)

(y)

(x)

(y)(y)

(x)

(y)

(x)

(y)

(x)

(y)

(x)

generating the graph:

Figure 3.16. Transformation of a grammar into a degree-outside one.

The regular graph of Figure 3.16 has only two possible vertex degrees: 3
and ω. Let us generalize this property.

Proposition 3.13. a) Any regular hypergraph has a finite number of vertex
degrees, hence is either of infinite degree or of bounded degree.
b) The class of regular hypergraphs is closed under colouring of vertices
whose degree belongs to a given subset of IN ∪ {ω}.

Proof. Let G 6= ∅ be a regular hypergraph. By Theorem 3.12, G is gener-
ated by a complete outside, simple, connected and strongly reduced gram-
mar R from its axiom Z.
We can assume that the non-input vertices of the right hand sides are dis-
tinct:
(VH − VX) ∩ (VK − VY) = ∅ ∀ (X, H) , (Y, K) ∈ R with X 6= Y ,

and we denote by E the finite set of non-input vertices in R :
E :=

⋃
{ VH − VX | (X, H) ∈ R } .

Let us prove Property (a).
For each rule (X, H) ∈ R, we take a hypergraph K such that H =⇒

R

K

and for every vertex s ∈ VH − VX , we define

d(s) :=

{
ω if ∃ Y ∈ K, Y (1) ∈ NR ∧ s ∈ VY

d[K](s) otherwise.

The vertex degrees of G form the set { d(s) | s ∈ E } which is finite and
computable.
Let us prove Property (b). Let P ⊆ IN ∪ {ω} and # a colour.
We want to construct a grammar generating

GP := G ∪ {# s | s ∈ VG ∧ d(s) ∈ P } .
To each rule (X, H) ∈ R, we associate the hypergraph:

H ′ := H ∪ { # s | s ∈ VH − VX ∧ dRω(H)(s) ∈ P } .

Deterministic graph grammars 31

So the grammar { (X, H ′) | (X, H) ∈ R } generates GP from Z .
q.e.d. (Proposition 3.13)

3.4 Separating the outputs

This last normalization subsection permits to get grammars separating for
each right hand side the vertices of the non-terminals.
A grammar R is output-separated if for any right hand side, distinct non-
terminal hyperarcs have no common vertex and any non-terminal hyperarc
has distinct vertices: for any H ∈ Im(R) and any X, Y ∈ H ∩ NRV ∗

H ,
|VX | = ̺(X(1)) ∧ (X 6= Y ⇒ VX ∩ VY = ∅).

Note that any output-separated grammar is without multiplicity.
Theorem 3.12 cannot be extended to get grammars which are also output-
separated.

a a a

b b b b

a a a

b b b b

c c c c

c c c c

Figure 3.17. Regular graph not given by an output-separated grammar.

However we give a general sufficient condition on any reduced grammar R
that allows to transform R into an equivalent output-separated grammar.
To any hypergraph H labelled in NR ∪ TR , we denote

Comp(H) := { [C]∼ | C connected component of H|−TRV ∗
H

}
the family of the connected components (up to isomorphism) of the set of
non-terminal hyperarcs of H , and

Comp(R) :=
⋃
{ Comp(H) | Z =⇒

R

∗ H } .

We say that R is output-separable if Comp(R) is finite.
This notion is illustrated below.

32 D. Caucal

;

;

Output-separable grammar R:

Comp(R) :

Non output-separable grammar:

; ;

AZ

(1)

(2)

A

(1)

(2)

bA A

a

Z

(1)

(2)

A

(1)

(2)

A a A

A

Z A A A

Figure 3.18. Output separation for grammars.

Any input-separated grammar R (reduced and degree-outside grammar
with Gen(R) of finite degree) is output-separable:

Comp(R) = { {Z} } ∪ { [C]∼ | ∃ H ∈ Im(R),
C connected component of H|−TRV ∗

H
} .

Any graph generated by an output-separable grammar can be generated by
an output-separated grammar.

Lemma 3.14. Any output-separable grammar can be transformed into an
equivalent output-separated grammar.

Proof. Let R be any output-separable grammar: R is reduced and Comp(R)
is finite. Denoting m the cardinality of Comp(R), we take hypergraphs
H1, . . ., Hm such that

{[H1]∼ , . . ., [Hm]∼} = Comp(R).
The axiom Z of R satisfies [Z]∼ = {Z} hence Z ∈ {H1, . . ., Hm}.
For each 1 ≤ i ≤ m, we take a new symbol Ai of arity ̺(Ai) = |VHi

| , we
denote

{si,1, . . ., si,̺(Ai)} = VHi

we take a hypergraph Ki such that Hi =⇒
R

Ki and let

Ci,1, . . ., Ci,ni
be the connected components of (Ki)|−TRV ∗

Ki

.

By definition of Comp(R) and for every 1 ≤ i ≤ m and 1 ≤ j ≤ ni , there
is a unique 1 ≤ ij ≤ m such that Ci,j is isomorphic to Hij

, and we take

an isomorphism hi,j from Hij
to Ci,j : Hij

hi,j

∼ Ci,j .
We define the grammar S having for each 1 ≤ i ≤ m, the following rule:
Aisi,1. . .si,̺(Ai) −→ [Ki] ∪ { Aij

hi,j(sij ,1). . .hi,j(sij ,̺(Aij
)) | 1 ≤ j ≤ ni } .

So S is output-separated and Sω(Z) = Rω(Z). q.e.d. (Lemma 3.14)

The construction of the proof of Lemma 3.14 is illustrated below.

Deterministic graph grammars 33

; ;

a

a
(2) (2)Z

(1)

(2)

A

(1)

(2)

bA

a

B B

b

b B

B

(3) (3)

(1) (1)

Figure 3.19. Output-separated grammar from the first grammar of
Figure 3.18.

Lemma 3.14 permits to extend Theorem 3.12 to any regular graph of finite
degree.

Corollary 3.15. Any regular hypergraph of finite degree can be generated
in an effective way by a grammar which is input and output separated, con-
nected and strongly reduced.

By generation by distance from a vertex of any connected regular graph of
finite degree, we will get in next section a grammar normal form stronger
than in Corollary 3.15 (cf. Theorem 4.6). The condition of a grammar to
be output-separable is effective.

Lemma 3.16. We can decide whether a reduced grammar is output-separable.

The proof of Lemma 3.16 is left as a simple exercise on grammars.

Henceforth and considering Proposition 3.10, we assume that any gram-
mar is reduced, proper and without multiplicity.

3.5 Canonical regular graphs

A grammar R generates from a hypergraph K a family Rω(K) of isomor-
phic hypergraphs. We present here a canonical way to extract a representant
Gen(R, K) in this family. A vertex s of Gen(R, K) is the word of the path
of the non-terminals plus the non-input vertex which are used to get s by
rewritings.
Up to a label renaming with adding rules, we assume that K and each right
hand side of R has no two non-terminal hyperarcs with the same label: for
every H ∈ {K} ∪ Im(R),

Y, Y ′ ∈ H ∧ Y 6= Y ′ ∧ Y (1), Y ′(1) ∈ NR =⇒ Y (1) 6= Y ′(1).
We denote by VR the vertex set of K plus the set of non input vertices of
the right hand sides of R:

VR := VK ∪
⋃
{ VH − VX | (X, H) ∈ R } .

To each word u ∈ N∗
R, we associate for each non-terminal A ∈ NR a new

symbol Au of arity ̺(A), and for each hyperarc X , we define

Xu :=

{
X if X(1) 6∈ NR

X(1)uX(2). . .X(|X |) if X(1) ∈ NR ,

that we extend by union to any hypergraph H : Hu := { Xu | X ∈ H }.

34 D. Caucal

To each rule (X, H) ∈ R and hyperarc Y with Y (1) = X(1)u , u ∈ N∗
R

and VY ⊂ N∗
R VR, we associate the finite hypergraph:

Ŷ :=
(
h(H)

)
uX(1)

where h is the function defined for every vertex r ∈ VH by

h(r) :=

{
Y (i) if r = X(i) for some 2 ≤ i ≤ |X |

u X(1)r otherwise.

Beginning with the hypergraph H0 = Kε and having defined Hn for n ≥ 0,
we construct

Hn+1 := [Hn] ∪ { Ŷ | Y ∈ Hn ∧ ∃ u ∈ N∗
R, Y (1) ∈ (NR)u }

in order to define the following terminal hypergraph:
Gen(R, K) :=

⋃
n≥0[Hn] .

Such a hypergraph is generated by R from K : Gen(R, K) ∈ Rω(K).
We illustrate below the previous construction.

Axiom K :
A

(s)

(t)

i

f

Grammar R :

a

b

B ; AC

e
(r)

B Cc

d

;A

(1) (1) (1) (1) (1)(1)

c

(q)(p)(2) (2) (2) (2) (2)(2)

=⇒ =⇒=⇒

Graphs H0 , ... , H3 :

a

b

a c

b d

a c

b d

e

c

i

f

i

f

i

f

i

f

Aε

(s)

(t)

(s)

(t) (Ap)

BA CAB

(s)

(t) (Ap) (ABq)

AABC

(s) (ABCr)

(t) (Ap) (ABq)

(s)

(t) (Ap) (ABq)

(ABCr)

(ABCAp) (ABCABq)

(ABCABCr)

Canonical graph Gen(R, K) represented by vertices of increasing length:

a

b

c

d

e

b

a c

d

e

b

a c

d

e

ac c c

i

f

Figure 3.20. Canonical graph generated by a grammar.

The vertex set of Gen(R, K) is regular because
VGen(R,K) = VK ∪

⋃
{ LA | A ∈ FK ∩ NR }

where the family of languages LA for all A ∈ NR is the least fixed point
of the following system: for each (X, H) ∈ NR ,

LX(1) = X(1).
(
(VH − VX) ∪

⋃
{ LA | A ∈ FH ∩ NR }

)
.

For the grammar R of Example 3.20, we have

Deterministic graph grammars 35

LA = A({p} ∪ LB) ; LB = B({q} ∪ LC) ; LC = C({r} ∪ LA)
hence VGen(R) = {s, t} ∪ LA = {s , t} ∪ (ABC)∗{Ap , ABq , ABCr}.

For any non-empty finite ∅ 6= E ⊆ VGen(R,K), we define the least approx-
imant Gen

E
(R, K) of Gen(R, K) whose vertex set contains E, which is

the hypergraph obtained from K by a minimal number of rewritings to
generate all vertices in E. Precisely we begin with

H0 = Kε

and having defined Hn for n ≥ 0, either we can choose Y ∈ Hn with
Y (1) ∈ (NR)u for some u ∈ (NR)∗ such that E ∩ u(NR)+VR 6= ∅, and
we take

Hn+1 = (Hn − {Y }) ∪ Ŷ
or if such a Y does not exist, we stop with Gen

E
(R, K) = Hn .

Taking the grammar R of Figure 3.20, we give below Gen
E

(R, C12) the
least approximant of Gen(R, C12) containing E = {CAp}.

c a

b

e
i

f

(1)

(2)

(Cr)

(CAp)

BCA

Figure 3.21. Gen
CAp

(R, C12) for the grammar R of Figure 3.20.

Note that the hypergraphs Hn given to define Gen(R, K) =
⋃

n≥0[Hn]
are approximants:

Hn = Gen
En

(R, K) for En = { v ∈ VGen(R,K) | |v| ≤ n + 1 } .

The canonical graph of a reduced grammar R of axiom Z is
Gen(R) := Gen(R, Z).

36 D. Caucal

4 Generation by distance

In the previous section, we have considered transformations of grammars
into equivalent normalized grammars. We now investigate transformations
to get grammars generating hypergraphs by vertices of increasing distance
from a given colour, either by accessibility or by non-oriented accessibility.

4.1 Regularity by restriction

The regularity of a graph is preserved by restriction to the vertices having
a given colour.

Proposition 4.1. The class of regular hypergraphs is closed under restric-
tion to the vertices having a colour in a given set.

Proof. Let G 6= ∅ be a regular hypergraph. By Theorem 3.12, G is gen-
erated by an outside, simple, connected and strongly reduced grammar R
from its axiom Z.
Let P be a colour set. We want to construct a grammar generating

GP := G|{ s∈G | ∃ c∈P, c s∈G } .
We can restrict P to a unique colour # , otherwise we take a new colour
d to colour all the vertices of G having a colour in P , then we do the
restriction of G to the vertices coloured by d and we remove this colour.
To each A ∈ NR and each I ⊆ [̺(A)], we associate a new non-terminal AI

of arity ̺(A).
For each rule (X, H) ∈ R and I ⊆ [̺(X(1))], we define the hypergraph:

HI := { Y ∈ H | Y (1) ∈ TR ∧ ∀ 1 < i ≤ |Y |,

Y (i) ∈ H ∨ Y (i) ∈ [X, I] }

∪ { BJY | B ∈ NR ∧ BY ∈ H ∧

J = { j | 1 ≤ j ≤ |Y | ∧ (# Y (j) ∈ H ∨ Y (j) ∈ [X, I]) }

with [X, I] := { X(i + 1) | i ∈ I } .

Thus the grammar

{ (AIX , HI) | A ∈ NR ∧ (AX, H) ∈ R ∧ I ⊆ [̺(A)] }

generates G# from Z∅ . q.e.d. (Proposition 4.1)

By Propositions 3.13 and 4.1, the regular graphs are closed by restriction
to a given set of degrees.
The construction of the proof of Proposition 4.1 is illustrated below.

