
HAL Id: hal-00867577
https://hal.science/hal-00867577

Submitted on 30 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synchronization of Regular Automata
Didier Caucal

To cite this version:
Didier Caucal. Synchronization of Regular Automata. MFCS 2009, Aug 2009, Novy Smokovec,
Slovakia. pp.2-23, �10.1007/978-3-642-03816-7_2�. �hal-00867577�

https://hal.science/hal-00867577
https://hal.archives-ouvertes.fr

Synchronization of regular automata

Didier Caucal

IGM–CNRS Université Paris-Est
caucal@univ-mlv.fr

Abstract. Functional graph grammars are finite devices which generate
the class of regular automata. We recall the notion of synchronization by
grammars, and for any given grammar we consider the class of languages
recognized by automata generated by all its synchronized grammars.
The synchronization is an automaton-related notion: all grammars gen-
erating the same automaton synchronize the same languages. When the
synchronizing automaton is unambiguous, the class of its synchronized
languages forms an effective boolean algebra lying between the classes
of regular languages and unambiguous context-free languages. We addi-
tionally provide sufficient conditions for such classes to be closed under
concatenation and its iteration.

1 Introduction

An automaton over some alphabet can simply be seen as a finite or countable
set of labelled arcs together with two sets of initial and final vertices. Such an
automaton recognizes the language of all words labelling an accepting path,
i.e. a path leading from an initial to a final vertex. It is well-known that fi-
nite automata recognize the regular languages. By applying basic constructions
to finite automata, we obtain the nice closure properties of regular languages,
namely their closure under boolean operations, concatenation and its iteration.
For instance the synchronization product and the determinization of finite au-
tomata respectively yield the closure of regular languages under intersection and
under complement.
This idea can be extended to more general classes of automata. In this paper,
we will be interested in the class of regular automata, which recognize context-
free languages and are defined as the (generally infinite) automata generated by
functional graph grammars [Ca 07]. Regular automata of finite degree are also
precisely those automata which can be finitely decomposed by distance, as well
as the regular restrictions of transition graphs of pushdown automata [MS 85],
[Ca 07]. Even though the class of context-free languages does not enjoy the same
closure properties as regular languages, one can define subclasses of context-free
languages which do, using the notion of synchronization.
The notion of synchronization was first defined between grammars [CH 08]. A
grammar S is synchronized by a grammar R if for any accepting path µ of (the
graph generated by) S, there exists an accepting path λ of R with the same
label u such that λ and µ are synchronized: for every prefix v of u, the prefixes

of λ and µ labelled by v lead to vertices of the same level (where the level of
a vertex is the minimal number of rewriting steps necessary for the grammar
to produce it). A language is synchronized by a grammar R if it is recognized
by an automaton generated by a grammar synchronized by R. A fundamental
result is that two grammars generating the same automaton yield the same class
of synchronized languages [Ca 08]. This way, the notion of synchronization can
be transferred to the level of automata: for a regular automaton G, the family
Sync(G) is the set of languages synchronized by any grammar generating G.
By extending the above-mentioned constructions from finite automata to gram-
mars, one can establish several closure properties of these families of synchro-
nized languages. The sum of two grammars and the synchronization product of
a grammar with a finite automaton respectively entail the closure of Sync(G)
under union and under intersection with a regular language for any regular au-
tomaton G. The (level preserving) synchronization product of two grammars
yields the closure under intersection of Sync(G) when G is unambiguous i.e.
when any two accepting paths of G have distinct labels. Normalizing of gram-
mar into a grammar only containing arcs and then the (level preserving) deter-
minization yields, for any unambiguous automaton G, the closure of Sync(G)
under complement relative to L(G). This normalization also allows us to express
Sync(G) in the case of an infinite degree automaton G, by performing the e-
closure of Sync(H) for some finite degree automaton H using an extra label e.
A final useful normalization only allows the presence of initial and final vertices
at level 0. It yields sufficient conditions for the closure of classes of synchronized
languages under concatenation and its iteration.
In Section 2, we recall the definition of regular automata. In the next section, we
summarize known results on the synchronization of regular automata [Ca 06],
[NS 07], [CH 08], [Ca 08]. In the last section, we present a simpler construction
for the closure under complement of Sync(G) for unambiguous G [Ca 08] and
present new results, especially sufficient conditions for the closure of Sync(G)
under concatenation and its iteration.

2 Regular automata

An automaton is a labelled oriented simple graph with input and output vertices.
It recognizes the set of words labelling the paths from an input to an output.
Finite automata are automata having a finite number of vertices, they recognize
the class of regular languages. Regular automata are the automata generated by
functional graph grammars, they recognize the class of context-free languages. A
key result, originally due to Muller and Schupp, identifies the regular automata
of finite degree with the automata finitely generated by distance.

An automaton over an alphabet (finite set of symbols) T of terminals is just a
set of arcs labelled over T (a simple labelled oriented graph) with initial and final
vertices. We use two symbols ι and o to mark respectively the initial and final
vertices. More precisely an automaton G is defined by G ⊆ T×V ×V ∪ {ι, o}×V

where V is an arbitrary set such that the following set of vertices
VG = { s ∈ V | (ι, s) ∈ G ∨ (o, s) ∈ G

∨ ∃ a ∈ T ∃ t ∈ V (a, s, t) ∈ G ∨ (a, t, s) ∈ G }
is finite or countable. Any triple (a, s, t) ∈ G is an arc labelled by a from source
s to goal t ; it is identified with the labelled transition s

a
−→

G

t or directly s
a

−→ t

if G is understood. Any pair (c, s) ∈ G is a coloured vertex s by c ∈ {ι, o} also
written c s. A vertex is initial (resp. final) if it is coloured by ι (resp. o) i.e.
ι s ∈ G (resp. o s ∈ G). An example of an automaton is given by

G = { n
a

−→ n + 1 | n ≥ 0 } ∪ { n
b

−→ xn | n > 0 } ∪ { n
b

−→ y2n | n > 0 }

∪ { xn+1 b
−→ xn | n > 0 } ∪ { yn+1 b

−→ yn | n > 0 }
∪ {ι 0 , o y} ∪ { o xn | n > 0 } ∪ { ι y2n+1 | n ≥ 0 }

and is represented (up to isomorphism) below.

bbbbb

a a a

bbb

b b

bbb

b

b

o

ι

o

ι

o

ι

o

o

ι

ι

Figure 2.1 An automaton.

An automaton G is thus a simple vertex- and arc-labelled graph. G has fi-
nite degree if for any vertex s, the set { t | ∃ a (s

a
−→ t ∨ t

a
−→ s) } of

its adjacent vertices is finite. Recall that (s0, a1, s1, . . ., an, sn) for n ≥ 0 and
s0

a1
−→

G

s1 . . . sn−1
an
−→

G

sn is a path from s0 to sn labelled by u = a1. . .an ;

we write s0
u

=⇒
G

sn or directly s0
u

=⇒ sn if G is understood. An accepting path

is a path from an initial vertex to a final vertex. An automaton is unambiguous
if two accepting paths have distinct labels. The automaton of Figure 2.1 is un-
ambiguous. The language recognized by an automaton G is the set L(G) of all
labels of its accepting paths: L(G) = { u ∈ T ∗ | ∃ s, t (s

u
=⇒

G

t ∧ ι s , o t ∈ G) }.