Deterministic graph grammars 37

⇓

;;Z Ad

(q)
i

i
(p)

#

i
(r)

(s)

e B A

#

c A

(x)

(y)

a

b

c A

(x)

(y)

a

b

B

#

;d

i

i

#

#

Z∅ A1,2 B2

i#

;

#

c

a

b
#

A1,2 A1 B2 A2

;

a

A1A1 A2 A1

#

+ reduced

(1)

(2)

(1)

(2)

(1)

(2)

(1)

(2)

(1)

(2)

(1) (1)

(2) (2)

(1)

(2)

(1) (1)

(2)

Figure 4.1. Grammar transformation for the restriction to colour # .

4.2 Regularity by graduation

A graduation g of a hypergraph G is a mapping from VG into IN such
that only finitely many vertices have the same value by g i.e. g−1 is
locally finite: g−1(n) = { s ∈ VG | g(s) = n } is finite for every n ≥ 0.
We will define the regularity of a hypergraph by vertices of increasing grad-
uation. Precisely for every n ≥ 0, we denote

Gg,n := G|{ s | g(s)≤n }

= { X ∈ G | g(X(2)) ≤ n ∧ . . . ∧ g(X(|X |)) ≤ n }

and ∂g,nG := { s | g(s) ≤ n ∧ ∃ X ∈ G, s ∈ VX

∧ ∃ t ∈ VX , g(t) > n }

= { s ∈ VG−Gg,n
| g(s) ≤ n }

the n-th frontier of G by g. This is illustrated by the following diagram:

Gg,n

nG :

where Gg,n contains all edges depicted by a full line and ∂g,nG is the set
of circled vertices; note that

VGg,n
∩ VG−Gg,n

⊆ ∂g,nG .
We say that a hypergraph G is regular by g if there exists a terminal
outside grammar R such that for every n ≥ 0, R generates from its axiom

38 D. Caucal

Z by n+1 parallel rewritings the hypergraph Gg,n of terminal hyperarcs,
plus a set of non-terminal hyperarcs of vertex set ∂g,nG i.e.

∀ n ≥ 0 ∃ H, Z =⇒
R

n+1 H ∧ [H] = Gg,n ∧ VH−[H] = ∂g,nG ;

we also say that R generates G according to g.
Observe that if G is connected and Gg,m 6= ∅, we have for n ≥ 0,

∂g,m+nG = ∅ ⇐⇒ Gg,m+n = G.
When VG is a language, then word length may be used as a graduation.
For instance, the canonical graph of Figure 3.20 is regular by length.

; C

e

B; ;AZ

i

f

a A
B

b

c c

C

d

a

A

(1) (1) (1)(1) (1) (1)

(2) (2) (2)(2) (2) (2)

Figure 4.2. Generating the graph of Figure 3.20 by (length −2).

The regularity by length is true for any canonical hypergraph.

Proposition 4.2. Any canonical hypergraph is regular by length.

Proof. Let R be a grammar.
Let us construct a grammar generating Gen(R) by length.
By Lemma 3.11, we get a terminal outside grammar S with the same canon-
ical hypergraph: Gen(S) = Gen(R).
As S is outside, S generates Gen(S) by length minus 2.
By denoting Z the axiom of S and by adding two new constant sym-
bols Z0, Z1, we complete S into S ∪ {(Z0, Z1) , (Z1, Z)} which generates
Gen(S) by length (from Z0) . q.e.d. (Proposition 4.2)

Proposition 4.2 implies that any regular hypergraph is regular by some grad-
uation.

A dual way to express the regularity by graduation is by decomposition:
we remove iteratively on the graph the vertices with graduation less than
1, 2, The decomposition allows to avoid the explicit use of grammars.
The decomposition at level n ≥ 0 of a hypergraph G by a graduation g is
the following hypergraph:

Gg
n := (G − Gg,n−1) ∪ { max{0, g(s)− n} s | s ∈ VG−Gg,n−1 }

obtained from G by removing Gg,n−1 with Gg,−1 = ∅ and by colouring
any remaining vertex s by the integer max{0, g(s)−n} (assuming that G
has no integer colour otherwise we must use a new integer colour: p′ for
each p ≥ 0).
In particular Gg

0 = G ∪ { g(s) s | s ∈ VG }.
We give an example in the next figure.

Deterministic graph grammars 39

The graph G = { n
a
−→ n + 1 | n ≥ 0 } ∪ { n

b
−→ ω | n ≥ 0 }

with the graduation g(n) = n for n ≥ 0 and g(ω) = 0 yields the graph Gg
0 :

The graphs Gg
n for n ≥ 1 are all equal to the following graph:

b

0

a

b b

0 1 a 2 a 3

b

0

a

b b

0 a a

b

0 1 2

Figure 4.3. Graph decomposition.

We say that a hypergraph G is finitely decomposable by a graduation g if
the disjoint union∑

n≥0 Gg
n := { X(1)(X(2), n). . .(X(|X |), n) | n ≥ 0 ∧ X ∈ Gg

n }
only has a finite number of non isomorphic connected components.
For instance the graph G of Figure 4.3 is finitely decomposable by its grad-
uation g with only two non isomorphic connected components: Gg

0 and
Gg

1 . Another example is the complete binary tree

T := { u
a
−→ ua | u ∈ {a, b}∗ } ∪ { u

b
−→ ub | u ∈ {a, b}∗ }

which is finitely decomposable by length: T
| |
0 and for every n ≥ 1, any

connected component of T
| |
n is isomorphic to T

| |
1 .

A last example is the semiline IN which is regular but is not finitely de-
composable using the graduation associating to n ≥ 0 the n + 1-th prime
number.
By definition the vertices of Gg

n coloured by 0 are vertices of G coloured
by some i ≤ n :

{ s | 0s ∈ Gg
n } ⊆ { s ∈ VG | g(s) ≤ n } which is finite.

In particular any connected component C of
∑

n≥0 Gg
n has a finite set

VC,0 = { s ∈ VC | 0 s ∈ C } of vertices coloured by 0. So any hypergraph
G finitely decomposable by g is bounded connected by g in the following
sense:

∃ b ≥ 0 ∀ C connected component of
∑

n≥0 Gg
n , |VC,0| ≤ b

or equivalently
∃ b ≥ 0 ∀ n ≥ 0 ∀ C connected component of G − Gg,n−1 ,

|{ s ∈ VC | g(s) ≤ n }| ≤ b.
It follows that finite decomposition is a less powerful notion than regularity

40 D. Caucal

(by some graduation). The regular graph G of Figure 3.17 has no finite
decomposition because it is not bounded connected by any graduation g :
the decomposition Gg

n at any level n has a connected component contain-
ing all the vertices of infinite (in-)degree.
The finite decomposition of a hypergraph G by a graduation g also im-
poses that G has finitely many connected components. It is due to the
fact that Gg

0 has a finite number of non isomorphic connected components,
and no connected component can be infinitely repeated because g is locally
finite.

Graduation g(m,n) = m + n

G
g
0 :

Graph G = { (m,n)
a
−→ (m, n + 1) | m, n ≥ 0 }

a0 1 a 2 a 3

a a1 2 3

a2

3

3

Figure 4.4. Graph regular by graduation, bounded connected, but not
finitely decomposable.

Any finite decomposition can be done by a grammar generating what we
remove; the converse is true when the hypergraph is bounded connected by
the graduation and has only a finite number of connected components.

Proposition 4.3. Given a graduation g of a hypergraph G,
G is finitely decomposable by g

⇐⇒

{
G is regular by g and
G is bounded connected with finitely many conn. components.

Proof.
=⇒ : let G be a hypergraph finitely decomposable by a graduation g.
As already mentioned, G is bounded connected by g and G has only a
finite number of connected components.
It remains to show that G is regular by g.
Recall that for any n ≥ 0,

Gg
n := (G − Gg,n−1) ∪ { max{0, g(s)− n} s | s ∈ VG−Gg,n−1 }

with Gg
−1 = ∅. We define

Ĝg
n := (G − Gg,n) ∪ { max{0, g(s)− n} s | s ∈ VG−Gg,n

}
obtained from Gg

n by removing the hyperarcs whose vertices are all coloured

Deterministic graph grammars 41

by 0 (only a finite number) and then by removing the isolated vertices
coloured by 0.
Let E be a maximal set of non isomorphic conn. comp. of { Ĝg

n | n ≥ 0 }.
By hypothesis { Gg

n | n ≥ 0 } has a finite number of non isomorphic con-
nected components, hence E is finite.
For each C ∈ E, we order the set VC,0 of vertices of C coloured by 0 :

{<C, 1>, . . . , <C, |VC,0|>} = VC,0 ,
and we take a new symbol [C] of arity |VC,0|.
Note that for every n ≥ 0,

Gg
n+1 =

(
Ĝg

n − { cs ∈ Ĝg
n | c ∈ IN }

)

∪ { max{0, c− 1}s | cs ∈ Ĝg
n ∧ c ∈ IN }.

To each C ∈ E, we associate the hypergraph
C′ := (C − INVC) ∪ { max{0, c − 1}s | cs ∈ C ∧ c ∈ IN }

which is isomorphic to a conn. comp. of { Gg
n | n ≥ 0 }, and we define

E′ := { C′ | C ∈ E } ∪ {Gg
0} .

For each C ∈ E′, the connected components of
C − { X ∈ C | VX ⊆ VC,0 ∧ X(1) 6∈ IN }

and not reduced to a vertex coloured by 0, are denoted by C1, . . . , CnC
.

For each 1 ≤ i ≤ nC , there is an isomorphism hi from Ci to a unique
Di ∈ E.
To each C ∈ E′, we associate the following hypergraph:

≪C≫ := { X ∈ C | X(1) 6∈ IN ∧ VX ⊆ VC,0 }

∪ { [Di]h
−1
i (<Di, 1>). . .h−1

i (<Di, |VDi,0|>) | 1 ≤ i ≤ nC }.

Finally the following outside grammar:

R := { (Z , ≪Gg
0≫) } ∪ { ([C]<C, 1> . . . <C, |VC,0|> , ≪C′≫) | C ∈ E }

generates G from Z and according to g.

⇐= : Assume that G is regular by g , bounded connected by g and has a
finite number of connected components.
We want to show that G is finitely decomposable by g.
We can assume without loss of generality that G only has one connected
component: G is connected.
There exists an integer b such that for any connected component C of∑

n≥0 Gg
n , |VC,0| ≤ b.

Consider an outside grammar R generating G by g from its axiom Z.
By the transformation of Lemma 3.3 splitting any hyperarc into connected
hyperarcs, we can assume that R is connected.
Consider an infinite parallel derivation Z =⇒

R

H0 . . . Hn =⇒
R

Hn+1 =⇒
R

. . .

For every n ≥ 0, we have
[Hn] = Gg,n and VHn−[Hn] = ∂g,nG

hence

42 D. Caucal

{ s | 0 s ∈ Gg
n } = { s ∈ VG−Gg,n−1 | g(s) ≤ n }

⊇ { s ∈ VG−Gg,n
| g(s) ≤ n }

thus
VHn−[Hn] = ∂g,nG = { s ∈ VG−Gg,n

| g(s) ≤ n } ⊆ { s | 0 s ∈ Gg
n } .

Then for any n ≥ 0 and any conn. comp. K of Hn − [Hn], |VK | ≤ b.
It follows that { Hn − [Hn] | n ≥ 0 } has a finite number of non isomorphic
connected components, and we take a maximal set E of non isomorphic
connected components.
Consequently E is finite and the Rω(K) for any K ∈ E are, up to iso-
morphism, the connected components of { G − Gg,n | n ≥ 0 }.
For each K ∈ E, we take K = K0 =⇒

R

K1 . . . Kn =⇒
R

Kn+1 =⇒
R

. . . a

derivation generating the hypergraph K ′ :=
⋃

n≥0[Kn] which we complete
by an integer colouring as follows:

K := K ′ ∪ { min{ n | s ∈ VKn+1 } s | s ∈ VK′ } .

So { K | K ∈ E } are up to isomorphism the connected components of
{ Gg

n | n > 0 }. Hence G is finitely decomposable by g. q.e.d. (Prop. 4.3)

The transformation of the necessary condition of Proposition 4.3 is illus-
trated below.

Gradued graph of finite decomposition

Grammar:

a

b

0

a

b b

0 1 a 2 a 3

b

b b

a a

b

01

1

2 3

Z
Ab A

a

b

A

;

a

b

A

B

(1)

B
;

(1)

(2)

(1)

(2)
(1)

Figure 4.5. Grammar for a finitely decomposable graph.

4.3 Regularity by accessibility

A usual problem in graph theory is the accessibility problem. This prob-
lem consists in computing the set of vertices accessible from a given initial
set. Here we transform any grammar into another one generating the same

Deterministic graph grammars 43

graph plus a colouring of the vertices accessible from (vertices with) a given
colour (cf. Proposition 4.4). This grammar transformation is expressed by
least fixpoint on the grammar. Finally we give a rooted regular graph of
finite degree which cannot be generated by accessibility.

The accessible vertex set Acc(G, i) of a hypergraph G from a colour i is
the smallest subset of VG containing the set VG,i of vertices coloured by i
and closed under the following accessibility property:

fv1. . .v̺(f) ∈ G ∧ ̺(f) > 1 ∧ v1, . . ., v̺(f)−1 ∈ Acc(G, i)

=⇒ v̺(f) ∈ Acc(G, i) .

Equivalently Acc(G, i) is the least solution of the following equation:
Acc(G, i) = VG,i ∪ SuccG(Acc(G, i))

for the following successor relation:
SuccG(E) := { v | FE+v ∩ G 6= ∅ } for any E ⊆ VG .

So a hyperarc realises an ‘and’ boolean function: we access via a hyperarc
fv1. . .v̺(f) its last vertex v̺(f) if we have accessed all its other vertices
v1, . . ., v̺(f)−1 .
A hypergraph G is accessible from a colour i if Acc(G, i) = VG .
For instance the hypergraph G = {fxyz , gxy , hx , c} of Figure 2.1 is ac-
cessible from h : Acc(G, h) = {x, y, z}, but the hypergraph G = {i x , j y}
is not accessible from a unique colour.
We say that a vertex r of a hypergraph G is a root if Acc(G∪ {ir}, i) = VG

for i a new colour: i 6∈ FG.
Let us mark by a given colour # the accessible vertices of any regular hyper-
graph: we will transform any grammar R generating a hypergraph G into
another grammar generating G ∪ { #v | v ∈ Acc(G, i) }. This is illustrated
in the next figure.

⇓

a a

b b b b

a a

b b b b

##

#

i

i

i i

iii

i

Figure 4.6. Computation of the vertices accessible from i.

The method simply translates the least fixed point defining Acc(G, i) to a
least fixed point on the grammar generating G.

44 D. Caucal

Proposition 4.4. The class of regular hypergraphs is effectively closed un-
der accessible colouring.

Proof. Let R be a grammar of axiom Z generating a hypergraph G. For
colours ι, #, we want to construct a grammar generating G ∪ { #v | v ∈
Acc(G, ι) } .
Let 1, . . ., ̺(R) be the vertices of the left hand sides of R : up to renam-
ing, we assume that each left hand side X ∈ Dom(R) of R is of the form
X = X(1)1. . .̺(X(1)) .
To each rule A1. . .̺(A) −→ HA in R and each I ⊆ [̺(A)], we associate
the set Acc(A, I) of vertices in VHA

which are accessible from I and the
vertices coloured by ι in a(ny) graph of Rω(HA).
This family of sets Acc(A, I) is the least fixed point of the following recur-
sive system:

Acc(A, I) := I ∪ { v | ι v ∈ HA }

∪ { v ∈ VHA
| TR(Acc(A, I))+v ∩ HA 6= ∅ }

∪ { Y (i) | ∃ B ∈ NR , BY ∈ HA ∧ 1 ≤ i ≤ |Y | ∧

i ∈ Acc(B, { j |Y (j) ∈ Acc(A, I)}) } .

Precisely we take a linear order on the set
M := { (A, I) | A ∈ NR ∧ I ⊆ [̺(A)] }

and we define
E := {

∏
(A,I)∈M PA,I | ∀ A ∈ NR ∀ I ⊆ J ⊆ [̺(A)], PA,I ⊆ PA,J } .

So E is a complete finite set for the inclusion componentwise whose small-
est element is ~∅ = (∅, . . ., ∅).
Then we define the mapping f : E −→ E by
(
f(

∏
(B,J)∈M PB,J)

)
A,I

:= I ∪ { v | ι v ∈ HA }

∪ { v ∈ VHA
| TR P+

A,Iv ∩ HA 6= ∅ }

∪ { Y (i) | ∃ B ∈ NR , BY ∈ HA ∧

1 ≤ i ≤ |Y | ∧ i ∈ PB,{ j |Y (j)∈PA,I} } .
Thus f is monotonous:(

∀ (A, I) ∈ M, PA,I ⊆ QA,I

)

=⇒ f
(∏

(A,I)∈M PA,I

)
⊆ f

(∏
(A,I)∈M QA,I

)
.

As E is finite, f is continuous and by the Knaster-Tarski theorem:⋃
n≥0 fn(~∅) is the least fixed point of f .

So we define for every (A, I) ∈ M ,

Acc(A, I) :=
(⋃

n≥0 fn(~∅)
)

A,I
.

To each (A, I), we associate a new non-terminal AI of arity ̺(A), and we
define the following grammar:

S := { (AI1. . .̺(A) , HA,I) | A ∈ NR ∧ I ⊆ [̺(A)] }

Deterministic graph grammars 45

where
HA,I := (HA ∩ TRV ∗

HA
) ∪ { # v | v ∈ Acc(A, I) − [̺(A)] } ∪

{ B{ j | Y (j)∈Acc(A,I)}Y | BY ∈ HA ∧ B ∈ NR } .

with a restriction to the rules whose non-terminals are accessible from Z∅ .
Thus S generates from Z∅ the hypergraph G ∪ { #v | v ∈ Acc(G, ι) }.

q.e.d. (Proposition 4.4)

The construction in the proof of Proposition 4.4 is illustrated in the figure
below.

⇓

bA Bb B A

bbA1,2 B1 B1 A1,2

#

#

a

a
#

;

;

;

A1,2

#

#

Z∅ ;

Z A

i

i

i

i

(y)

(x)(x)

(y)(y)

(x)(x)

(y)

(y)

(x)(x)

(y)(y)

(x)(x)

(y)

Figure 4.7. Colouring from i for the grammar of Figure 4.6.

The colouring by accessibility of a hypergraph G is a particular case of
regular colouring by a finite hypergraph H whose vertices are colours i.e.
VH ⊂ F1 , and is the hypergraph defined as the least fixed point of the
equation:

G ⊗ H := G ∪ { c̺(f) v̺(f) | ∃ fv1. . .v̺(f) ∈ G ∃ fc1. . .c̺(f) ∈ H,

c1v1 , . . . , c̺(f)−1v̺(f)−1 ∈ G⊗H }.
In particular

G ∪ { # v | v ∈ Acc(G, i) }

= G ⊗
(
{i #} ∪ { f# . . . # | f ∈ FG ∧ ̺(f) > 1 }

)
.

Let us extend Proposition 4.4 to any regular colouring.

Proposition 4.5. The class of regular hypergraphs is effectively closed un-
der regular colouring.

Proof. We adapt the proof of Proposition 4.4. Let H be a finite hypergraph
with VH ⊂ F1 .
Let R be a grammar of axiom Z generating a hypergraph G.
We assume that the rule associated to any A ∈ NR is of the form:

A1. . .̺(A) −→ HA .
To each A ∈ NR and I ⊆ VH [̺(A)], we associate the terminal hypergraph
Acc(A, I) such that the family of these hypergraphs is the least fixed point
of the following recursive system:

46 D. Caucal

Acc(A, I) := I ∪ [HA] ∪
(
Acc(A, I)⊗H

)

∪ { c Y (i) | ∃ B ∈ NR , BY ∈ HA ∧ 1 ≤ i ≤ |Y | ∧

c i ∈ Acc(B, { d j | dY (j) ∈ Acc(A, I)}) } .

To each (A, I), we associate a new non-terminal AI of arity ̺(A), and we
define the following grammar:

S := { (AI1. . .̺(A) , HA,I) | A ∈ NR ∧ I ⊆ VH [̺(A)] }

where

HA,I :=
(
Acc(A, I) − VH [̺(A)]

)

∪ { B{ d j | dY (j) ∈ Acc(A,I) }Y | BY ∈ HA ∧ B ∈ NR } .

Thus S generates from Z∅ the hypergraph G⊗H . q.e.d. (Proposition 4.5)

We now consider the generation by accessibility. Taking any hypergraph G
(whose vertices are) accessible from a given colour i , we map each vertex
s to the minimum path length g(s) to access s from i ; precisely and
inductively

g−1(0) = VG,i

g−1(n + 1) = SuccG(g−1(≤n)) − g−1(≤n)

where g−1(≤n) := g−1(0) ∪ . . . ∪ g−1(n) .
For instance the graph of Figure 3.20 is regular by accessibility.

;Z B;a c
b d

e

c a
B

c
b d

e

c a
B

AA
i

f
(2)

(1)

(2)
(1)

(1) (1)

Figure 4.8. Generating the graph of Figure 3.20 by accessibility from i.

Note that any hypergraph which is regular by accessibility is of finite out-
degree and has a finite number of vertices coloured by the initial colour.
In the figure below, we give a regular graph of finite degree, accessible from
a colour, and which is not regular by accessibility from this colour.

i

Figure 4.9. Regular graph not regular by accessibility from i.

4.4 Regularity by distance

Another usual graduation is the distance from a given vertex set E :

dG(s, E) := min{ dG(s, t) | t ∈ E }

where dG(s, t) := min({ n | s ←→
G

n t } ∪ {ω}).

Deterministic graph grammars 47

For instance the regular graph of Figure 2.7 remains regular by distance
from the vertices coloured by 1 or 2 using the following outside grammar:

;

;

;

;

c

a

d

c
d

a

a

a

c

b

b

1

2

a

a

c

c

d

a

a

a

c

b

a

c

Z A A B

D

E
CCB

D F E G

G

A

E

D

A
F

(x)

(y)

(z)(z)

(y)

(x)

(x)

(y)

(x)

(y)

(x)

(y)

(x)

(y)

(z)

(y)

(x)

(z)

(y)

(x)

(x)

(y)

(x)

(y)

(x)

(y)

(z)

(x)

(y)

(z)

(x)

(y)

(x)

(y)

Figure 4.10. Grammar generating the graph of Figure 2.7 by distance.

We denote dG(s, i) := dG(s, VG,i) the distance in a hypergraph G of a
vertex s to the set of vertices coloured by i. Note that the n-th frontier of
G by distance from i satisfies

∂g,nG = { s ∈ VG−Gd,n
| d(s, i) = n } .

We say that G is finitely connected by i if there is only a finite number of
vertices coloured by i, and from which all vertices are connected: VG,i is
finite and d(s, i) < ω for any s ∈ VG .
Any grammar generating a hypergraph G of finite degree and finitely con-
nected from a colour i, can be transformed in an effective way into a gram-
mar generating G by distance from i. Such a graph G is also bounded
connected by distance.

Theorem 4.6. Any finitely connected regular hypergraph of finite degree is
finitely decomposable by distance.

Proof.
In part (i), we introduce the notion of frontier and of interface that allow
to uniquely characterize any subset of hyperarcs in a hypergraph. Taking a
regular hypergraph G finitely connected and of finite degree, we construct
in part (ii) the canonical grammar generating G by distance. Part (iii)
shows that this canonical grammar is indeed finite. Using (i)–(iii), we got
that G is regular by distance. In (iv), we show that G is bounded con-
nected by distance, and hence using Proposition 4.3, we deduce that G is

48 D. Caucal

finitely decomposable by distance.

i) Let G be any hypergraph.
Consider any sub-hypergraph H ⊂ G such that

for any connected component C of G, H ∩ C 6= C .
Such a hypergraph H is characterized by its frontier :

FrG(H) := VH ∩ VG−H

and by its interface :

InG(H) := { X ∈ H | VX ∩ FrG(H) 6= ∅ }

= { X ∈ H | VX ∩ VG−H 6= ∅ } ;

in particular FrG(H) ⊆ VInG(H).
The charaterization of H by FrG(H) and InG(H) follows by this equal-
ity:

H = G<InG(H), F rG(H)>
where for any K ⊆ G and any P ⊆ VG , the hypergraph G<K, P> is the
least fixed point of the following equation:
G<K, P> = K ∪ { X ∈ G | VX ∩ VG<K, P> 6= ∅ ∧ VX ∩ P = ∅ } .

ii) Let R be a grammar generating a finite degree hypergraph G finitely
connected by a colour ι.
We want to show that G is regular by distance d from ι :

d(s) := d(s, ι) for any vertex s of G.
By Theorem 3.12, we can assume that R is complete outside and connected.
Up to a label renaming with adding rules, we assume that each right hand
side has no two non-terminal hyperarcs with the same label, and we denote
by VR the set of non input vertices of the right hand sides of R :

VR :=
⋃
{ VH − VX | (X, H) ∈ R } .

Let Z = H0 =⇒
R

H1 . . . Hn =⇒
R

Hn+1 =⇒
R

. . . be the derivation generating

Gen(R) :
⋃

n≥0[Hn] = Gen(R).
As the set VG,ι of vertices of G coloured by ι is finite, we denote by m
the minimal derivation length to get all the vertices of G coloured by ι :

m := min{ n | ∀ p > n, (Hp − Hn) ∩ ι VHp
= ∅ } .

As G is of finite degree and R is degree-outside, each rule of R has no
output which is an input, hence

Gen(R)d,n ⊆ [Hm+n] for every n ≥ 0.
For every n ≥ 0, we get

∂d,nGen(R) = { s ∈ VHm+n−Gen(R)d,n
| d(s) = n }.

For every n ≥ 0, we denote by {Pn,1, . . ., Pn,rn
} the partition of ∂d,nGen(R)

into connected vertices of Gen(R)−Gen(R)d,n i.e. of Hm+n−Gen(R)d,n ,
and for every 1 ≤ i ≤ rn ,

Kn,i := { X ∈ Gen(R) − Gen(R)d,n | VX ∩ Pn,i 6= ∅ }

= { X ∈ [Hm+n+1] − Gen(R)d,n | VX ∩ Pn,i 6= ∅ } .