Note that ε ∈ L(G) if there exists a vertex s which is initial and final: ι s , o s ∈ G.
The automaton G of Figure 2.1 recognizes the language

L(G) = { ambn | 0 < n ≤ m } ∪ { anb2n | n > 0 } ∪ { b2n | n ≥ 0 }.
The languages recognized by finite automata are the regular languages over T .
We generalize finite automata to regular automata using functional graph gram-
mars. To define a graph grammar, we need to extend an arc (resp. a graph) to a
hyperarc (resp. a hypergraph). Although such an extension is natural, this may
explain why functional graph grammars are not very widespread at the moment.
But we will see in the last section that for our purpose, we can restrict to gram-
mars using only arcs.
Let F be a set of symbols ranked by a mapping ̺ : F −→ IN associating to each
f ∈ F its arity ̺(f) ≥ 0 such that Fn = { f ∈ F | ̺(f) = n } is countable for
every n ≥ 0 with T ⊂ F2 and ι, o ∈ F1 .
A hypergraph G is a subset of

⋃
n≥0 Fn×V n where V is an arbitrary set. Any

tuple (f, s1, . . ., s̺(f)) ∈ G, also written fs1. . .s̺(f) , is a hyperarc of label f and
of successive vertices s1, . . ., s̺(f) . We add the condition that the set of vertices
VG is finite or countable, and the set of labels FG is finite. An arc is a hyperarc

fst labelled by f ∈ F2 and is also denoted by s
f

−→ t. For n ≥ 2, a hyperarc
fs1. . .sn is depicted as an arrow labelled f and successively linking s1, . . ., sn.
For n = 1 and n = 0, it is respectively depicted as a label f (called a colour) on
vertex s1 and as an isolated label f called a constant. This is illustrated in the
next figures. For instance the following hypergraph:

G = {4
b

−→ 1 , 5
b

−→ 1 , 2
a

−→ 5 , 5
b

−→ 3 , 6
b

−→ 3 , ι 4 , o 6 , A456}
with a, b ∈ F2 and A ∈ F3 , is represented below.

A

b

b

a

b

b

4

5

6

1

2

3

ι

o

Figure 2.2 A finite hypergraph.

A (coloured) graph G is a hypergraph whose labels are only of arity 1 or 2 :
FG ⊂ F1 ∪ F2 . An automaton G over the alphabet T is a graph with a set of
labels FG ⊆ T ∪ {ι, o}. We can now introduce functional graph grammars to
generate regular automata.
A graph grammar R is a finite set of rules of the form fx1. . .x̺(f) −→ H where
fx1. . .x̺(f) is a hyperarc of label f called non-terminal joining pairwise distinct
vertices x1 6= . . . 6= x̺(f) and H is a finite hypergraph.
We denote by NR the set of non-terminals of R i.e. the labels of the left hand
sides, by TR = { f ∈ F −NR | ∃ H ∈ Im(R), f ∈ FH } the terminals of R i.e.
the labels of R which are not non-terminals, and by FR = NR ∪ TR the labels
of R.
We use grammars to generate automata hence in the following, we may assume
that TR ⊆ T ∪ {ι, o}. We restrict any hypergraph H to the automaton [H] of
its terminal arcs and coloured vertices: [H] = H ∩ (T×VH×VH ∪ {ι, o}×VH).
Similarly to context-free grammars (on words), a graph grammar has an axiom:
an initial finite hypergraph. To indicate this axiom, we assume that any grammar
R has a constant non-terminal Z ∈ NR ∩ F0 which is not a label of any right hand
side; the axiom of R is the right hand side H of the rule of Z : Z −→ H ∧ Z 6∈ FK

for any K ∈ Im(R).
Starting from the axiom, we want R to generate a unique automaton up to
isomorphism. So we finally assume that any grammar R is functional meaning
that there is only one rule per non-terminal: if (X, H) , (Y, K) ∈ R with X(1) =
Y (1) then (X, H) = (Y, K).
For any rule fx1. . .x̺(f) −→ H , we say that x1, . . ., x̺(f) are the inputs of f ,
and VH−[H] is the set of outputs of f .
To work with these grammars, it is simpler to assume that any grammar R is
terminal-outside [Ca 07]: any terminal arc or colour in a right hand side links to

at least one non input vertex: H ∩ (T×VX×VX ∪ {ι, o}×VX) = ∅ for any rule
(X, H) ∈ R. In particular an input is not initial and not final.
We will use upper-case letters A, B, C, . . . for non-terminals and lower-case letters
a, b, c . . . for terminals. Here is an example of a (functional graph) grammar R :

; ;AZ A B B A

b b

o

o

ι

ι

o

ι

b
a

b

b

1

2

3

1

2

3

1

2

3

1

2

3

Figure 2.3 A (functional graph) grammar.

For the previous grammar R, we have NR = {Z, A, B} with Z the axiom and
̺(A) = ̺(B) = 3, TR = {a, b, ι, o} and 1, 2, 3 are the inputs of A and B.
Given a grammar R, the rewriting relation −→

R

is the binary relation between

hypergraphs defined as follows: M rewrites into N , written M−→
R

N , if we can

choose a non-terminal hyperarc X = As1. . .sp in M and a rule Ax1. . .xp −→ H in
R such that N can be obtained by replacing X by H in M : N = (M −X)∪h(H)
for some function h mapping each xi to si, and the other vertices of H injectively
to vertices outside of M ; this rewriting is denoted by M−→

R, X

N . The rewriting −→
R, X

of a hyperarc X is extended in an obvious way to the rewriting −→
R, E

of any set E

of non-terminal hyperarcs. The complete parallel rewriting =⇒
R

is a simultaneous

rewriting according to the set of all non-terminal hyperarcs: M=⇒
R

N if M−→
R, E

N

where E is the set of all non-terminal hyperarcs of M . We depict below the first
three steps of the parallel derivation of the previous grammar from its constant
non-terminal Z:

=⇒ =⇒ =⇒BAZ

b

A

b

a

b

b

bb

o

ι

o

o

ι

o

o

ι

o

ι

o

ι ι ι

Figure 2.4 Parallel derivation for the grammar of Figure 2.3.

An automaton G is generated by R (from its axiom) if G belongs to the following
set Rω of isomorphic automata:

Rω = {
⋃

n≥0[Hn] | Z −→
R

H0 =⇒
R

. . . Hn =⇒
R

Hn+1 . . . }.

Note that in all generality, we need to consider hypergraphs with multiplicities.
However using an appropriate normal form, this technicality can be safely omit-
ted [Ca 07].
For instance the automaton of Figure 2.1 is generated by the grammar of Fig-
ure 2.3. A regular automaton is an automaton generated by a (functional graph)
grammar. Note that a regular automaton has a finite number of non-isomorphic
connected components, and has a finite number of distinct vertex degrees.
Another example is given by the following grammar:

;Z AA c

a

a

b

b

A A c

1

2

1

2

ι

o

which generates the following automaton:

a

a b

c

c c

a b

a

b

ba

c

cc

a b

b

o

ι

recognizing the language { ucũ | u ∈ {a, b}+ } where ũ is the mirror of u.
The language recognized by a grammar R is the language L(R) recognized by
its generated automaton: L(R) = L(G) for (any) G ∈ Rω. This language is
well-defined since all automata generated by a given grammar are isomorphic.
A grammar R is an unambiguous grammar if the automaton it generates is
unambiguous.
There is a canonical way to generate the regular automata of finite degree which
allows to characterize these automata without the explicit use of grammars. This
is the finite decomposition by distance.
The inverse G−1 of an automaton G is the automaton obtained from G by
reversing its arcs and by exchanging initial and final vertices:

G−1 = { t
a

−→ s | s
a

−→
G

t } ∪ { ι s | o s ∈ G } ∪ { o s | ι s ∈ G }.

So G−1 recognizes the mirror of the words recognized by G. The restriction G|I

of G to a subset I of vertices is the subgraph of G induced by I :
G|I = G ∩ (T×I×I ∪ {ι, o}×I).

The distance dI(s) of a vertex s to I is the minimal length of the undirected paths
between s and I : dI(s) = min{ |u| | ∃ r ∈ I, r

u
=⇒

G ∪ G−1
s } with min(∅) = +∞.

We take a new colour # ∈ F1 − {ι, o} and define for any integer n ≥ 0,
Dec#

n(G, I) = G|{ s | dI(s)≥n } ∪ { # s | dI(s) = n } .
In particular Dec#

0 (G, I) = G ∪ { # s | s ∈ I }. We say that an automaton G is
finitely decomposable by distance if for each connected component C of G there
exists a finite non empty set I of vertices such that

⋃
n≥0 Dec#

n(C, I) has a finite
number of non-isomorphic connected components. Such a definition allows the

characterization of the class of all automata of finite degree which are regular.

Theorem 2.5 An automaton of finite degree is regular if and only if it is
finitely decomposable by distance and it has only a finite number of non iso-
morphic connected components.