Deterministic graph grammars 49

Thus for every n ≥ 0,
Gen(R) − Gen(R)d,n =

⋃rn

i=1 Gen(R)<Kn,i , Pn,i> .
The left residual of C ⊆ Gen(R) by u ∈ N∗

R is
u−1C := { fu1. . .u̺(f) | f(uu1). . .(uu̺(f)) ∈ C }

and pC is the greatest common prefix in N∗
R of the vertices of C.

We take a linear ordering < on NR ∪ VR that we extend on N∗
RVR by

length lexicographic order.
For any n ≥ 0 and 1 ≤ i ≤ rn , we define pn,i := pKn,i

and we define the
hyperarc

Xn,i := (p−1
n,iKn,i , p−1

n,iPn,i)s1. . .sq

with {s1, . . ., sq} = Pn,i and s1 > . . . > sq ;
note that the label is a pair of a finite graph with a vertex subset whose
cardinal is the arity of the label.
We define the grammar S :=

⋃
n≥0 Sn with

S0 := { (Z , Gen(R)d,0 ∪ {X0,1, . . ., X0,r0}) }

∀ n ≥ 0, Sn+1 := Sn ∪ { (Xn,i , Kn,i ∪⋃
{ Xn+1,j | Pn+1,j ∩ VKn,i

6= ∅ }) |

1 ≤ i ≤ rn ∧ Xn,i(1) 6∈ NSn
}.

The finiteness of S is shown in (iii).
For any n ≥ 0 and 1 ≤ i ≤ rn , S generates from Xn,i and by distance
from ι the connected component of Gen(R)−Gen(R)d,n containing Pn,i .
Thus S generates from Z the hypergraph Gen(R) by distance from ι.

iii) Let us show that S is finite.
This is obtained by giving a bound b such that dGen(R)(s, t) ≤ b for any
n ≥ 0, any connected component C of Gen(R) − Gen(R)d,n and any
s, t ∈ VC ∩ ∂d,nGen(R).
It is sufficient to extract such a bound for any n ≥ n0 with n0 the smallest
integer such that Gen(R)d,n0 ⊇ [Hm].
As R is a connected grammar, we take the following integer:

c := max{ dRω(H)(s, t) | H ∈ Im(R) ∧ s, t ∈ VH } .
Let n ≥ n0. Let C be a connected component of Gen(R)−Gen(R)d,n and
let s, t ∈ VC with d(s) = n = d(t).
We take a vertex z of C of minimal length. As z ∈ VC , we have d(z) ≥ n.
By definition of Gen(R), z = wr for w ∈ N∗

R and r a vertex of a right
hand side of R.
Consider an undirected path of minimal length from s (resp. t) to ι ; such
a path goes through a vertex x = wp (resp. y = wq) for some vertex p
(resp. q) of a right hand side of R. Hence

d(x, y) ≤ c , d(x, z) ≤ c , d(y, z) ≤ c
for distances on Gen(R). Thus

50 D. Caucal

d(s, x) + d(x) = d(s) ≤ d(z) ≤ d(z, x) + d(x) ≤ c + d(x)
so d(s, x) ≤ c. Similarly d(t, y) ≤ c. Finally

d(s, t) ≤ d(s, x) + d(x, y) + d(y, t) ≤ 3c.
Finally b = 3c suits (for any n ≥ n0).

iv) By Proposition 4.3, it remains to verify that G is bounded connected
by d.
Let C be a connected component of Gd

n+1 for some n ≥ 0.
So C′ := C − INVC is a connected component of G − Gd,n with

VC,0 = VC′ ∩ ∂d,nG .
By (iii) we get dG(s, t) ≤ b for any s, t ∈ VC,0 .
As G is of finite degree, let D be the maximum degree of its vertices.
Thus for any connected component C of

∑
n≥1 Gd

n , we have

|VC,0| ≤ D0 + D1 + . . . + Db

meaning that G is bounded connected by d. q.e.d. (Theorem 4.6)

The generation by distance is illustrated below.

Taking grammar R of Figure 4.1

;;Z

#
(x)

(y)

(x)

(y)

a

b
#

(q)
i

i
(p)

#

i
(r)

(s)

#

B A c A c ABAd e

a

b

(1)

(2)

(1)

(2)

(1)

(2)

(1)

(2)

its canonical graph Gen(R) is

d

(Zp)

(Zq)#

#
i

i

a

b

c

(ZAx)

(ZAy)

#

a

b

c

#

a

b

c

#

(ZAAx)

(ZAAy)

(ZAAAx)

(ZAAAy)

i
a

b

c

a

b

c

#

a

b

c

#

#

(Zr)

(Zs)

(ZBx)

(ZBy)

(ZBAx)

(ZBAy)

(ZBAAx)

(ZBAAy)

e

The construction of Theorem 4.6 gives the grammar:

;;

i #

#
(Zp)

(Zq)

C

i

i

#

c

a

b

C E

#

c

a

b

EE

(ZAAx)

(ZAAy)

;;

(ZAx)

(ZAy)

a

b

#

c GG

(ZBAAx)

(ZBAy)

a a

b

#

F c G

(ZBAx)

(ZBy)

(ZBx)

d

e F

#

(Zr)

D

D

Z

(Zp)

(Zq)

(Zp)

(Zq)

(ZBx) (ZBAx)

(ZBy)

(ZBAx)

(ZBy)

(ZBx)

(Zs)(Zs)(Zs)

(Zr)

(Zr)

(ZAx)

(ZAy)

(ZAx)

(ZAy)

with x > y and p > q and

Deterministic graph grammars 51

C =
(
{p

a
−→ Ax , Ay

b
−→ q} , {p, q}

)

D =
(
{r

a
−→ Bx , r

e
−→ s} , {r}

)

E =
(
{x

a
−→ Ax , Ay

b
−→ y} , {x, y}

)

F =
(
{Bx

a
−→ BAx , Bx

c
−→ By , By

b
−→ s} , {Bx, s}

)

G =
(
{Ax

a
−→ AAx , Ax

c
−→ Ay , Ay

b
−→ y} , {Ax, y}

)

Figure 4.11. Generation by distance.

5 Graph grammars and pushdown automata

A pushdown automaton is a particular case of a labelled word rewriting
system whose rules are only applied by suffix. Pushdown automata even
in a weak form and the rewriting systems define the same graphs by suf-
fix rewriting, which are exactly the regular graphs of bounded degree (cf.
Theorem 5.11).

5.1 Suffix transition graphs

A labelled word rewriting system is just a finite uncoloured graph whose ver-
tices are words. Its set of unlabelled suffix transitions is the suffix rewriting
relation, whose transitive closure is a rational relation (cf. Proposition 5.2).
Its set of labelled suffix transitions is called a suffix graph. Any regular
restriction of this graph is regular by length (cf. Theorem 5.6). Conversely
any regular graph of finite degree is a regular restriction of a suffix graph
(cf. Theorem 5.8).

We fix a countable set T of symbols, called terminals.
A labelled word rewriting system S is a finite subset of N∗

×T×N∗ where N
is an arbitrary alphabet of non-terminals ; we write u

a
−→

S

v for (u, a, v) ∈ S,

and define

Dom(S) := { u | ∃ a ∈ T ∃ v ∈ N∗, u
a
−→

S

v } its left hand sides,

Im(S) := { v | ∃ a ∈ T ∃ u ∈ N∗, u
a
−→

S

v } its right hand sides,

WS := Dom(S) ∪ Im(S) the words of S,

NS := { u(i) | u ∈ WS ∧ 1 ≤ i ≤ |u| } its non-terminals,

TS := { a ∈ T | ∃ u, v ∈ N∗, u
a
−→

S

v } its terminals.

Rewritings in a rewriting system are generally defined as applications of
rewriting rules in every context. We are only concerned with suffix rewrit-
ing.
Given a rewriting system S and a terminal a ∈ TS , we call labelled suffix

rewriting
a
−→|

S

the binary relation on N∗
S defined by

52 D. Caucal

wu
a
−→|

S

wv for any u
a
−→

S

v and w ∈ N∗
S .

Example 5.1. Consider the rewriting system S = {ε
1
−→ ab , bab

2
−→ ab}.

We have

bb
1
−→|

S

bbab
2
−→|

S

bab
2
−→|

S

ab
1
−→|

S

abab
2
−→|

S

aab . . .

For any rewriting system S, the unlabelled suffix rewriting is

−→|

S

:=
⋃

a∈TS

a
−→|

S

= { wu −→ wv | u
a
−→

S

v ∧ w ∈ N∗
S }

and its reflexive and transitive closure (by composition) −→|

S

∗
is the suffix

derivation . In Example 5.1, we have bb −→|

S

∗
bb and bb −→|

S

∗
ab.

We denote by −→|

S

+
= −→|

S

o −→|

S

∗
the transitive closure of −→|

S

.

A well-known property is that the set of words deriving by suffix from a given
word is a regular language, and a finite automaton accepting it is effectively
constructible [Bü 64]. This property remains true starting from any regular
set of words. More generally, the suffix derivation is itself a rational relation:
it can be recognized by a transducer i.e. a finite automaton labelled by
pairs of words.

Proposition 5.2 ([Ca 90]). The suffix derivation of any word rewriting
system is effectively a rational relation.

Proof. We give here a construction improved by Carayol.

i) Let N be any alphabet. For any P ⊆ N∗ and for any word u ∈ N∗, we
denote by u↓P the set of irreducible words obtained from u by derivation
according to P×{ε} :

u↓P := { v | u −→
P×{ε}

∗ v /−→
P×{ε}

} .

We extend by union ↓P to any language L ⊆ N∗ :
L↓P :=

⋃
{ u↓P | u ∈ L }.

A standard result due to Benois [Be 69] is that for P regular, the operation
↓P preserves regularity:

L, P ∈ Rat(N∗) =⇒ L↓P ∈ Rat(N∗).
Precisely, we have

L↓P = −→
P×{ε}

∗(L) − N∗PN∗ .

It remains to show that the image −→
P×{ε}

∗(L) of L by the derivation −→
P×{ε}

∗

is regular. This property is true even if P is not regular.
Precisely and for L regular, there is a finite automaton A ⊆ Q×N×Q
recognizing L from an initial state i ∈ Q to a subset F ⊆ Q of final
states : L(A, i, F) = L.
By adding iteratively ǫ-transitions between states linked by a path labelled
in P , we complete A into an automaton B which is the least fixpoint of

Deterministic graph grammars 53

the following equation:
B = A ∪ { p

ǫ
−→ q | ∃ u ∈ P, p

u
=⇒

B

q }.

Note that we can refine B by saturating A with only elementary ε-
transitions:

B = A ∪ { p
ε
−→ q | p 6= q ∧ ∃ a ∈ P ∩ N, p

a
−→

A

q }

∪ { p
ε
−→ q | p 6= q ∧ ∃ aub ∈ P, a, b ∈ N

∧ p
a
−→

A

u
=⇒

B

b
−→

A

q } .

So L(B, i, F) = −→
P×{ε}

∗(L).

ii) We denote NS by N and to each letter x ∈ N , we associate a new
symbol x 6∈ N with x 6= y for x 6= y. Let N := { x | x ∈ N }.
We extend by morphism — to any word u = x1. . .xn i.e. u = x1. . .xn .
Recall that the mirror ũ of any word u = x1. . .xn is the word ũ =
xn. . .x1 .
The following set is regular:

[
{ ũ v | ∃ a , u

a
−→

S

v }∗
)
↓{ xx | x ∈ N }

]
∩ N

∗
N∗

meaning that we can apply by suffix a rule (u, v) by producing on the right
v after having removed u on the right (using ↓ { xx | x ∈ N }).
This set can be written as a finite union

⋃
i∈I U iVi where Ui , Vi ∈ Rat(N∗)

for all i ∈ I. Taking the following relation:

S :=
⋃

i∈I

Ũi×Vi

it is easy to verify that the suffix derivation according to S is the suffix
rewriting according to S :

−→|

S

∗
= −→|

S

.

It follows that −→|

S

∗
is an effective rational relation.

In particular starting from I ∈ Rat(N∗), we have

−→|

S

∗
(I) = −→|

S

(I) = Im
(
−→|

S

∩ I×N∗
)

∈ Rat(N∗)

q.e.d. (Proposition 5.2)

Taking the system S = {ε
1
−→ ab , bab

2
−→ ab} of Example 5.1, the

construction of Proposition 5.2 gives the following finite automaton where
the dashed arrows are ε-transitions:

f

a b
a

b

b

b

a

i

54 D. Caucal

which gives the suffix derivation of S :

−→|

S

∗
= {ε}×(a+b)∗ ∪ b+ab×(a+b)+ ∪ b+

×(a+b)+ .

To any rewriting system S, we associate its suffix graph :
Suff(S) := { wu

a
−→ wv | u

a
−→

S

v ∧ w ∈ N∗
S } = N∗

S .S

which is the set of its suffix transitions.
For instance the suffix graph of {x

a
−→ ε , x

b
−→ x4} is the regular graph of

Figure 2.8.

The suffix graph of {x
a
−→ ε , x

b
−→ zxyx , y

c
−→ ε , z

d
−→ ε} restricted to

the set (z + zxy)∗(ε + x) of its vertices accessible from x is the graph of
Figure 2.9.
The suffix transition graphs of word rewriting systems have bounded degree.

Lemma 5.3. The suffix graph of any rewriting system has bounded degree,
and has a finite number of non isomorphic connected components.

Proof. Let S be any labelled word rewriting system.

i) Let us verify that Suff(S) = N∗
S .S has bounded degree.

Let w be any vertex of this graph.
As we can at most apply all the rules of S, the out-degree of w is bounded
by the number of rules: d+(w) ≤ |S|.
Note that the inverse of N∗

S .S is the suffix graph of the inverse of S :(
N∗

S .S
)−1

= N∗
S .S−1 ,

so the in-degree of w is its out-degree for N∗
S .S−1, hence

d−(w) ≤ |S−1| = |S|.
Finally the degree of w satisfies: d(w) = d+(w) + d−(w) ≤ 2 |S| .

ii) We show that N∗
S.S has a finite number of non isomorphic connected

components.
Let H be any connected component of N∗

S .S. Let w ∈ N∗
S such that

w.WS ∩ VH 6= ∅ and of length |w| minimal.
Such a word w is unique because it is prefix of all the vertices of H :

by definition of w, there is u ∈ WS such that wu ∈ VH ;
by induction on the length of any derivation wu =⇒

H ∪ H−1

∗ v , w is

prefix of v.
By removing this common prefix to the vertices of H , we obtain the graph

w−1H := { u
a
−→ v | wu

a
−→

H

wv }

which is isomorphic to H and has a vertex in WS which is finite.
So the set of connected components of Suff(S) is finite up to isomorphism.

q.e.d. (Lemma 5.3)

By Proposition 3.4, the second property of Lemma 5.3 is a particular case
of the fact that any suffix graph is regular.

Deterministic graph grammars 55

Proposition 5.4. The suffix graph of any rewriting system can be generated
by a one-rule graph grammar from its left hand side.

Proof. Let S be any labelled word rewriting system. Let
E := { y | ∃ x 6= ε, xy ∈ WS }

be the set of strict suffixes of the words of S.
We take a label Y of arity n = |E| and let {e1, . . ., en} = E.
We define the grammar R restricted to the following rule:

Y e1. . .en −→ S ∪ { Y (xe1). . .(xen) | x ∈ NS } .
So N∗

S .S is generated by R from its left hand side: N∗
S .S ∈ Rω(Y e1. . .en).

q.e.d. (Proposition 5.4)

Taking the system S = {ε
1
−→ ab , bab

2
−→ ab} of Example 5.1 and by

applying the construction of Proposition 5.4, we get the following one-rule
grammar generating the suffix graph of S.

Y

(a)

(aab)

(bab)

Y

2

(bb)

1

Y

(ab)

(b)

(ab)

(b)

(ε)(ε)

Figure 5.1. Generating the suffix graph of the system of Example 5.1.

The regularity of any suffix graph is preserved by any regular restriction.

Corollary 5.5. Any regular restriction of a suffix graph is a regular graph.

Proof. Let S be any labelled word rewriting system and let P ∈ Rat(N∗
S)

be any regular language.
We want to show that Suff(S)|P is a regular graph.
We can assume that each non-terminal of S is not a terminal and is an
edge label: NS ⊂ F2 − TS .
We complete S into the following word rewriting system:

S := S ∪ { ε
x
−→ x | x ∈ NS }.

It follows that
Suff(S) = Suff(S) ∪ { u

x
−→ ux | u ∈ N∗

S ∧ x ∈ NS }.
As P is regular, there exists a finite graph H labelled in NS which recog-
nizes P from an initial vertex i to a vertex subset F : L(H, i, F) = P .
We can assume that the vertices of H are vertex colours: VH ⊂ F1 .
By Proposition 5.4, Suff(S) is a regular graph.
We take a new colour ι ∈ F1 − VH . By Proposition 4.5, the graph

G := Suff(S) ∪
(
{ι ε} ⊗ (H ∪ {ι i})

)

remains regular. By removing in G the arcs labelled in NS , we get the
graph

G′ := G − VG×NS×VG

56 D. Caucal

which is regular (it suffices to remove the arcs labelled in NS in the gram-
mar generating G).
By Proposition 4.1, the restriction of G′ to the vertices coloured in F is
again a regular graph G′′. By removing all vertex colours from G′′, we get
Suff(S)|P which is regular. q.e.d. (Corollary 5.5)

The regularity of suffix graphs can also be obtained by vertex length.

Theorem 5.6. Any regular restriction of a suffix graph is regular by length.

Proof. We begin as in Corollary 5.5.
Let S be any labelled word rewriting system and let P ∈ Rat(N∗

S) be any
regular language. We want to show that Suff(S)|P is regular by vertex
length.
We can assume that each non-terminal of S is not a terminal and is a label
colour: NS ⊂ F1 − TS

and we complete S into the following word rewriting system:
S := S ∪ { ε

x
−→ x | x ∈ NS }.

We get
Suff(S) = Suff(S) ∪ { u

x
−→ ux | u ∈ N∗

S ∧ x ∈ NS }.
In particular VSuff(S) = N∗

S and we define

m := max{ |u| | u ∈ WS } .
As P is regular, there is a finite complete graph H labelled in NS which
recognizes P from an initial vertex ι to a vertex subset F : L(H, ι, F) = P .
We can assume that the vertices of H are vertex colours: VH ⊂ F1 . We
define

H(P) := { c u | u ∈ P ∧ ι
u

=⇒
H

c } for any P ⊆ N∗
S .

i) Let us show that Suff(S) ∪ H(N∗
S) is regular by length.

For any n ≥ 0, we define

Sn := { zx
a
−→ zy | x

a
−→

S

y ∧ min{|zx|, |zy|} ≤ n < max{|zx|, |zy|} }

in such a way that
Suff(S) − Suff(S)| |,n = Suff(Sn).

For every n ≥ 0, we get
∂| |,nSuff(S) = { u ∈ N∗

S .
(
Dom(Sn) ∪ Im(Sn)

)
| |u| ≤ n }

and we can compute {Pn,1, . . ., Pn,rn
} the partition of ∂| |,nSuff(S) into

connected vertices of Suff(S) − Suff(S)| |,n , and for every 1 ≤ i ≤ rn ,

Kn,i := { u
a
−→

Suff(Sn)
v | {u, v} ∩ Pn,i 6= ∅ ∧ max{|u|, |v|} = n + 1 } .

Thus with the notation (i) of the proof of Theorem 4.6, we have for every
n ≥ 0,

Suff(S) − Suff(S)| |,n =
⋃rn

i=1 Suff(S)<Kn,i , Pn,i> .

Deterministic graph grammars 57

We take a linear ordering < on NS that we extend on N∗
S by length-

lexicographic order.
For any n ≥ 0 and 1 ≤ i ≤ rn , we take

pn,i := min{ |u| − m | u ∈ Pn,i ∧ |u| ≥ m }
which is a common prefix of the words in Pn,i , and we define the hyperarc

Xn,i := p−1
n,iH(Pn,i)s1. . .sq

with {s1, . . ., sq} = Pn,i and s1 < . . . < sq ;
note that the label is a finite set of coloured vertices.
We define the grammar R :=

⋃
n≥0 Rn with

R0 := { (Z , (S ∩ {ε}×TS×{ε}) ∪ {ι ε , X0,1} }

∀ n ≥ 0, Rn+1 := Rn ∪ { (Xn,i , Kn,i ∪ H(VKn,i
− Pn,i) ∪

⋃
{ Xn+1,j | Pn+1,j ∩ VKn,i

6= ∅ }) |

1 ≤ i ≤ rn ∧ Xn,i(1) 6∈ NRn
}.

The finiteness of R is shown in (ii).
For any n ≥ 0 and any 1 ≤ i ≤ rn , R generates from Xn,i and by vertex
length, the connected component of

(
Suff(S) − Suff(S)| |,n

)
∪ H({ u ∈

N∗
S | |u| > n }) containing Pn,i . Thus R generates from axiom Z the

graph Suff(S) ∪ H(N∗
S) by vertex length.

ii) Let us show that R is finite.
It is sufficient to show that { p−1

n,iPn,i | n ≥ 0 ∧ 1 ≤ i ≤ rn } is finite.
Let n ≥ 0 and 1 ≤ i ≤ rn .
We show that any word in p−1

n,iPn,i has length at most 2m.
Let u, v ∈ Pn,i . We have |u| ≤ n.

There exist z ∈ N∗
S and x

a
−→

Sn ∪ S−1
n

y with v = zx and |zy| > n.

Hence |u| − |v| = |u| − |zy| ≤ n − (n − |y|) = |y| ≤ m.
Assume now that v is of minimal length.
Either |v| ≤ m, so pn,i = ε and thus |p−1

n,iu| = |u| ≤ m + |v| ≤ 2m.
Or |v| > m, then v = wx for some w and |x| = m.

Thus pn,i = w and |p−1
n,iu| − |x| = |u| − |v| ≤ m

hence |p−1
n,iu| ≤ m + |x| = 2m.

iii) It remains to end as in the proof of Corollary 5.5.
We remove in R the arcs labelled in NS and by Proposition 4.1, we re-
strict to the vertices coloured by F . Then we remove the colours and apply
Lemma 3.2 to get a grammar generating Suff(S)|L by length. q.e.d. (5.6)

Starting with the system S = {ε
a
−→ xx} and the language L = x(xx)∗

recognized by the complete automaton {i
x
−→ f , f

x
−→ i} from i to f ,

the construction of Theorem 5.6 yields the grammar below, which generate
Suff(S)|L = { x2n+1 a

−→ x2n+3 | n ≥ 0 } by length.

58 D. Caucal

(x)
(xxx) (xxx) (xxx)

(xxx)

(x)(x) (x)

(x)

(xxxxx)

(xxx)

;
{i ε , f x}{i ε , f x} {f x , i x2}

;;

{i ε} ;Z {i ε}

aa

{f x , ix2}

{i x2 , f x3}

{f x2 , i x3}{f x2 , i x3}{i x2 , f x3}

{i x2 , f x3}

Figure 5.2. Generation by length of a regular restriction of a suffix graph.

In Subsection 3.5, we have associated to any grammar R a representant
Gen(R) of its set of generated graphs. Any vertex of Gen(R) is the word
of the non-terminals used to get it. This allows us to express Gen(R) as a
suffix graph when it is of bounded degree.

Lemma 5.7. Any grammar R generating a bounded degree uncoloured
graph, can be transformed into a word rewriting system S such that any
connected component (resp. any accessible subgraph) of Gen(R) is a con-
nected component (resp. accessible subgraph) of Suff(S).

Proof. To define Gen(R) simply, we assume that each right hand side has
no two non-terminal hyperarcs with the same label.
We assume that the rule of any A ∈ NR is of the form: A1. . .̺(A) −→ HA .
We write VR the set of non input vertices of the right hand sides of R :

VR :=
⋃
{ VHA

− [̺(A)] | A ∈ NR } .
To each A ∈ NR , let SA be a graph of vertex set VSA

⊂ N+
R VR ∪ [̺(A)]

labelled in TR such that the family of graphs SA is the least fixed point of
the following equations:

SA = A ·
(
[HA] ∪

⋃
{ SB[Y (1), . . ., Y (̺(B))] |

BY ∈ HA ∧ B ∈ NR }
)

where for any A ∈ NR , for any graph G of vertex set VSA
⊂ N∗

RVR ∪ [̺(A)]
labelled in TR and for any a1, . . ., a̺(A) ∈ VR ∪ [̺(R)], the substitution
G[a1, . . ., a̺(A)] is the graph obtained from G by replacing in its vertices
each i ∈ [̺(A)] by ai :

G[a1, . . ., a̺(A)]

:= { u[a1, . . ., a̺(A)]
a
−→ v[a1, . . ., a̺(A)] | u

a
−→

G

v }

with u[a1, . . ., a̺(A)] :=

{
ai if u = i ∈ [̺(A)]
u otherwise;

and where the addition A·G is defined by

A ·G := { A·(u
a
−→ v) | u

a
−→

G

v }

and with A · (u
a
−→ v) defined by

Deterministic graph grammars 59

u
a
−→ v if u, v ∈ [̺(A)] ∨ u, v 6∈ [̺(A)] ∪ VR

Au
a
−→ v if u 6∈ [̺(A)] ∧ v ∈ [̺(A)]

u
a
−→ Av if u ∈ [̺(A)] ∧ v 6∈ [̺(A)]

Au
a
−→ Av if u, v 6∈ [̺(A)] ∧ (u ∈ VR ∨ v ∈ VR) .

The system S = SZ is suitable, for Z the axiom of R :

SZ = { u
a
−→ v | min{|u|, |v|} = 2 ∧ ∃ w, wu

a
−→

Gen(R)
wv }.

q.e.d. (Lemma 5.7)

Taking the grammar of Figure 3.20, the construction of Lemma 5.7 yields

SZ = Z · (SA[s, t])

SA = A · ({1
a
−→ 2 , p

b
−→ 2} ∪ SB[1, p])

SB = B · ({1
c
−→ 2 , q

d
−→ 2} ∪ SC [1, q])

SC = C · ({1
c
−→ 2 , 1

e
−→ r} ∪ SA[r, 2])

hence

SZ = {Zs
a
−→ Zt , Zs

c
−→ ZAp , Zs

c
−→ ZABq , Zs

e
−→ ZABCr}

∪ {ZAp
b
−→ Zt , ABq

d
−→ Ap , BCr

a
−→ Bq , BCAp

b
−→ Bq}

∪ {Cr
c
−→ CAp , CBq

d
−→ Cp , Cr

c
−→ CABq , Cr

e
−→ CABCr}

Corollary 5.5 (or Theorem 5.6) and Lemma 5.7 imply the equality between
the classes of suffix graphs and uncoloured regular graphs of bounded de-
gree.