The proof is given in [Ca 07] and is a slight extension of [MS 85] (but without
using pushdown automata). Regular automata of finite degree are also the tran-
sition graphs of pushdown automata restricted to regular sets of configurations
and with regular sets of initial and final configurations. In particular, regular
automata of finite degree recognize the same languages as pushdown automata.

Proposition 2.6 The (resp. unambiguous) regular automata recognize ex-
actly the (resp. unambiguous) context-free languages.

This proposition remains true if we restrict to automata of finite degree. We now
use grammars to extend the family of regular languages to boolean algebras of
unambiguous context-free languages.

3 Synchronization of regular automata

We introduce the idea of synchronization between grammars. The class of lan-
guages synchronized by a grammar R are the languages recognized by grammars
synchronized by R. We show that these families of languages are closed under
union by applying the sum of grammars, are closed under intersection with a
regular language by defining the synchronization product of a grammar with a
finite automaton, and are closed under intersection (in the case of grammars
generating unambiguous automata) by performing the synchronization product
of grammars. Finally we show that all grammars generating the same automaton
synchronize the same languages.

To each vertex s of an automaton G ∈ Rω generated by a grammar R, we as-
sociate a non negative integer ℓ(s) which is the minimal number of rewritings
applied from the axiom necessary to reach s. More precisely for G =

⋃
n≥0[Hn]

with Z−→
R

H0=⇒
R

. . .Hn=⇒
R

Hn+1. . ., the level ℓ(s) of s ∈ VG , also written ℓR
G(s)

to specify G and R, is ℓ(s) = min{ n | s ∈ VHn
}.

We depict below the levels of some vertices of the regular automaton of Fig-
ure 2.1 generated by the grammar of Figure 2.3. This automaton is represented
by vertices of increasing level: vertices at a same level are aligned vertically.

bbbbb

a a a

bbb

bbb

b

o

ι

o

ι

o

ι

o

o

ι

ι

0 1 2 3 4 5 6

bbb

Figure 3.1 Vertex levels with the grammar of Figure 2.3.

We say that a grammar S is synchronized by a grammar R written S � R, or
equivalently that R synchronizes S written R � S, if for any accepting path µ
label by u of the automaton generated by S, there is an accepting path λ label
by u of the automaton generated by R such that for every prefix v of u, the
prefixes of λ and µ labelled by v lead to vertices of the same level: for (any)
G ∈ Rω and (any) H ∈ Sω and for any t0

a1
−→

H

t1 . . .
an
−→

H

tn with ι t0 , o tn ∈ H ,

there exists
s0

a1
−→

G

s1 . . .
an
−→

G

sn with ι s0 , o sn ∈ G and ℓR
G(si) = ℓS

H(ti) ∀ i ∈ [0, n].

For instance the grammar of Figure 2.3 synchronizes the following grammar:

; ;BAZ A

a

Ab

b

B

1

22

11

2

1

2

ι

o o

Figure 3.2 A grammar synchronized by the grammar of Figure 2.3.

In particular for S � R, we have L(S) ⊆ L(R). Note that the empty grammar
{(Z, ∅)} is synchronized by any grammar. The synchronization relation � is a
reflexive and transitive relation. We denote �� the bi-synchronization relation:
R �� S if R � S and S � R. Note that bi-synchronized grammars R �� S
may generate distinct automata: Rω 6= Sω. For any grammar R, the image of R
by � is the family �(R) = { S | R � S } of grammars synchronized by R and
Sync(R) = { L(S) | S � R } is the family of languages synchronized by R.
Note that Sync(R) is a family of languages included in L(R) and containing the
empty language and L(R). Note also that Sync(R) = Sync(S) for R �� S.
Standard operations on finite automata are extended to grammars in order to
obtain closure properties of Sync(R). For instance the synchronization product
of finite automata is extended to arbitrary automata G and H by

G×H = { (s, p)
a

−→ (t, q) | s
a

−→
G

t ∧ p
a

−→
H

q }

∪ { ι(s, p) | ι s ∈ G ∧ ι p ∈ H } ∪ { o(s, p) | o s ∈ G ∧ o p ∈ H }
which recognizes L(G×H) = L(G) ∩ L(H).
The synchronization product of a regular automaton G, generated by a grammar
R, with a finite automaton K remains regular: it is generated by a grammar
R×K that we define [CH 08]. Let {q1, . . ., qn} be the vertex set of K. To each
A ∈ NR, we associate a new symbol (A, n) of arity ̺(A)×n except that (Z, 0) =

Z, and to each hyperarc Ar1. . .rm with m = ̺(A), we associate the hyperarc
(Ar1. . .rm)K = (A, n)(r1, q1). . .(r1, qn). . .(rm, q1). . .(rm, qn).
The grammar R×K associates to each rule (X, H) ∈ R the following rule:

XK −→ [H]×K ∪ { (BY)K | BY ∈ H ∧ B ∈ NR } .

Example 3.3 Let us consider the following grammar R :

;Z
a

b

A A Aι

o
s

1 1 t

generating the following (regular) automaton G :

o

a a a

bbb

ι

and recognizing the restricted Dyck language D′∗
1 over the pair (a, b) [Be 79] :

L(R) = L(G) = D′∗
1 . We consider the following finite automaton K :

bb

a

a

ι

o qp

recognizing the set of words over {a, b} having an even number of a.
So R×K is the following grammar:

; (A, 2)

(1,p)

(1,q)

Z (A, 2)

(s,p)

(s,q)

(A, 2)

(t,p)

(t,q)

b

b
(1,p)

(1,q)

a

a

ι

o

generating the automaton G×K :

o

ι

b

b

a

a

b

b

a

a

b

b

a

a

which recognizes D′∗
1 restricted to the words with an even number of a (or b).

2

The synchronization product of a grammar R with a finite automaton K is
synchronized by R i.e. R×K � R and recognizes L(R×K) = L(R) ∩ L(K).

Proposition 3.4 For any grammar R, the family Sync(R) is closed under
intersection with a regular language.

Propositions 2.6 and 3.4 imply the well-known closure property of the family
of context-free languages under intersection with a regular language. As R×K
is unambiguous for R unambiguous and K deterministic, it also follows Theo-
rem 6.4.1 of [Ha 78] : the family of unambiguous context-free languages is closed

under intersection with a regular language.
Another basic operation on finite automata is the disjoint union. This opera-
tion is extended to any grammars R1 and R2 . For any i ∈ {1, 2}, we denote
R′

i = Ri ×
(
{ i

a
−→ i | a ∈ T } ∪ {ι i , o i}

)
in order to distinguish the vertices of

R1 and R2. For (Z, H1) ∈ R′
1 and (Z, H2) ∈ R′

2 , the sum of R1 and R2 is the
grammar

R1 + R2 = {(Z , H1 ∪ H2)} ∪ (R′
1 − {(Z, H1)}) ∪ (R′

2 − {(Z, H2)}) .
So (R1 + R2)

ω = { G1 ∪ G2 | G1 ∈ Rω
1 ∧ G2 ∈ Rω

2 ∧ VG1 ∩ VG2 = ∅ } hence
L(R1 + R2) = L(R1) ∪ L(R2). In particular if S1 � R1 and S2 � R2 then
S1 + S2 � R1 + R2 .

Proposition 3.5 For any grammar R, Sync(R) is closed under union.

The synchronization product of regular automata can be non regular. Further-
more for the regular automaton G :

a

a, b a, b a, b

a, b a, b a, bo
ι

the languages { ambman | m, n ≥ 0 } and { ambnan | m, n ≥ 0 } are in Sync(G)
but their intersection { anbnan | n ≥ 0 } is not a context-free language.
The synchronization product of a grammar with a finite automaton is extended
for two grammars R and S for generating the level synchronization product
G×R,SH of their generated automata G ∈ Rω and H ∈ Sω which is the re-
striction of G×H to pairs of vertices with same level: G×R,SH = (G×H)|P
for P = { (s, p) ∈ VG×VH | ℓR

G(s) = ℓS
H(p) }. This product can be gener-

ated by a grammar R×S that we define. Let (A, B) ∈ NR×NS be any pair
of non-terminals and E ⊆ [1, ̺(A)]×[1, ̺(B)] be a binary relation over inputs
such that for all i, j ∈ [1, ̺(A)], if E(i) ∩ E(j) 6= ∅ then E(i) = E(j), where
E(i) = {j | (i, j) ∈ E} denotes the image of i ∈ [1, ̺(A)] by E. Intuitively for
a pair (A, B) ∈ NR×NS of non-terminals, a relation E ⊆ [1, ̺(A)]×[1, ̺(B)] is
used to memorize which entries of A and B are being synchronized.
To any such A, B and E, we associate a new symbol [A, B, E] of arity |E|
(where [Z, Z, ∅] is assimilated to Z). To each non-terminal hyperarc Ar1. . .rm

of R (A ∈ NR and m = ̺(A)) and each non-terminal hyperarc Bs1. . .sn of S
(B ∈ NS and n = ̺(B)), we associate the hyperarc
[Ar1. . .rm, Bs1 . . . sn, E] = [A, B, E](r1, s1)

E
. . . (r1, sn)

E
. . . (rm, s1)

E
. . . (rm, sn)

E

with (ri, sj)
E

= (ri, sj) if (i, j) ∈ E, and ε otherwise. The grammar R×S is
then defined by associating to each (AX, P) ∈ R, each (BY, Q) ∈ S, and each
E ⊆ [̺(A)]×[̺(B)], the rule of left hand side [AX, BY, E] and of right hand side(

[P]×[Q]
)
|E

∪ {[CU, DV, E′] | CU ∈ P ∧ C ∈ NR ∧ DV ∈ Q ∧ D ∈ NS}

with E = { (X(i), Y (j)) | (i, j) ∈ E } ∪
(
VP − VX

)
×
(
VQ − VY

)
and

E′ = { (i, j) ∈ [̺(C)]×[̺(D)] | (U(i), V (j)) ∈ E }.

Example 3.6 Let us illustrate the level synchronization product of two gram-
mars.
We take a first grammar R :

; ;ι o
Z

A
B

a

b

a

B

B

a

b

A

x 1 1 s t

1

2

3

1

2

3

generating a graph G :

ι
o o o

a a

a

a

a

a

a a

b
b

b
b

A second grammar S is the following:

; ;;ι

o
o

I

b

J

J
a

K
b

K J

b

b b

A
Z

y 1 1 p

1

2

1

2

q

1

2

1

2

r

generating a graph H :

ι
o

o ob b b b

b bbb

a a

The level synchronization product G×R,SH of the previous two graphs is the
graph:

o oι b

b

a a

This graph is generated by the following grammar R×S restricted to the rules
accessible from Z :

; ;

;

ι

o

o

Z
a

b

(x,y)

U

V

(1,1) (1,1)

V
b

W
(t,q)

W

(s,p)

X

X

(t,r) (t,q)

W

a

U
(2,1)

(3,2)

(1,1)

(2,1)

(3,2)

(3,2)

(1,1)

(2,1)

(3,2)

(2,1)

(3,2)

(2,1)

(3,2)

with U = [A, I, {(1, 1)}]

V = [B, J, {(1, 1), (2, 1), (3, 2)}]

W = [B, K, {(2, 1), (3, 2)}]

X = [B, J, {(2, 1), (3, 2)}] .
2

Note that R×S is synchronized by R and S, and is bi-synchrnonized with S
for S � R. Furthermore R×S generates G×R,SH for G ∈ Rω and H ∈ Sω

hence recognizes a subset of L(R) ∩ L(S). However for grammars S and S′

synchronized by an unambiguous grammar R, we have L(S×S′) = L(S) ∩ L(S′).

Proposition 3.7 For any unambiguous grammar R, the family Sync(R) is
closed under intersection.

By extending basic operations on finite automata to grammars, it appears that
graph grammars are to context-free languages what finite automata are to reg-
ular languages. We will continue these extensions in the next section. Let us
present a fundamental result concerning grammar synchronization, which states
that Sync(R) is independent of the way the automaton Rω is generated.

Theorem 3.8 For any grammars R and S such that Rω = Sω, we have
Sync(R) = Sync(S).

Proof sketch.

By symmetry of R and S, it is sufficient to show that Sync(R) ⊆ Sync(S).
Let R′

� R. We want to show that L(R′) ∈ Sync(S).
We have to show the existence of S′

� S such that L(S′) = L(R′).
Note that it is possible that there is no grammar S′ synchronized by S and
generating the same automaton as R′ (i.e. S′

� S and S′ω = R′ω).
Let G ∈ Rω = Sω. Any vertex s of G has a level ℓR

G(s) according to R and a
level ℓS

G(s) according to S.
Let H ∈ R′ω and let K = (G×ℓH)|P be the automaton obtained by level synchro-
nization product of G with H and restricted to the set P of vertices accessible
from ι and co-accessible from o .
The restriction by accessibility from ι and co-accessibility from o can de done
by a bi-synchronized grammar [Ca 08]. By definition of R×R′, the automaton K
can be generated by a grammar R′′ bi-synchronized to R′ with

ℓR′′

K (s, p) = ℓR
G(s) = ℓR′

H (p) for every (s, p) ∈ VK .
In particular L(K) = L(R′).

Let us show that K is generated by a grammar synchronized by S.
We give the proof for Rω of finite degree. In that case and for ‖ ̺ ‖ =

∑
A∈NR

̺(A),

|ℓR
G(s) − ℓR

G(t)| ≤ ‖ ̺ ‖.dG(s, t) for every s, t ∈ VG .
Furthermore K is also of finite degree.
We show that K is finitely decomposable not by distance but according to ℓS

K(s)
for the vertices (s, p) of K.

Let n ≥ 0 and C be a connected component of K|{ (s,p)∈VK | ℓS
G

(s)≥n }.
So C is fully determined by

its frontier : FrK(C) = VC ∩ VK−C

its interface : IntK(C) = { s
a

−→
C

t | {s, t} ∩ FrK(C) 6= ∅ } .

Let (s0, p0) ∈ FrK(C) and D be the connected component of G{ s | ℓS
G

(s)≥n } con-
taining s0. It remains to find a bound b independent of n such that

|ℓR′′

K (s, p) − ℓR′′

K (t, q)| ≤ b for every (s, p) , (t, q) ∈ FrK(C).
For any (s, p) , (t, q) ∈ FrK(C), we have s, t ∈ FrG(D) hence dD(s, t) is bounded
by the integer

c = max{ dSω(A)(i, j) < +∞ | A ∈ NS ∧ i, j ∈ [1, ̺(A)] }
whose Sω(A) = {

⋃
n≥0[Hn] | A1. . .̺(A) = H0 =⇒

S

. . . Hn =⇒
S

Hn+1 . . . }

thus it follows that
|ℓR′′

K (s, p)− ℓR′′

K (t, q)| = |ℓR
G(s)− ℓR

G(t)| ≤ ‖ ̺ ‖dG(s, t) ≤ ‖ ̺ ‖dD(s, t) ≤ ‖ ̺ ‖c .
For G of infinite degree and by Proposition 4.9, we can express Sync(G) as an
ε-closure of Sync(H) for some regular automaton H of finite degree using ε-
transitions.
2

Theorem 3.8 allows to transfer the concept of grammar synchronization to the
level of regular automata: for any regular automaton G, we can define

Sync(G) = Sync(R) for (any) R such that G ∈ Rω.
The synchronization relation is also extended between regular automata. A regu-
lar automaton H is synchronized by a regular automaton G, and we write H � G
or G � H , if there exists a grammar S generating H which is synchronized by
a grammar R generating G : S � R, H ∈ Sω and G ∈ Rω.
Let us illustrate these ideas by presenting some examples of well-known sub-
families of context-free languages obtained by synchronization.

Example 3.9 For any finite automaton G, Sync(G) is the family of regular
languages included in L(G).

Example 3.10 For the following regular automaton G :

cc c c

a

b

a

b

a

bo
ι

o o o

Sync(G) is the family of input-driven languages [Me 80] with a pushing, b pop-
ping and c internal. As the initial vertex is not source of an arc labelled by b,
Sync(G) does not contain all the regular languages.

Example 3.11 We complete the previous automaton by adding an b-loop on
the initial vertex to obtain the following automaton G :

cc c

a

b

a

b

a

bo
ι

o o o

b, c

The set Sync(G) is the family of visibly pushdown languages [AM 04] with a
pushing, b popping and c internal.