Theorem 5.8. Considering the suffix graphs of labelled word rewriting
systems, their connected components are the connected regular graphs of
bounded degree,
their accessible subgraphs are the rooted regular graphs of bounded degree,
their regular restrictions are the regular graphs of bounded degree.

Proof. i) Let S be any word rewriting system.
Let v be any vertex of Suff(S) i.e. v ∈ N∗

S (Dom(S) ∪ Im(S)).
By Proposition 5.2, the set of vertices accessible from v is the regular lan-
guage −→|

S

∗
(v), and the vertex set of the connected component of Suff(S)

containing v is the regular language −→|

S ∪ S−1

∗
(v).

By Corollary 5.5, any regular restriction (resp. any accessible subgraph,
any connected component) of Suff(S) is an uncoloured (resp. rooted, con-
nected) regular graph of bounded degree.

ii) Let R be any grammar generating an uncoloured graph of bounded de-
gree.
Let S be the word rewriting system constructed from R by Lemma 5.7.

60 D. Caucal

In 5.1, we have seen that Gen(R) has a regular vertex set. By Lemma 5.7,

Gen(R) = Suff(S)|VGen(R)

hence Gen(R) is a regular restriction of a suffix graph.
Furthermore by Lemma 5.7, if Gen(R) is connected (resp. rooted) then it is
a connected component (resp. accessible subgraph) of Suff(S). q.e.d. (5.8)

We now restrict as much as possible the word rewriting systems to define
the same suffix graphs.

5.2 Weak pushdown automata

A (real-time) pushdown automaton S over the alphabet T of terminals is
a particular word rewriting system: S is a finite subset of PQ×T×P ∗Q
where P, Q are disjoint alphabets of respectively stack letters and states ;
we denote by

PS := { u(i) | 1 ≤ i ≤ |u| ∧ ∃ q ∈ Q, uq ∈ WS } the stack letters,

QS := { q | ∃ u ∈ P ∗, uq ∈ WS } the states of S.

A configuration of S is a word in P ∗
S .QS : a stack word followed by a state.

The transition graph of S is the set of its transitions restricted to its con-
figurations:

Tr(S) := { wu
a
−→ wv | u

a
−→

S

v ∧ w ∈ P ∗
S } = P ∗

S .S

it is also the suffix graph of S restricted to its configurations.
Note that a pushdown automaton is essentially a labelled word rewriting
system whose left hand sides are of length 2 and such that the rules are only
applied by suffix. A symmetrical way to normalize both sides of the rules
of a rewriting system is given by a weak pushdown automaton S which is a
finite set of rules of the form:

p
a
−→ q or p

a
−→ xq or xp

a
−→ q with x ∈ P, p, q ∈ Q, a ∈ T

where P and Q are disjoint alphabets of stack letters and states; we also
write PS and QS for respectively the stack letters and the states (appear-
ing in the rules) of S. The transition graph of S is also the set of its (suffix)
transitions restricted to its configurations: Tr(S) := P ∗

S .S .

Deterministic graph grammars 61

(up) (uxp) (uxxp) (uxxxp)

(uq) (uxq) (uxxq) (uxxxq)

(vp’) (vyp’) (vyyp’) (vyyyp’)

(vq’) (vyq’) (vyyq’) (vyyyq’)

Weak pushdown automaton:

Transition graph:

p
a
−→ xp p′ a

−→ yp′

p
b
−→ q p′ b

−→ q′

xq
c
−→ q yq′

c
−→ q′

for any u ∈ {x, y}∗y ∪ {ε}

for any v ∈ {x, y}∗x ∪ {ε}

a a a

b b b b

c c c

a a a

b b b b

c c c

Figure 5.3. The transition graph of a weak pushdown automaton.

We define the same suffix graphs by normalizing labelled word rewriting
systems as pushdown automata or weak pushdown automata.

Theorem 5.9. The suffix graphs of labelled word rewriting systems, the
transition graphs of pushdown automata, and the transition graphs of weak
pushdown automata,
have up to isomorphism the same connected components, the same accessible
subgraphs and the same regular restrictions.

Proof. i) Let S be any weak pushdown automaton.
Let us construct a pushdown automaton S simulating S : the connected
components (resp. accessible subgraphs, regular restrictions) of Tr(S) are
connected components (resp. accessible subgraphs, regular restrictions) of
Tr(S).
We take a new symbol ⊥ and we define the pushdown automaton:

S := { yp
a
−→ yxq | p

a
−→

S

xq ∧ y ∈ NS ∪ {⊥} }

∪ { yp
a
−→ yq | p

a
−→

S

q ∧ y ∈ NS ∪ {⊥} }

∪ { xp
a
−→ q | xp

a
−→

S

q } .

Thus PS = PS ∪ {⊥} and QS = QS . Furthermore

u
a
−→
Tr(S)

v ⇐⇒ ⊥u
a
−→
Tr(S)

⊥v for any u, v ∈ P ∗
S .QS .

It follows that for any L ∈ Rat((PS ∪ QS)∗) ∩ P ∗
S .QS written by abuse of

notation as Rat(P ∗
S .QS),

62 D. Caucal

Tr(S)|L = Tr(S)|⊥L

and for any vertex v of Tr(S) i.e. v ∈ P ∗
S .WS , the connected compo-

nent (resp. accessible subgraph) of Tr(S) containing v (resp. from v) is
the connected component (resp. accessible subgraph) of Tr(S) containing
(resp. from) ⊥v.

ii) Let S be any pushdown automaton.
Thus S is simulated by itself as a rewriting system over PS ∪ QS because

Tr(S)|L = Suff(S)|L for any L ∈ Rat(P ∗
S .QS)

and for any v ∈ P ∗
S .WS , the connected component (resp. accessible sub-

graph) of Tr(S) containing v (resp. from v) is the connected component
(resp. accessible subgraph) of Suff(S) containing (resp. from) v.

iii) Let S be any labelled word rewriting system.
We want to simulate S by a weak pushdown automaton S.
Let m be the greatest length of the words of S :

m := max{ |u| | u ∈ WS }.
As in (i), we take a new symbol ⊥ to mark on the left the words over NS .
Any word in ⊥N∗

S is decomposed from left to right into m blocks (the last
block being of length ≤ m) :

m

∈ P

m

∈ P ∈ Q

≤ mm

by using the two bijections:

i from Nm
S ∪ ⊥Nm−1

S to a new alphabet P

and j from { ⊥w | w ∈ N∗
S ∧ |w| < 2m }

∪ { w ∈ N∗
S | m < |w| ≤ 2m } to a new alphabet Q,

and according to the injection k defined from N∗
S ∪ ⊥N∗

S into P ∗.Q by

k(ε) := ε
k(u) := j(u) if u ∈ Dom(j)
k(u) := i(w) k(v) if u = wv 6∈ Dom(j) ∧ |w| = m .

For every n ≥ 0, we denote by f(n) := ⌈ n
m
⌉ the (minimal) number of blocs

of length m necessary to contain n letters.
By applying (by suffix) any rule of S, we can add or delete at most m
letters, hence

| f(|u|) − f(|v|) | ≤ 1 for any u
a
−→

S

v .

We define the weak pushdown automaton S := S
′
∪ S

′′
with

S
′

:= { k(⊥wu)
a
−→ k(⊥wv) | u

a
−→

S

v ∧ w ∈ N∗
S ∧ f(⊥wu)+f(⊥wv) ≤ 5 }

S
′′

:= { k(wu)
a
−→ k(wv) | u

a
−→

S

v ∧ w ∈ N∗
S ∧ 4 ≤ f(wu)+f(wv) ≤ 5 }

We illustrate below the different types of rules for S
′
:

Deterministic graph grammars 63

v

q

u

p

qp

a

qp

u⊥w v⊥w

⊥w ⊥w

u v

x

u

p x q

v

⊥w

⊥w ⊥w

⊥w

We illustrate below the different types of rules for S
′′

:

v

q

u

p

qp

w w

u w vw

w

x

u

p

w

x q

v

Note that we have

u
a
−→

⊥N∗
S

.S

v =⇒ k(u)
a
−→
P∗.S

k(v)

u ∈ ⊥N∗
S ∧ k(u)

a
−→
P∗.S

w =⇒ ∃ v, u
a
−→

⊥N∗
S

.S

v ∧ k(v) = w

v ∈ ⊥N∗
S ∧ w

a
−→
P∗.S

k(v) =⇒ ∃ u, u
a
−→

⊥N∗
S.S

v ∧ k(u) = w .

It follows that the image by k of the connected component of ⊥N∗
S.S

containing ⊥u is equal to the connected component of P ∗.S containing
k(⊥u).
Furthermore the accessible subgraph from ⊥u of ⊥N∗

S.S is equal to the
accessible subgraph from k(⊥u) of P ∗.S.
We also deduce that the suffix graph Suff(S) = N∗

S.S is isomorphic to

k(⊥N∗
S .S) = S

′
∪ i(⊥Nm−1

S).(i(Nm
S))∗.S

′′
= (P ∗.S)|k(⊥N∗

S
) ,

hence N∗
S .S is not isomorphic to P ∗.S (we need a restriction).

More generally we have
k
(
(⊥N∗

S .S)|⊥M

)
= (P ∗.S)|k(⊥M) for any M ⊆ N∗

S

and if M ∈ Rat(N∗
S) then k(⊥M) ∈ Rat(P ∗.Q).

Consequently any regular restriction of N∗
S .S is isomorphic to a regular

restriction of the transition graph of the weak pushdown automaton S.
q.e.d. (Theorem 5.9)

64 D. Caucal

Let us illustrate the construction of the proof (iii) of Theorem 5.9 applied
to the labelled word rewriting system:

S = {x
a
−→ xx , x

b
−→ ε}.

Its suffix graph Suff(S) is the following rooted graph:
a

b

a

b

b

(ε)

a

b

a

b(x) (xx) (x3) (x4) (x5)

Note that L(Suff(S), x, ε) is the Lukasiewicz language.
By applying the construction (iii) of Theorem 5.9, the greatest length of S
is m = 2.
Its set of states is Q = {1 , 2 , 3 , 4 , p , q} with the following bijection j :

⊥ 7−→ 1 ; ⊥x 7−→ 2 ; ⊥xx 7−→ 3

⊥xxx 7−→ 4 ; xxx 7−→ p ; xxxx 7−→ q

and its set of pushdown letters is P = {y, z} with the bijection i :
xx 7−→ y ; ⊥x 7−→ z

By coding the arcs of Suff(S) restricted to {ε , . . ., x5}, we get the following
weak pushdown automaton S :

∣∣∣∣∣∣∣∣∣∣

2
b
−→ 1 ; 2

a
−→ 3 ; 3

b
−→ 2

3
a
−→ 4 ; 4

b
−→ 3 ; 4

a
−→ zp

zp
b
−→ 4 ; p

a
−→ q ; q

b
−→ p

q
a
−→ yp ; yp

b
−→ q

Its transition graph Tr(S) accessible from 2 (or connected to 2) is the
following:

a

b

b

(1) (2) (3)

a

b

a

b

a

b(4)

a

b

a

b

a

b(zp) (zq) (zyp) (zyq) (zyyp)

The use of weak pushdown automata, instead of word rewriting systems or
of pushdown automata, allows simpler constructions. For instance, let us
restrict Theorem 5.6 to weak pushdown automata.

Proposition 5.10. Let S be a weak pushdown automaton.
Let H be a finite deterministic graph labelled in PS and coloured in QS

recognizing from a vertex i the configuration language:
L = { u q | u ∈ P ∗

S ∧ q ∈ QS ∧ i
u

=⇒
H

s ∧ qs ∈ H }.

Thus Suff(S)|L is generated by length by a grammar with |VH | + 1 rules.

Proof. Let QS = {q1, . . ., qn} be the set of states of S.
We associate to any vertex s of H a new label [s] of arity n and we define
the grammar R with the axiom rule

Z −→ { [i]q1. . .qn } ∪ { p
a
−→

S

q | pi, qi ∈ H } ,

and for any vertex s of H , we take the following rule:

Deterministic graph grammars 65

[s]q1. . .qn −→ { xp
a
−→ xq | p

a
−→

S

q ∧ ∃ t, s
x
−→

H

t ∧ pt , qt ∈ H }

∪ { p
a
−→

S

xq | ∃ t, s
x
−→

H

t ∧ ps , qt ∈ H }

∪ { xp
a
−→

S

q | ∃ t, s
x
−→

H

t ∧ pt , qs ∈ H }

∪ { [t](xq1). . .(xqn) | s
x
−→

H

t }

Thus R generates by length (P ∗
S .S)L from its axiom Z. q.e.d. (Prop. 5.10)

Taking the weak pushdown automaton of Figure 5.3 restricted to the system

S = {p
a
−→ xp , p

b
−→ q , xq

c
−→ q}

and the regular language L = (xx)∗p ∪ x∗q of configuration recognized
from vertex i by the following finite deterministic automaton:

q p

p
(i) (j)

x

x

the construction of Proposition 5.10 gives the following grammar which
generates Suff(S)L by length.