Example 3.12 For the following regular automaton G :

c c

a b
cc

a b
c

b
a b

a

c
a

a
b

b
cc

a b
cc

a b
c

b
a b

a

c
a

a
b

b
cc

b

b

a

a

ι

o

the set Sync(G) is the family of balanced languages [BB 02] with a, b pushing
with their corresponding popping letters a, b, and c is internal.

Example 3.13 For the following regular automaton G1 :

a

b

b

a

b

b

a

b

b

ι

o

the family Sync(G1) is the set of languages generated from I by the following
linear context-free grammars:

I = P + amAbm with m ≥ 0 and P ⊆ {ab, . . . , ambm}

A = Q + anAbn with n > 0 and Q ⊆ {ab, . . . , anbn} .

Example 3.14 For the following regular automaton G2 :

a a aι

o
b b

b

b b

b

b b

b

the family Sync(G2) is the set of languages generated from I by the following
linear context-free grammars:

I = P + amAb2m with m ≥ 0 and P ⊆ {abb, . . . , amb2m}

A = Q + anAb2n with n > 0 and Q ⊆ {abb, . . . , anb2n} .

Example 3.15 For the following unambiguous regular automaton G :

a a

o
b b

b

b b

b

b b

b

ι

o

a

b

b

b

b

b

b

we have

Sync(G) = { L1 ∪ L2 | L1 ∈ Sync(G1) ∧ L2 ∈ Sync(G2) }

for the regular automata G1 and G2 of the previous Examples 3.13 and 3.14.

Example 3.16 The regular automaton G :

a

b

b

a

b

b

a

b

b

ι

o o o o

synchronizes the regular automaton:

a

b

b

a

b

b

ι

o o

a

b

b

o

a

b

a

b

a

b

b

o

a

b

which recognizes the language generated by the following context-free grammar:

I = ab + aA + aBb

A = aaA + aaBb

B = ab + aaBbb

More generally Sync(G) is the family of languages generated by the linear
context-free grammars:

I = L0 + an0A + an0BM0

A = L1 + an1A + an1BM1

B = L + an1Bbn1

defined for n0 ≥ 0 and n1 > 0, and for I0, J0, K0 ⊆ [0, n0[and I1, J1, K1 ⊆ [0, n1[
such that for every k ∈ {0, 1},

Lk = { ai+1bi+1−j | i ∈ Ik ∧ j ∈ Jk ∧ j ≤ i ∧ [j, i[∩ Kk = ∅ }

Mk = { bnk−j | j ∈ Jk ∧ [j, nk[∩ Kk = ∅ }

L = { ai+1bi+1 | i ∈ I1 ∧ [0, i[∩ K1 = ∅ } .

Intuitively, the integer n0 (resp. n1) is the length of the ‘base’ (resp. of the ‘pe-
riod’) and for any k ∈ {0, 1}, Ik, Jk, Kk are the subsets of [0, nk[such that Ik

is the set of the goals of the b-diagonals, Jk is the set of the positions of the
outputs, and Kk is the set of the non allowed positions: there are no goal of a
b-horizontal.
2

For each regular automaton G among the previous examples, Sync(G) is a
boolean algebra according to L(G) and, for the Examples 3.9, 3.10 and 3.11,
is also closed under concatenation and its iteration. We now consider new clo-
sure properties of synchronized languages for regular automata.

4 Closure properties

We have seen that the family Sync(G) of languages synchronized by a regu-
lar automaton G is closed under union and under intersection with a regular
language, and under intersection when G is unambiguous. In this section, we
consider the closure of Sync(G) under complement relative to L(G) and un-
der concatenation and its transitive closure. To obtain these closure properties,
we first apply grammar normalizations preserving the synchronized languages.
These normalizations also allow us to add ε-arcs to any regular automaton to
get a regular automaton of finite degree with the same synchronized languages.

First we put any grammar in an equivalent normal form with the same set of
synchronized languages. As in the case of finite automata, we transform any
automaton G into the pointed automaton G⊤

⊥ which is language equivalent
L(G⊤

⊥) = L(G), with a unique initial vertex ⊤ 6∈ VG which is goal of no arc
and can be final, and with a unique non initial and final vertex ⊥ 6∈ VG which is
source of no arc:

G⊤
⊥ = (G − {ι, o}×VG) ∪ {ι⊤ , o⊥} ∪ { o⊤ | ∃ s (ι s , o s ∈ G) }

∪ { ⊤
a

−→ t | ∃ s (s
a

−→
G

t ∧ ι s ∈ G) }

∪ { s
a

−→ ⊥ | ∃ t (s
a

−→
G

t ∧ o t ∈ G) }

∪ { ⊤
a

−→ ⊥ | ∃ s, t (s
a

−→
G

t ∧ ι s , o t ∈ G) } .

For instance, the finite degree regular automaton G of Figure 2.1 is transformed
into the following infinite degree regular automaton G⊤

⊥ :

bbbbbb

a a a

bbb

b b b

bbb

b

b
b

o

o

b

a

ι

b

b

Figure 4.1 A pointed regular automaton.

Note that if G is unambiguous, G⊤
⊥ remains unambiguous. The pointed trans-

formation of a regular automaton remains a regular automaton which can be
generated by an 0-grammar : only the axiom has initial and final vertices. Let
R be any grammar and ⊤,⊥ be two symbols which are not vertices of R. Let
G ∈ Rω with ⊤,⊥ 6∈ VG . We define an 0-grammar R⊤

⊥ generating G⊤
⊥ and pre-

serving the synchronized languages: Sync(R⊤
⊥) = Sync(R).

First we transform R into a grammar R̂ in which we memorize in the non-
terminals the input vertices which are linked to initial or final vertices of the
generated automaton. More precisely to any A ∈ NR and I, J ⊆ [1, ̺(A)], we
associate a new symbol AI,J of arity ̺(A) with Z = Z∅,∅. We define the grammar

R̂ assciating to each (AX, H) ∈ R and I, J ⊆ [1, ̺(A)] the following rule:
AI,JX −→ [H] ∪ { BI′,J′Y | BY ∈ H ∧ B ∈ NR }

with I ′ = { i | Y (i) ∈ I ∨ ι Y (i) ∈ H } and J ′ = { j | Y (j) ∈ J ∨ o Y (j) ∈ H }

and we restrict the rules of R̂ to the non-terminals accessible from Z.
Note that the set L(R) ∩ T of letters recognized by R can be determined as

{ a | ∃ (AI,JX, H) ∈ R̂ (∃ i ∈ I ∃ t, X(i)
a

−→
[H]

t ∧ o t ∈ H)

∨ (∃ j ∈ J ∃ s, s
a

−→
[H]

X(j) ∧ ι s ∈ H) ∨ (∃ s, t, s
a

−→
[H]

t ∧ ι s , o t ∈ H) }

and ε ∈ L(R) ⇐⇒ ∃H ∈ Im(R̂) ∃ s (ι s , o s ∈ H).
To any A ∈ NR − {Z} and any I, J ⊆ [1, ̺(A)], we associate a new symbol A′

I,J

of arity ̺(A) + 2, and we define the grammar R⊤
⊥ containing the axiom rule

Z −→ H∅,∅ ∪ {ι⊤ , o⊥} ∪ { o⊤ | ε ∈ L(R) } ∪ { ⊤
a

−→ ⊥ | a ∈ L(R) ∩ T }

for (Z, H) ∈ R̂, and for any (AI,JX, H) ∈ R̂ with A 6= Z, we take in R⊤
⊥ the rule

A′
I,J⊤X⊥ −→ HI,J such that HI,J is the following hypergraph:

HI,J = ([H] − {ι, o})×VH) ∪ { B′
P,Q⊤X⊥ | BP,QX ∈ H ∧ BP,Q ∈ N bR

}

∪ { ⊤
a

−→ t | ∃ i ∈ I (X(i)
a

−→
[H]

t) ∨ ∃ s (ι s ∈ H ∧ s
a

−→
[H]

t) }

∪ { s
a

−→ ⊥ | ∃ j ∈ J (s
a

−→
[H]

X(j)) ∨ ∃ t (o t ∈ H ∧ s
a

−→
[H]

t) }

and we put R⊤
⊥ into a terminal-outside form [Ca 07].

Example 4.2 Let us consider the following grammar R :

;

;

Z
A

11

A B

a

b

C

11

B a

b11

C
A

ι

o

o

ι

o

generating the following automaton G (with vertex levels):

o

ι a

b

a

b

a

b

a

bo o o o

ι ι

0 2 3 5 6

First this grammar is transformed into the following grammar R̂ :

;

;

Z

11

A1,1 B1,1

a

b11

a

b11

B1,1 C∅,1 C∅,1 A1,1

ι

o

ι

o

A1,1

o

In particular ε, a, b ∈ L(R). Then R̂ is transformed into the grammar R⊤
⊥ :

;

;

1

⊤

⊥

A′
1,1 B′

1,11

⊤

⊥

1

⊤

⊥

C′
∅,1

A′
1,1

⊤

⊥

ι

o

o

⊤

⊥

1
a

a
a

b
b

C′
∅,1

⊤

⊥

1
a

b
b

A′
1,1

a

b

a, bZ

B′
1,11

⊤

⊥

that we put in a terminal-outside form:

;

;

1

⊤

⊥

A′
1,1 B′

1,11

⊤

⊥

1

⊤

⊥

C′
∅,1

⊤

⊥

1
a

b
A′

1,1

A′
1,1

⊤

⊥

ι

o

o

⊤

⊥

1
a

b
C′
∅,1

a

Z

B′
1,11

⊤

⊥

a, b

a, b

a, b a, b

So R⊤
⊥ generates G⊤

⊥ :

a

b

a

b

a

b

a

b

o

o

ι

a, b

a a, b a, b a, b

a, b a, b

2

The grammars R and R⊤
⊥ synchronize the same languages.

Proposition 4.3 For any regular automaton G with ⊤,⊥ 6∈ VG , the pointed
automaton G⊤

⊥ remains regular and Sync(G⊤
⊥) = Sync(G).

It follows that, in order to define families of languages by synchronization by
a regular automaton G, we can restrict to pointed automata G. A stronger
normalization is to transform any grammar R into a grammar S such that
Sync(S) = Sync(R) and S is an arc-grammar in the following sense: S is an
0-grammar whose any non-terminal A ∈ NS −{Z} is of arity 2, and for any non
axiom rule Ast −→ H , there is no arc in H of goal s or of source t : for any
p

a
−→

H

q, we have p 6= t and q 6= s.

We can transformed any 0-grammar R into a bi-synchronized arc-grammar≺R≻.
We assume that each rule of R is of the form A1. . .̺(A) −→ HA for any A ∈ NR .

We take a new symbol 0 (not a vertex of R) and a new label Ai,j of arity 2 for
each A ∈ NR and each i, j ∈ [1, ̺(A)] in order to generate paths from i to j in
Rω(A1. . .̺(A)). We define the splitting ≺G≻ of any FR-hypergraph G without
vertex 0 as being the graph:

≺G≻ = [G] ∪ { X(i)
Ai,j
−→ X(j) | AX ∈ G ∧ A ∈ NR ∧ i, j ∈ [̺(A)] }

and for p, q ∈ VG and P ⊆ VG with 0 6∈ VG , we define
Gp,P,q =

(
{ s

a
−→
≺G≻

t | t 6= p ∧ s 6= q ∧ s, t 6∈ P }
)
|I

for p 6= q

Gp,P,p =
(
{ s

a
−→
≺G≻

t | t 6= p ∧ s, t 6∈ P } ∪ { s
a

−→ 0 | s
a

−→
≺G≻

p }
)
|J

with I = { s | p =⇒
≺G≻

s =⇒
≺G≻

q } and J = { s | p =⇒
≺G≻

s =⇒
≺G≻

0 }.

This allows to define the splitting ≺R≻ of R as being the following arc-grammar:
Z −→ ≺HZ≻

Ai,j12 −→ hi,j

(
(HA)i,[̺(A)]−{i,j},j

)
for each A ∈ NR and i, j ∈ [1, ̺(A)]

where hi,j is the vertex renaming defined by
hi,j(i) = 1 , hi,j(j) = 2 , hi,j(x) = x otherwise, for i 6= j
hi,i(i) = 1 , hi,i(0) = 2 , hi,i(x) = x otherwise.

Thus R and ≺R≻ are bi-synchronized, and ≺R≻ is unambiguous when R is
unambiguous. Note that we can put ≺R≻ into a reduced form by removing any
non-terminal Ai,j such that ≺R≻ω(Ai,j12) is without path from 1 to 2.

Example 4.4 The following 0-grammar R :

; ;Z A A

1 1

2 2

ι

o

a

B

b
1

2

3

1

2

3

A

ad B

generates the following automaton G :

a

d d

aa

b

a

b

a

b

a

d

ι

o

The splitting ≺R≻ of R is the following grammar:

;

;

;Z A1,2

A1,1

1

2

1

2

a
1

2

1

2

a
A1,1

A1,2 B2,3

1

2

1

2

A1,1

a
1

2

1

2

a

B2,1

A1,1

B2,3

ι

o

b

d

B2,1

A1,2

generating the following automaton:

a

d d

aaa a

d

ι

o

a

ab

a

ab

a

b

As R �� ≺R≻, we have Sync(R) = Sync(≺R≻).
2

To study closure properties of Sync(R) for any grammar R, we can work with its
normal form ≺R⊤

⊥≻ which is an arc-grammar generating a pointed automaton.
This normalization is really useful to study the closure property of Sync(R)
under complement relative to L(R), under concatenation and its iteration.
We have seen that Sync(R) is not closed in general under intersection, hence it
is not closed under complement according to L(R) since for any L, M ⊆ L(R),
L ∩ M = L(R) − [(L(R) − L) ∪ (L(R) − M)]. For R unambiguous, Sync(R) is
closed under intersection, and this remains true under complement according to
L(R) [Ca 08]. We give here a simpler construction.
As ≺R⊤

⊥≻ remains unambiguous, we can assume that R is an arc-grammar. Let
S � R. We want to show that L(R) − L(S) ∈ Sync(R). So S is an 0-grammar
and S is level-unambiguous as defined in [Ca 08] : for any accepting paths λ, µ
with the same label u and for every prefix v of u, the prefixes of λ and µ
labelled by v lead to vertices of the same level i.e. for (any) G ∈ Sω,

s0
a1
−→

G

s1 . . .
an
−→

G

sn ∧ t0
a1
−→

G

t1 . . .
an
−→

G

tn ∧ ι s0 , ι t0 , o sn , o tn ∈ G

=⇒ ℓS
G(si) = ℓS

G(ti) ∀ i ∈ [0, n] .

Thus ≺S≻ is a level-unambiguous arc-grammar. We take a new colour c ∈
F1−{ι, o} and for any grammar S′, we denote S′

c (resp. S′
c) the grammar obtained

from S′ by replacing the final colour o by c (resp. c by o). So R + ≺S≻c is an
arc-grammar and (R + ≺S≻c)c is level-unambiguous. It remains to apply the
grammar determinization defined in [Ca 08] and given below, to get the grammar
R/S = Det(R + ≺S≻c) such that (R/S)c is unambiguous and bi-synchronized
to (R+≺S≻c)c . Finally we keep in R/S the final vertices which are not coloured
by c to obtain a grammar synchronized by R and recognizing L(R) − L(S).

Theorem 4.5 For any unambiguous regular automaton G, the set Sync(G)
is an effective boolean algebra according to L(G), containing all the regular
languages included in L(G).

So we can decide the inclusion L(S) ⊆ L(S′) for two grammars S and S′ synchro-
nized by a common unambiguous grammar. Furthermore for grammars R1 and
R2 such that R1 + R2 is level-unambiguous, Sync(R1 + R2) = { L1 ∪ L2 | L1 ∈
Sync(R1) ∧ L2 ∈ Sync(R2) } is a boolean algebra included in L(R1) ∪ L(R2),

containing Sync(R1) and Sync(R2).
The automata of Examples 3.9 to 3.16 are unambiguous hence their families of
synchronized languages are boolean algebra. This regular automaton G:

a

a

b

b

b

b

a ab

a

a

b

a

a

a

o

oo

o

ι

is 2-ambiguous: there are two accepting paths for the words anbnan with n > 0
and a unique accepting path for the other accepted words. But Sync(G) is not
closed under intersection since { ambman | m, n ≥ 0 } and { ambnan | m, n ≥ 0 }
are languages synchronized by G.