; ;i

c

j

(xq)

(xp)

Z b i j

(xq)

(xp)

c

b i

(p)

(q) (q)

(p)

(q) (q) (q)

(p)

Figure 5.4. Regular restriction of a weak pushdown graph.

5.3 Main result

Finally we put together Theorem 5.8 and Theorem 5.9, and we recall The-
orem 4.6 and Theorem 5.6.

Theorem 5.11. The suffix graphs of labelled word rewriting systems,
the transition graphs of pushdown automata,
the transition graphs of weak pushdown automata,

have up to isomorphism
the same connected components: the connected regular graphs of bounded
degree,
the same accessible subgraphs: the rooted regular graphs of bounded degree,
the same regular restrictions: the regular graphs of bounded degree.

These graphs are regular by length, and also by distance when they are con-
nected.

All these equivalences are effective. Note that by Theorem 4.6 (or Proposi-
tion 4.3), the regularity by distance for the connected graphs coincides with
the finite decomposition by distance. It follows a ‘famous’ original result.

66 D. Caucal

Theorem 5.12 ([MS 85]). The connected components of pushdown au-
tomata are the connected graphs of bounded degree having a finite decompo-
sition by distance.

This result has been expressed with the usual pushdown automata which are
intermediate devices between the general labelled word rewriting systems
(applied by suffix) and the weak pushdown automata. Furthermore the
finite decomposition by distance for the connected graphs of bounded degree
is a normal form of the regularity.

Deterministic graph grammars 67

6 Languages

Any graph G traces the language L(G, i, f) of the labels of its paths from
a colour i to a colour f . By Theorem 5.11, the regular graphs trace exactly
the context-free languages, and by restriction to path grammars, we give
directly a context-free grammar generating the path labels of any regular
graph (cf. Propositions 6.2 and 6.3). Finally we verify that the deterministic
regular graphs trace exactly the deterministic context-free languages (cf.
Proposition 6.5).

6.1 Path grammars

The regular languages are the languages recognized by the finite automata:
Rat(T ∗) := { L(G, i, f) | G finite ∧ FG ∩F2 ⊆ T ∧ i, f ∈ F1 }

and the context-free languages, which are the languages recognized by the
pushdown automata, are the languages recognized by the regular graphs:

Alg(T ∗) := { L(G, i, f) | G regular ∧ FG ∩F2 ⊆ T ∧ i, f ∈ F1 }.
This equality follows by Theorem 5.11 because by adding ε-transitions, we
can transform any regular graph G into a regular graph G of bounded
degree recognizing the same language: L(G, i, f) = L(G, i, f).
Let us give a simple construction to get directly a context-free grammar
generating the recognized language of a regular graph. In fact and contrary
to the previous sections, we just need transformations preserving the rec-
ognized language but not the structure. First by adding ε-transitions, we
can start from a unique vertex to end to a unique vertex.
Precisely, let R be a grammar and H be a finite hypergraph such that
Rω(H) are only coloured graphs. For any colours i, f , we denote

L(R, H, i, f) := L(Gen(R, H), i, f)
the label set of the paths from i to f of any generated graph by R from
H , or in particular for the canonical graph Gen(R, H) defined in 3.5.
For Z the axiom of R, we also write

L(R, i, f) := L(R, Z, i, f) = L(Gen(R), i, f).
We say that R is an initial grammar for the colours i, f when only the right
hand side H of Z is coloured by i, f , and i, f colour a unique vertex:

|H ∩ i VH | = 1 = |H ∩ f VH |.

Lemma 6.1. For any grammar R and colours i, f , we can get an ini-
tial grammar S labelled in FR ∪ {ε} and recognizing the same language:
L(R, i, f) = L(S, i, f).

Proof. Let R be any grammar generating from its axiom Z a coloured
graph G.
To any non-terminal A ∈ NR − {Z} , we associate a new symbol A′ of
arity ̺(A) + 2.
We take two new vertices p, q which are not vertices of R.

68 D. Caucal

We define the following grammar:

S := { (Z , K ′ ∪ {ip , fq}) | (Z, K) ∈ R }

∪ { (A′Xpq , K ′) | (AX, K) ∈ R ∧ A 6= Z }

where for any hypergraphK ∈ Im(S), the graph K ′ is the following:

K ′ := { s
a
−→

K

t | a ∈ TR } ∪ { A′Xpq | AX ∈ K ∧ A ∈ NR }

∪ { p
ε
−→ s | i s ∈ K } ∪ { s

ε
−→ q | f s ∈ K } .

Assuming that p, q 6∈ VG , S generates from its axiom Z the following
graph:

H := (G−F1 VG) ∪ {ip , fq} ∪ { p
ε
−→ s | i s ∈ G } ∪ { s

ε
−→ q | f s ∈ G }

satisfying L(G, i, f) = L(H, i, f) i.e. L(R, i, f) = L(S, i, f).
Note that for G having an infinite number of initial (resp. final) vertices,
the vertex p (resp. q) in H is of infinite out-degree (resp. in-degree). By
adding new ε-arcs, we can avoid these infinite degrees. q.e.d. (Lemma 6.1)

Let us illustrate the construction of Lemma 6.1.

⇓

;

;A

(1)

(2)

(1)

(2)

a

c

AA ;

;

B

B

Z b

(1) (1)

Z
ε

A′ A′

(4)

(1)

(2)

(3)

(4)

a

c

B′

b (1)

(2)

(3)

(1)

(2)

(3)

e

B′ε
ε

A′

(1)

(2)

(3)

i

i

f

i

f

B

d

B′

d

e

Figure 6.1. Same language from an initial vertex to a final vertex.

To preserve the recognized language of a regular graph (and not the struc-
ture), we can restrict to grammars having only arcs (of arity 2).
A path grammar R is a deterministic graph grammar without axiom and
whose each rule is of the form A12 −→ H where H is a finite set of
arcs having no arc of source 2 and no arc of goal 1.
We give below a path grammar which is acyclic : each right hand side is an
acyclic graph.

;

a

c

b

d

a

a

c

A

A

A
B B

(1)

(2)

(1)

(2)

(1)

(2)

(1)

(2)

Figure 6.2. An acyclic path grammar.

Deterministic graph grammars 69

For any path grammar R, any A ∈ NR and any derivation
A12 = H0 =⇒

R

H1 . . . Hn =⇒
R

. . .

we define the following languages:

Ln(R, A) := L(Hn, 1, 2) ⊆ (NR ∪ TR)∗ ∀ n ≥ 0

L(R, A) :=
⋃

n≥0

(
Ln(R, A) ∩ T ∗

R

)
⊆ T ∗

R .

Proposition 6.2. [CD 07] For any grammar R and colours i, f , we can
get a path grammar S recognizing from a non-terminal A the language
L(S, A) = L(R, i, f).

Proof. i) We assume that each rule of R is of the form: A1. . .̺(A) −→ HA

for any A ∈ NR .
Let Z be the axiom of R. By Lemma 6.1, we suppose that R is initial: i
(resp. f) colours only HZ (not the other right hand sides of R) and on a
unique vertex p (resp. q 6= p).
We assume that 0 is not a vertex of R and we take a new set of labels of
arity 2 :

{ Ai,j | A ∈ NR ∧ 1 ≤ i, j ≤ ̺(A) } ∪ {Z ′} .
We define the splitting ≺G≻ of any (TR ∪ NR)-hypergraph G as being
the graph:

≺G≻ := { s
a
−→ t | ast ∈ G ∧ a ∈ TR }

∪ { s
Ai,j
−→ t | A ∈ NR ∧ 1 ≤ i, j ≤ ̺(A) ∧

∃ s1, . . ., s̺(A), As1. . .s̺(A) ∈ G ∧ s = si ∧ t = sj }

and for p, q ∈ VG and P ⊆ VG with 0 6∈ VG , we define for p 6= q

Gp,q,P := { s
a
−→
≺G≻

t | t 6= p ∧ s 6= q ∧ s, t 6∈ P }|{ s | p−→∗
s−→∗

q}

Gp,p,P :=
(
{ s

a
−→
≺G≻

t | t 6= p ∧ s, t 6∈ P }

∪ { s
a
−→ 0 | s

a
−→
≺G≻

p }
)
|{ s | p−→∗

s−→∗
0}

.

This allows to define the splitting of R as being the following path grammar:

≺R≻

:= { Ai,j12 −→ hi,j

(
(HA)i,j,[̺(A)]−{i,j}

)
| A ∈ NR ∧ 1 ≤ i, j ≤ ̺(A) }

∪ { Z ′12 −→
(
h(≺HZ≻)

)
|{ s | 1−→∗

s−→∗
2}

}

where hi,j is the vertex renaming of (HA)i,j,[̺(A)]−{i,j} defined by

hi,j(i) = 1 , hi,j(j) = 2 , hi,j(x) = x otherwise, for i 6= j

hi,i(i) = 1 , hi,i(0) = 2 , hi,i(x) = x otherwise,

and h is the vertex renaming of HZ defined by

70 D. Caucal

h(p) = 1 , h(q) = 2 , h(x) = x otherwise.

We then put ≺R≻ into a reduced form.

ii) Let us show that L(R, i, f) = L(≺R≻, Z ′).

For any A ∈ NR , we take a derivation
A1. . .̺(A) = H0 =⇒

R

H1 =⇒
R

. . . Hn =⇒
R

. . .

we write Hω =
⋃

n≥0[Hn] and for every 1 ≤ i, j ≤ ̺(A) and 0 ≤ n ≤ ω,
we define the following languages:

Ln(R, A, i, j) := L
(
(Hn)i,j,[̺(A)]−{i,j}, i, j

)
for i 6= j

Ln(R, A, i, i) := L
(
(Hn)i,i,[̺(A)]−{i}, i, 0

)
.

Note that for any A ∈ NR , any i, j ∈ [̺(A)] and n ≥ 0, we have

Ln(R, A, i, j) ⊆
(
TR ∪ { Ap,q | A ∈ NR ∧ p, q ∈ [̺(A)] }

)∗

and Lω(R, A, i, j) ⊆ T ∗
R .

Let us verify that for any A ∈ NR and 1 ≤ i, j ≤ ̺(A), we have

Lω(R, A, i, j) = L(≺R≻, Ai,j) .

As Lω(R, A, i, j) =
⋃

n≥0

(
Ln(R, A, i, j) ∩ T ∗

R

)
, it is sufficient to prove by

induction on n ≥ 0 that

Ln(R, A, i, j) = Ln(≺R≻, Ai,j) .

n = 0 : we have L0(R, A, i, j) = {Ai,j} = L0(≺R≻, Ai,j).

n = 1 : we have L1(R, A, i, j) = L((HA)i,j,[̺(A)]−{i,j}, i, j) = L1(≺R≻, Ai,j).

n =⇒ n + 1 :

Ln+1(R, A, i, j) = L1(R, A, i, j) [Ln(R, B, p, q)/Bp,q]

= L1(≺R≻, Ai,j) [Ln(≺R≻, Bp,q)/Bp,q] by ind. hyp.

= Ln+1(≺R≻, Ai,j) .

Finally we have

L(R, i, f) = L(Gen(R), i, f)

= L(≺HZ≻, p, q) [Lω(R, A, i, j)/Ai,j]

= L1(≺R≻, Z ′) [L(≺R≻, Ai,j)/Ai,j]

= L(≺R≻, Z ′) .
q.e.d. (Proposition 6.2)

Let us illustrate Proposition 6.2 starting from the following grammar R :

Deterministic graph grammars 71

;A

i

f

Z A
d

b
c

a

e

A

g

(1)

(2)

(3)

(1)

(2)

(3)

Its generated graph Rω(Z) is given below.

d

b
c

a

e
d

b
c

a

e
d

b
c

a

e

c

a

e
d

b

d

b

g g g g g

f

i

Proposition 6.2 splits grammar R into the following grammar ≺R≻ in
reduced form:

; ;

;

Z′ A1,3

A3,3

A1,3

A1,2

(1)

(2)

(1)

(2)

(1)

(2)

(1)

(2)

a

b

c

A1,2 A2,3

a

A3,3

e

A1,3

A3,3

(1)

(2)

(1)

(2)

(1)

(2)

(1)

(2)

d

g

(1)

(2)

(1)

(2)

A1,2

A2,3

A1,2

A2,3

We get the following generated graph ≺R≻ω(Z ′12) :

a

c
b

d

b

a a

b
c

a

c
b

c
b

a

b
c

d

b

e

a

d

b

e

a

a

c

a

c
b b

a

c
b

a

c
b

a

c
b

d

b

e

a

d

b

e

a

g

g

g

g

g

(1)

(2)

Obviously the graphs Rω(Z) and ≺R≻ω(Z ′12) are not isomorphic but by
Proposition 6.2 they recognize the same language:

L(Rω(Z) , i , f) = L(≺R≻, Z ′) = { am+nbcmd(eg∗)n | m, n ≥ 0 }.