Let us give the Det operation applied on any arc-grammar.
As for the level synchronization product, the standard powerset construction to
determinize a graph is only done level preserving.
The level-determinization of any grammar R is

Det(Rω) := { K | ∃ G ∈ Rω, K isomorphic to Det(G) }
whose the level-determinization Det(G) of any G ∈ Rω is defined by

Det(G) := { P
a

−→ Q | P, Q ∈ Π ∧ Q ⊆ Succa(P) ∧

∀ q ∈ Succa(P) − Q, Q ∪ {q} 6∈ Π }

∪ { ι P | P ∈ Π ∧ ∀ p ∈ P ι p ∈ G ∧

∀ q (ι q ∈ G ∧ q 6∈ P =⇒ P ∪ {q} 6∈ Π) }

∪ { cP | P ∈ Π ∧ c ∈ F1 − {ι} ∧ ∃ p ∈ P cp ∈ G }

restricted to the vertices accessible from ι and such that Π is the set of subsets
of vertices with same level:

Π := { P | ∅ 6= P ⊆ VG ∧ ∀ p, q ∈ P, ℓ(p) = ℓ(q) }
and Succa(P) is the set of successors of vertices in P ∈ Π by a ∈ FG ∩ F2 :

Succa(P) := { q | ∃ p ∈ P (p
a

−→
G

q) }.

Contrary to the level synchronization product, Det does not preserve the regu-
larity.
However Det(Rω) can be generated by a grammar when R is an arc-grammar.
Let R be any arc grammar with Rω accessible from ι .
We denote HA the right hand side of the rule of A ∈ NR .
To any A ∈ NR − {Z} , we associate a new symbol A of arity 2 and we de-
fine the grammar R obtained from R by adding the rules A12 −→ HA for all
A ∈ NR −{Z} , and then by replacing in the right hand sides any non-terminal

arc s
B
−→ 2 by s

B
−→ 2 :

R := { (Z, HZ) }

∪ {
(
A12 , (HA − NRVHA

2) ∪ { Bs2 | B ∈ NR ∧ Bs2 ∈ HA }
)

| A ∈ NR − {Z} }

∪ {
(
A12 , (HA − NRVHA

2) ∪ { Bs2 | B ∈ NR ∧ Bs2 ∈ HA }
)

| A ∈ NR − {Z} } .

We take a linear order < on 2NR−{Z} of smallest element ∅ (Z does not
appear in the right hand side of R). To each ∅ 6= P ⊆ NR − {Z}, we associate

a new symbol P ′ of arity 2|P |

a hyperarc <P> = P ′p1. . .pm with {p1, . . ., pm} = 2P and p1 < . . . < pm

and we take a graph HP such that

{ Z
A
−→ A | A ∈ P } ∪ {ι Z} =⇒

R

HP

and for P = ∅, we define <∅> = Z and H∅ = HZ .
To each P ⊆ NR − {Z}, we apply on HP the level-determinization to get the
graph

H ′
P := Det(HP)[∅/{Z}]− {ι ∅}

whose the vertex level ℓ is defined by
ℓ(A) = 0 ∀ A ∈ P − NR ; ℓ(A) = 1 ∀ A ∈ P ∩ NR ; ℓ(s) = 2 ∀ s ∈

VHP
− (P ∪ {Z}) .

Note that the level ℓ(Z) of Z is not significant because there is no arc of goal
Z in HP . To each P ⊆ NR − {Z}, we associate the following rule:

<P> −→ [H ′
P] ∪ { <Q>[UE/E]E⊆Q | U ⊆ VH′

P
∧ Q 6= ∅ }

with Q := { A ∈ NR | ∃ s ∈ U, s
A
−→

H′
P

}

U∅ := U

UE := { t | ∃ s ∈ U ∃ A ∈ E, s
A
−→

H′
P

t } for any ∅ 6= E ⊆ Q .

Note that for R unambiguous, we can restrict <P> to

<P> = P ′p1. . .pm with {p1, . . ., pm} = P .
By taking all the rules accessible from Z, we get a grammar Det(R).
Let us illustrate the construction of Det(R) to the following arc grammar R :

;; A

c

d

Aa e

c

d

eB b BZ BA

o

ι 1

2

1

2

1

2

1

2

generating the following graph G :

c

d

ee

c

d

e

d

c

e

d

c

a a b b

ι

o

We have the following parallel rewriting:

=⇒A B

c c

a e e Bb

d d

A

ι ιZ

A B B

Z

A

p

q

s

t

Taking ℓ(A) = ℓ(B) = 1 and ℓ(s) = ℓ(t) = ℓ(p) = ℓ(q) = 2, the right hand side
HA,B gives by level-determinization the following graph Det(HA,B) :

e

a, A

b, B

d

d

d

c
{Z}

{A}

{B}

{A,B}

{p,s}

{t}

{q}

{q,t}

and the following grammar Det(R) :

;

a

b

e

c

d

d

d

{A, B}′ {A, B}′Z

{A, B}′

ι

o

∅

{A}

{B}

{A,B}

∅

{A}

{B}

{A,B}

generating Det(G) :

c

d

a

b

e

c

d

d

d

a

b

e

c

d

d

d

a

b

e

d

d

ι

o

A similar example is given by the following arc grammar R :

; ;A

c

d

a e BAZ BA

o

ι c

d

eB b BA

1

2

1

2

1

2

1

2

generating the following graph G :

o

ι

c c

c c c c

ebea

e ea b a be e

dd

dd

dd

We obtain the following grammar Det(R) :

;

a

b

e

c

d

d

d

{A, B}′ {A, B}′Z

{A, B}′

ι

o

∅

{A}

{B}

{A,B}

∅

{A}

{B}

{A,B}

generating Det(G) :

c

a

b

e

c

a

b

e

c

a

b

e
d

d

d

d

d

d

d

d

d

ι

o

For any regular automaton G, the closure of Sync(G) under concatenation ·
(resp. under its transitive closure +) does not require the unambiguity of G.
As L(G) ∈ Sync(G), a necessary condition is to have L(G).L(G) ∈ Sync(G)
(resp. L(G)+ ∈ Sync(G)). Note that this necessary condition implies that L(G)
is closed under · (resp. +). In particular Sync(G) is not closed under · and +

for the automata of Examples 3.12 to 3.16. But this necessary condition is not
sufficient since the following regular automaton G :

b

b

a a

b

b

a

b

b

a, b

o

o

ι

recognizes L(G) = ε + M(a + b)∗ for M = { anbn | n > 0 }, hence L(G).L(G) =
L(G) = L(G)+ but M ∈ Sync(G) and M.M, M+ 6∈ Sync(G).
Let us give a simple and general condition on a grammar R such that Sync(R)
is closed under · and +. We say that a grammar is iterative if any initial vertex
is in the axiom and for (any) G ∈ Rω and any accepting path s0

a1
−→

G

s1 . . .
an
−→

G

sn

with ι s0 , o sn ∈ G and for any final vertex t i.e. o t ∈ G, there exists a path
t

a1
−→

G

t1 . . .
an
−→

G

tn with o tn ∈ G such that ℓ(ti) = ℓ(t) + ℓ(si) for all i ∈ [1, n].

For instance the automaton of Example 3.10 can be generated by an iterative
grammar. And any 0-grammar generating a regular automaton having a unique
initial vertex which is the unique final vertex, is iterative. Standard constructions
on finite automata for the concatenation and its iteration can be extended to
iterative grammars.

Proposition 4.6 For any iterative grammar R, the family Sync(R) is closed
under concatenation and its transitive closure.

However the automaton G of Example 3.11 cannot be generated by an iterated
grammar but Sync(G) is closed under · and + [AM 04]. We can also obtain
families of synchronized languages which are closed under · and + by saturating
grammars. The saturation G+ of an automaton G is the automaton

G+ = G ∪ { s
a

−→ r | ι r ∈ G ∧ ∃ t (s
a

−→
G

t ∧ o t ∈ G) }

recognizing L(G+) = (L(G))+.
Note that if G is regular with infinite sets of initial and final vertices, G+ can
be non regular (but is always prefix-recognizable). If G is generated by an 0-
grammar R, its saturation G+ can be generated by a grammar R+ that we
define.
Let (Z, H) be the axiom rule of R and r1, . . . , rp be the initial vertices of H ; we
can assume that r1, . . ., rp are not vertices of R−{(Z, H)}. To each A ∈ NR−{Z}
and I ⊆ [1, ̺(A)], we associate a new symbol AI of arity ̺(A) + p and we define
R+ with the following rules:

Z −→ [H]+ ∪ { A{ i | o X(i)∈H }Xr1. . .rp | AX ∈ H ∧ A ∈ NR }
AIXr1. . .rp −→ KI for each (AX, K) ∈ R and A 6= Z and I ⊆ [1, ̺(A)]

whose KI is the automaton obtained from K as follows:
KI = [K] ∪ { s

a
−→ rj | j ∈ [p] ∧ ∃ i ∈ I (s

a
−→

K

X(i)) }

∪ { B{ j | ∃ i∈I, Y (j)=X(i) }Y r1. . .rp | BY ∈ K ∧ B ∈ NR } .

So R is synchronized by R+ and G+ ∈ (R+)ω for G ∈ Rω.
To characterize Sync(R+) from Sync(R), we define the regular closure Reg(E)
of any language family E as being the smallest family of languages containing
E and closed under ∪ , · , + .

Proposition 4.7 For any 0-grammar R, Sync(R+) = Reg(Sync(R)).

By Propositions 4.3, 4.6 and 4.7, the following regular automaton G :

cc c

a a

b

a

b

a, b, c

a, b, c

a, b, c

a, c

ι

o

has the same synchronized languages than the automaton of Example 3.10 :
Sync(G) is the family of input-driven languages (for a pushing, b popping and
c internal). By adding an b-loop on the initial (and final) vertex of G, we obtain
an automaton H such that Sync(H) is the family of visibly pushdown languages
hence by Proposition 4.7, is closed under · and +.

Example 4.8 A natural extension of the visibly pushdown languages is to add
reset letters. For a pushing, b popping and c internal, we add a reset letter d to
define the following regular automaton G :

cc c

a a

b

a

bb, d

b, c, d

d

d

ι

o o o o

Any language of Sync(G) is a visibly pushdown language taking d as an internal
letter, but not the converse: { andbn | n ≥ 0 } 6∈ Sync(G). By Theorem 4.5,
Sync(G) is a boolean algebra. Furthermore the following automaton H :

cc c

a a

b

a

ba, b, c, d

a, b, c, d

a, b, c, d

a, b, c, d

ι

o

satisfies Sync(H) = Sync(G) and H+ = H hence by Proposition 4.7, Sync(G)
is also closed under · and +.
2

Note that the automata of the previous example have infinite degree. Further-
more for any automaton G of finite degree having an infinite set of initial or
final vertices, the pointed automaton G⊤

⊥ is of infinite degree. However any reg-
ular automaton of infinite degree (in fact any prefix-recognizable automaton)
can be obtained by ǫ-closure from a regular automaton of finite degree using
ε-transitions. For instance let us take a new letter e 6∈ T (instead of the empty
word) and let us denote πe the morphism erasing e in the words over T ∪ {e} :
πe(a) = a for any a ∈ T and πe(e) = ε, that we extend by union to any language
L ⊆ (T ∪ {e})∗ : πe(L) = { πe(u) | u ∈ L }, and by powerset to any family P of
languages: πe(P) = { πe(L) | L ∈ P }. The following regular automaton K :

cc c

a a

b

a

bb, d

b, c, d

e d

e

d

e

ι

o o o o

is of finite degree and satisfies πe(Sync(K)) = Sync(G) for the automaton G
of Example 4.8. Let us give a simple transformation of any grammar R to a
grammar Re such that Rω

e is of finite degree and πe(Sync(Re)) = Sync(R).
As Sync(R) = Sync(≺R⊤

⊥≻), we restrict this transformation to arc-grammars.
Let R be an arc-grammar. We define Re to be an arc-grammar obtained from R
by replacing each non axiom rule Ast −→ H by the rule:

Ast −→

(
[H] ∪ {s

e
−→ se , te

e
−→ t} ∪ h(H − [H])

)
|P

with se, te be new vertices and h the vertex mapping defined for any r ∈ VH

by h(r) = r if r 6∈ {s, t}, h(s) = se and h(t) = te, and P is the set of vertices
accessible from s and co-accessible from t. For instance the arc-grammar R

;Z A A

A

A

a

b

1 1

2 2

ι

o

is transformed into the following arc-grammar Re :

;Z A A

e

A

A

e

a

b

1

2

1

2

ι

o

For any rule of Re , the inputs are separated from the outputs (by e-transitions),
hence Rω

e is of finite degree. Furthermore this transformation preserves the syn-
chronized languages.

Proposition 4.9 For any arc-grammar R, Sync(R) = πe(Sync(Re)).

So for any R, Sync(R) = πe(Sync(≺R⊤
⊥≻e)) and (≺R⊤

⊥≻e)
ω is of finite degree.

All the constructions given in this paper are natural generalizations of usual
transformations on finite automata to graph grammars. In this way, basic clo-
sure properties could be lifted to sub-families of context-free languages.

Conclusion

The synchronization of regular automata is defined through devices generating
these automata, namely functional graph grammars. It can also be defined us-
ing pushdown automata with ε-transitions [NS 07] because Theorem 3.8 asserts
that the family of languages synchronized by a regular automaton is indepen-
dent of the way the automaton is generated; it is a graph-related notion. This

paper shows that the mechanism of functional graph grammars provides natural
constructions on regular automata generalizing usual constructions on finite au-
tomata. This paper is also an invitation to extend the notion of synchronization
to more general sub-families of automata.

Acknowledgements

Many thanks to Arnaud Carayol and Antoine Meyer for helping me prepare the
final version of this paper.

References

[AM 04] R. Alur and P. Madhusudan Visibly pushdown languages, 36th STOC,
ACM Proceedings, L. Babai (Ed.), 202–211 (2004).

[Be 79] J. Berstel Transductions and context-free languages, Ed. Teubner, pp. 1–
278, 1979.

[BB 02] J. Berstel and L. Boasson Balanced grammars and their languages, Formal
and Natural Computing, LNCS 2300, W. Brauer, H. Ehrig, J. Karhumäki, A. Salomaa
(Eds.), 3–25 (2002).

[Ca 06] D. Caucal Synchronization of pushdown automata, 10th DLT, LNCS 4036,
O. Ibarra, Z. Dang (Eds.), 120-132 (2006).

[Ca 07] D. Caucal Deterministic graph grammars, Texts in Logic and Games 2,
Amsterdam University Press, J. Flum, E. Grädel, T. Wilke (Eds.), 169–250 (2007).

[Ca 08] D. Caucal Boolean algebras of unambiguous context-free languages, 28th

FSTTCS, Dagstuhl Research Online Publication Server, R. Hariharan, M. Mukund,
V. Vinay (Eds.) (2008).

[CH 08] D. Caucal and S. Hassen Synchronization of grammars, 3rd CSR,
LNCS 5010, E. Hirsch, A. Razborov, A. Semenov, A. Slissenko (Eds.), 110–121 (2008).

[Ha 78] M. Harrison Introduction to formal language theory, Addison-Wesley (1978).
[Me 80] K. Mehlhorn Pebbling mountain ranges and its application to DCFL recog-

nition, 7th ICALP, LNCS 85, J. de Bakker, J. van Leeuwen (Eds.), 422–432 (1980).
[MS 85] D. Muller and P. Schupp The theory of ends, pushdown automata, and

second-order logic, Theoretical Computer Science 37, 51–75 (1985).
[NS 07] D. Nowotka and J. Srba Height-deterministic pushdown automata,

32nd MFCS, LNCS 4708, L. Kucera, A. Kucera (Eds.), 125–134 (2007).