We now show that path grammars are language-equivalent to context-free

72 D. Caucal

grammars (on words).
Recall that a context-free grammar P is a finite binary relation on words in
which each left hand side is a letter called a non-terminal, and the remaining
letters of P are terminals. By denoting NP and TP the respectives sets of
non-terminals and terminals of P , the rewriting −→

P

according to P is the

binary relation on (NP ∪ TP)∗ defined by
UAV −→

P

UWV if (A, W) ∈ P and U, V ∈ (NP ∪ TP)∗.

The derivation −→
P

∗ is the reflexive and transitive closure of −→
P

with

respect to composition. The language L(P, U) generated by P from any
U ∈ (NP ∪ TP)∗ is the set of terminal words deriving from U :

L(P, U) := { u ∈ T ∗
P | U −→

P

∗ u } .

Path grammars and context-free grammars are language-equivalent with
linear time translations.

Proposition 6.3 ([CD 07]).
a) We can transform in linear time any path grammar R into a context-free

grammar R̂ such that L(R, A) = L(R̂, A) for any A ∈ NR .

b) We can transform in linear time any context-free grammar P into an

acyclic path grammar ~P such that L(P, A) = L(~P , A) for any A ∈ NP .

Proof. i) The first transformation is analogous to the translation of any
finite automaton into an equivalent right linear grammar.
To each non-terminal A ∈ NR , we take a vertex renaming hA of R(A12)
such that hA(1) = A and hA(2) = ε , and the image Im(hA) − {ε} is a
set of symbols with Im(hA) ∩ Im(hB) = {ε} for any B ∈ NR − {A} .
We define the following context-free grammar:

R̂ := { (hA(s), ahA(t)) | ∃ A ∈ NR , s
a
−→

R(A12)
t }.

Note that each right side of R̂ is a word of length at most 2, and the number
of non-terminals of R̂ depends on the description length of R :

|N bR
| =

(∑
A∈NR

|VR(A12)|
)

− |NR| .
For instance, the path grammar of Figure 6.2 is transformed into the fol-
lowing context-free grammar:

A = aC ; C = BD ; D = c

B = aF + bE ; E = aG + d ; F = AG

G = AH ; H = c

ii) For the second transformation, we have N~P
= NP and for each A ∈ NP ,

its right hand side in ~P is the set of distinct paths from 1 to 2 labelled by
the right hand sides of A in P .
We translate the context-free grammar P into the following acyclic path

Deterministic graph grammars 73

grammar:

~P := { (A12 , HA) | A ∈ Dom(P) }

such that for each non-terminal A ∈ Dom(P), the graph HA is the set of
right hand sides of A in P starting from 1 and ending to 2 :

HA := { 1
B
−→ (B, V) | (A, BV) ∈ P ∧ |B| = 1 ∧ V 6= ε }

∪ { (U, BV)
B
−→ (UB, V) | (A, UBV) ∈ P ∧ |B| = 1 ∧ U, V 6= ε }

∪ { (U, B)
B
−→ 2 | (A, UB) ∈ P ∧ |B| = 1 ∧ U 6= ε }

∪ { 1
B
−→ 2 | (A, B) ∈ P ∧ |B| = 1 }

∪ { 1
ε
−→ 2 | (A, ε) ∈ P } .

Note that NP = N~P
and TP = T~P

− {ε}.
For instance the context-free grammar {(A, aAA) , (A, b)} generating from
A the Lukasiewicz language, is translated into the acyclic path grammar
reduced to the unique rule:

A12 −→ {1
b
−→ 2 , 1

a
−→ (a, AA) , (a, AA)

A
−→ (aA, A) , (aA, A)

A
−→ 2}

and represented below:

a

bA A

A

(1)

(2)

(1)

(2)

q.e.d. (Proposition 6.3)

Note that by using the two transformations of Proposition 6.3, we can trans-
form in linear time any path grammar into a language equivalent acyclic
path grammar.
By Proposition 6.2 and Proposition 6.3 (a), the recognized languages of reg-
ular graphs are generated by context-free grammars. The converse is true
by Proposition 6.3 (b).

Corollary 6.4. The regular graphs recognize exactly the context-free lan-
guages.

6.2 Deterministic languages

We now focus on the deterministic regular graphs.
We say that a coloured graph G is deterministic from a colour i if i colours
a unique vertex of G, and two arcs with the same source have distinct labels:

|G ∩ i VG| = 1 and (p
a
−→

G

q ∧ p
a
−→

G

r =⇒ q = r).

The languages recognized by the deterministic regular graphs:

74 D. Caucal

DAlg(T ∗) := { L(G, i, f) | G regular and deterministic from i,

∧ FG ∩F2 ⊆ T ∧ i, f ∈ F1 }
are the languages recognized by the deterministic pushdown automata.

Proposition 6.5. The deterministic regular graphs recognize exactly the
deterministic context-free languages.

Proof. Recall that a deterministic pushdown automaton S over an alphabet
T of terminals is a finite subset of PQ×(T ∪ {ε})×P ∗Q where P, Q are
disjoint alphabets of respectively stack letters and states, and such that S
is deterministic for any a ∈ T ∪ {ε} :

(xp
a
−→ uq ∧ xp

a
−→ vr) =⇒ uq = vr

and each left-hand side of an ε-rule is not the left-hand side of a terminal
rule:

(xp
ε
−→ uq ∧ xp

a
−→ vr) =⇒ a = ε .

The language L(Tr(S), xp, F) recognized by S starting from an initial con-
figuration xp and ending to a regular set F ⊆ P ∗Q of final configurations,
is a deterministic context-free language.

i) Let us verify that L(Tr(S), xp, F) is traced by a deterministic regular
graph. We take two colours i and f .
By Proposition 5.4 or more precisely by Corollary 5.5, the following coloured
graph:

G := Tr(S) ∪ {i (xp)} ∪ { f u | u ∈ F }
is a regular graph.
Let R be a grammar generating G. We define the following grammar:

R′ := { (X ′, H ′) | (X, H) ∈ R }
where for any hyperarc fs1. . .sn of R, we associate the hyperarc

(fs1. . .sn)′ := f [s1]. . .[sn]
that we extend by union to any right hand side H of R :

H ′ := { Y ′ | Y ∈ H }
and such that for any vertex s ∈ VH ,

[s] := { t | t
ε
−→
[H]

∗
s ∨ s

ε
−→
[H]

∗
t }.

Thus R′ is without ε-arc and
L(R′, i, f) = L(R, i, f) = L(G, i, f) = L(Tr(S), xp, F).

ii) Let i, f be colours and R be a grammar such that Gen(R) is deter-
ministic from i.
We want to show that L(R, i, f) is a deterministic context-free language.
By Proposition 4.4 (and 4.1), we assume that Gen(R) is accessible from i.
By Lemma 3.11, we can assume that R is terminal outside.
For any rule (X, H) ∈ R, we define

Out(X(1)) := { i | 1 < i ≤ ̺(X(1)) ∧ ∃ a, X(i)
a
−→

Gen(R, X)
}

the ranks of the input vertices which are source of an arc in the generated

Deterministic graph grammars 75

graph from X . Precisely
(
Out(A)

)
A∈NR

is the least fixed point of the sys-

tem: for each (X, H) ∈ R,

Out(X(1)) = { i | ∃ a, X(i))
a
−→
[H]

}

∪ { i | ∃ Y ∈ H ∩ NRV ∗
H ∃ j ∈ Out(Y (1)), X(i) = Y (j) } .

We rewrite non-terminal hyperarcs in the right hand sides of R until all the
terminal arcs of input source are produced. We begin with the grammar:

R0 := R
and having constructed a grammar Rn for n ≥ 0, we choose a rule (X, H) ∈
Rn and a non-terminal hyperarc Y ∈ H ∩ NRV ∗

H such that
VX ∩ { Y (i) | i ∈ Out(Y (1)) } 6= ∅

and we rewrite Y in H to get a hypergraph K i.e. H −→
Rn, Y

K in order

to replace H by K in Rn :
Rn+1 := (Rn − {(X, H)}) ∪ {(X, K)} .

If such a choice is not possible, we stop with R := Rn .
As Gen(R) is deterministic, it is of bounded out-degree, hence R exists.
By construction, R is equivalent to R :

Rω(X) = R
ω
(X) for any X ∈ Dom(R) = Dom(R).

Furthermore R satisfies the following property:
∀ (X, H) ∈ R ∀ Y ∈ H ∩ NRV ∗

H

VX ∩ { Y (i) | i ∈ Out(Y (1)) } = ∅

meaning that any input which is a vertex of a non-terminal hyperarc Y
cannot be a source of an arc in the generated graph from Y .
For each rule (X, H) ∈ R, we denote

InOut(X(1)) :=
⋃
{ VX ∩ VY | Y ∈ H ∧ Y (1) ∈ NR }

the set of input-output vertices; and for each s ∈ InOut(X(1)), we take
a new vertex s′ 6∈ VH and to any non-terminal hyperarc Y ∈ H with
Y (1) ∈ NR , we associate the hyperarc Y ′ = Y (1)Y (2)′. . .Y (|Y |)′ with
s′ := s for any s ∈ VH − InOut(X(1)).
We define the grammar R′ by associating to each rule (X, H) ∈ R, the
following rule:
X −→ [H] ∪ { Y ′ | Y ∈ H ∧ Y (1) ∈ NR } ∪ { s′

ε
−→ s | s ∈ InOut(X(1)) }

Thus L(R, i, f) = L(R′, i, f) and the graph Gen(R′) is of finite degree,
deterministic over TR ∪ {ε} and such that any source of an ε-arc is not
source of an arc labelled in TR .
By Theorem 5.11, Gen(R′) is the transition graph of a pushdown automa-
ton S accessible from an initial configuration c0 with a regular set F of
final configurations:

Gen(R′) = Tr(S){ c | c0 −→
∗

c } ∪ {i c0} ∪ { f c | c ∈ F }.
Finally S is a deterministic pushdown automaton recognizing the language:

L(Tr(S), i, F) = L(R′, i, f) = L(R, i, f). q.e.d. (Proposition 6.5)

76 D. Caucal

Due to a lack of space (and time), we have only presented a first (and partial)
survey on deterministic graph grammars. After defining suitable normal
forms, we explored the notion of regularity of a graph with respect to a finite-
index graduation of its vertices. Together with a generic representation of
grammar-generated graphs, this yields a canonical representation of any
given regular graph. These definitions and techniques constitute a basic
toolkit for conveniently manipulating deterministic graph grammars. As
an illustration, we were able to prove in a self-contained way several known
structural results concerning regular graphs, the most important being their
links with the transition graphs of pushdown automata.
This is only a first step in studying deterministic graph grammars, and many
interesting developments remain to be explored. We hope that this paper
might encourage further work on the subject. In particular, we believe that
grammars will prove an invaluable tool in extending finite graph theory
to the class of regular graphs, as well as finite automata theory to some
sub-families of context-free languages. Some efforts in these directions have
already begun to appear ([Ca 06, CD 07]). Other leads for further research
concern the use of grammars as a tool for more general computations (a
particular case is Proposition 4.4), and the design of geometrical proofs
for results related to context-free languages (e.g. the standard pumping
lemma).
Let us conclude with a natural question: how can one extend deterministic
graph grammars in order to generate the structure of infinite automata
[Th 01], in particular those associated to pushdown automata using stack
of stacks [Th 03],[Car 06] ?

Let me thank Arnaud Carayol and Antoine Meyer for their help in drafting
this paper.

Many thanks to Wolfgang Thomas for his support, and happy birthday.

References

[Be 69] M. Benois Parties rationnelles du groupe libre, C.R. Académie Sci.
Paris, Sér. A 269, 1188–1190 (1969).

[Bü 64] R. Büchi Regular canonical systems, Archiv für Mathematische
Logik und Grundlagenforschung 6, pp. 91–111 (1964);
or in The collected works of J. Richard Büchi, edited by S. Mac Lane and
D. Siefkes, Springer-Verlag, New York, pp. 317–337 (1990).

[Car 06] A. Carayol Automates infinis, logiques et langages, PhD Thesis,
IFSIC, University of Rennes 1 (2006).

Deterministic graph grammars 77

[Ca 90] D. Caucal On the regular structure of prefix rewriting,
15th CAAP, LNCS 431, A. Arnold (Ed.), 87–102 (1990);
or in Theoretical Computer Science 106, 61–86 (1992).

[Ca 06] D. Caucal Synchronization of pushdown automata, 10th DLT,
LNCS 4036, O. Ibarra, Z. Dang (Eds.), 120-132 (2006).

[CD 07] D. Caucal and T.H. Dinh Path algorithms on regular graphs,
16th FCT, LNCS 4639, E. Csuhaj-Varjú, Z. Ésik (Eds.), 199–212 (2007).

[Co 89] B. Courcelle Infinite graphs of bounded width, Mathematical
Systems Theory 21-4, 187–221 (1989).

[MS 85] D. Muller and P. Schupp The theory of ends, pushdown au-
tomata, and second-order logic, Theoretical Computer Science 37, 51–75
(1985).

[Ro 97] G. Rozenberg Handbook of graph grammars and computing by
graph transformation, World Scientific Publishing Company (1997).

[Th 01] W. Thomas A short introduction to infinite automata, 5th DLT,
LNCS 2295, W. Kuich, G. Rozenberg, A. Salomaa (Eds.), 130–144 (2001).

[Th 03] W. Thomas Constructing infinite graphs with a decidable monadic
theory, 28th MFCS, LNCS 2747, B. Rovan, P. Vojtás̆ (Eds.), 113–124
(2003).

