
HAL Id: hal-00867574
https://hal.science/hal-00867574

Submitted on 30 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Boolean algebras of unambiguous context-free languages
Didier Caucal

To cite this version:
Didier Caucal. Boolean algebras of unambiguous context-free languages. FSTTCS 2008, Dec 2008,
Bangalore, India. pp.83-94, �10.4230/LIPIcs.FSTTCS.2008.1743�. �hal-00867574�

https://hal.science/hal-00867574
https://hal.archives-ouvertes.fr

Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp -

Boolean algebras of unambiguous
context-free languages

Didier Caucal
Institut Gaspard Monge, CNRS – Université Paris-Est

caucal@univ-mlv.fr

ABSTRACT. Several recent works have studied subfamilies of deterministic context-free languages
with good closure properties, for instance the families of input-driven or visibly pushdown lan-
guages, or more generally families of languages accepted by pushdown automatawhose stack height
can be uniquely determined by the input word read so far. These ideas can be described as a notion
of synchronization. In this paper we present an extension of synchronization to all context-free
languages using graph grammars. This generalization allows one to define boolean algebras of non-
deterministic but unambiguous context-free languages containing regular languages.

1 Introduction

Several restrictions of pushdown automata were recently studied in order to define classes

of languages which generalize regular languages while retaining some of their closure prop-

erties, namely closure under boolean operations, concatenation and its iteration. All of these

approaches consist in defining a notion of synchronization between pushdown automata

[AM 04, Ca 06, NS 07] (see also [LMM 08] for complexity results). An approach which also

avoids a special treatment of the ε-moves, is to define the synchronization at graph level

[CH 08]. More precisely, the transition graph of any pushdown automaton A can be gener-

ated by a (deterministic graph) grammar R [MS 85, Ca 07] using infinite parallel rewritings.

The stack height of a configuration of A is replaced by its weight, which is the minimal

number of steps of parallel rewriting by R necessary to produce it.

The notion of synchronization can be defined for all graph grammars. A grammar G

is synchronized by a grammar H if for any accepting path λ of (the graph generated by) G,

there exists an accepting path µ of H with the same label u such that λ and µ are synchro-

nized: for every prefix v of u, the prefixes of λ and µ labelled by v lead to vertices of the same

weight. By extending usual constructions from finite automata to grammars generating de-

terministic graphs, we have shown that the languages recognized by all grammars synchro-

nized with a given grammar form a boolean algebra lying between regular languages and

deterministic context-free languages [CH 08].

In this paper, we apply the notion of synchronization to graph grammars recognizing

unambiguous context-free languages, which are the languages generated by context-free

grammars with at most one derivation tree for each word. Although these languages form

a natural generalization of deterministic context-free languages, their equivalence prob-

lem remains a challenge in formal language theory [Gi 66]. Recent developments can be

found in [Wi 04]. We present two classes of graph grammars, called unambiguous and

level-unambiguous, recognizing all unambiguous context-free languages. A grammar is

unambiguous if two accepting paths in the generated graph have distinct labels. More
c© Didier Caucal; licensed under Creative Commons License-NC-ND

2 BOOLEAN ALGEBRAS OF UNAMBIGUOUS CFL

generally, a grammar is level-unambiguous if two accepting paths with the same label are

synchronized. We show that the languages recognized by grammars synchronized with a

fixed level-unambiguous grammar form a boolean algebra containing the regular languages

(where the complement operation is relative to the language of the synchronizing gram-

mar). A direct consequence is the decidability of the inclusion problem between languages

recognized by two level-unambiguous grammars synchronized by a third one.

The paper is structured as follows: after recalling some notations and definitions in Sec-

tions 2 and 3, we present the notion of synchronization of arbitrary grammars in Section 4.

We then focus on the closure properties of level-unambiguous grammars in Section 5.

2 Notations

Let IN be the set of natural numbers. For a set E, we write |E| its cardinality, 2E its pow-
erset and for every n ≥ 0, En = {(e1, . . ., en) | e1, . . ., en ∈ E} is the set of n-tuples of
elements of E. Thus E∗ =

⋃

n≥0 E
n is the free monoid generated by E for the concatenation:

(e1, . . ., em)·(e′1, . . ., e
′
n) = (e1, . . ., em, e

′
1, . . ., e

′
n), whose neutral element is the 0-tuple (). A

finite set E of symbols is an alphabet of letters, and E∗ is the set of words over E. Any word

u ∈ En is of length |u| = n and is also represented by a mapping from [n] = {1, . . ., n}
into E, or by the juxtaposition of its letters: u = u(1). . .u(|u|). The neutral element is the
word of length 0 called the empty word and denoted by ε. We denote by [0, n] = {0, . . . , n}
for any n ∈ IN. For any binary relation R, we also write xRy for (x, y) ∈ R; as usual
Dom(R) = {x | ∃y, xRy} and Im(R) = {y | ∃x, xRy} are the domain and the image of R.
Let F be a set of symbols called labels, ranked by a mapping ̺ : F−→IN associating to

each label f its arity ̺(f) ≥ 0, and such that Fn := { f ∈ F | ̺(f) = n} is countable for every
n ≥ 0. We consider simple, oriented and labelled hypergraphs: a hypergraph G is a subset of
⋃

n≥0 FnV
n, where V is an arbitrary set, such that

• its vertex set VG := {v ∈ V | FV∗vV∗ ∩ G 6= ∅} is finite or countable,
• its label set FG := { f ∈ F | fV∗ ∩ G 6= ∅} is finite.

Any f v1. . .v̺(f) ∈ G is a hyperarc labelled by f and of successive vertices v1, . . ., v̺(f); it is

depicted according to the arity of f as follows:

• for ̺(f) ≥ 2, as an arrow labelled f and successively linking v1, . . ., v̺(f);

• for ̺(f) = 1, as a label f on vertex v1 (f is called a colour of v1);
• for ̺(f) = 0, as an isolated label f called a constant.

This is illustrated in the next figures. Note that a vertex v is depicted by a dot named (v)
where parentheses are used to differentiate a vertex name from a vertex label (a colour).

For a subset E ⊆ F of labels, we write VG,E := {v ∈ V | EV∗vV∗ ∩ G 6= ∅} = VG∩EV∗
G

the set of vertices of G linked by a hyperarc labelled in E. A graph G is a hypergraph whose

labels are only of arity 1 or 2: FG ⊂ F1 ∪ F2. Hence a graph G is a set of arcs av1v2 identified

with the labelled transition v1
a

−→
G
v2 or directly v1

a
−→v2 if G is understood, plus a set of

coloured vertices f v.

A tuple (v0, a1, v1, . . ., an, vn) with n ≥ 0 and v0
a1−→
G
v1. . .vn−1

an−→
G
vn is called a path from

v0 to vn labelled by u = a1. . .an; we write v0
u

=⇒
G
vn or directly v0

u
=⇒vn if G is understood.

For P,Q ⊆ VG and u ∈ F∗2 , we write P
u

=⇒
G
Q if p

u
=⇒
G
q for some p ∈ P and q ∈ Q and

DIDIER CAUCAL FSTTCS 2008 3

L(G, P,Q) := {u | P
u

=⇒
G
Q} is the language recognized by G from P to Q. In these notations,

we can replace P (and/or Q) by a colour ◦ to designate the subset VG,◦. In particular ◦
u

=⇒
G
Q

means that there is a path labelled by u from a vertex coloured by ◦ to a vertex in Q, and

L(G, ◦, •) is the label set of the paths from a vertex coloured by ◦ to a vertex coloured by •.

In this paper, we use two colours ◦, • ∈ F1 to mark respectively the initial vertices and
the final vertices. To depict an initial or final vertex, the dot is replaced by its colour, and
•◦ represents a vertex which is initial and final. For any graph G, we denote by L(G) :=
L(G, ◦, •) the language recognized by G. Recall that the regular languages over an alphabet
T ⊂ F2 form the set Reg(T∗) := {L(G) | G finite ∧ FG ⊆ T∪{◦, •}}.

3 Graph grammars

In this section, we recall the definition of deterministic graph grammars, together with the

family of graphs they generate (called regular graphs). Using initial and final vertices, they

can be viewed as infinite automata, generalizing finite automata. We also define two re-

stricted classes of grammars recognizing all unambiguous context-free languages.

A graph grammar R is a finite set of rules of the form f x1. . .x̺(f) −→ H where f x1. . .x̺(f)

is a hyperarc joining pairwise distinct vertices x1 6= . . . 6= x̺(f) and H is a finite hypergraph;

we denote by NR := { f ∈ F | ∃x1, . . ., x̺(f), f x1. . .x̺(f) ∈ Dom(R)} the non-terminals of R
(the labels of the left hand sides), by TR := { f ∈ F − NR | ∃H ∈ Im(R),VH, f 6= ∅} the
terminals of R (the labels of Rwhich are not non-terminals), and by FR := NR ∪ TR the labels
of R. We use grammars to generate graphs. Hence in the following, we assume that any

terminal is of arity 1 or 2: TR ⊂ F1 ∪ F2.

Like a context-free grammar (on words), a graph grammar has an axiom, which is an

initial finite hypergraph. To specify this axiom, we assume that any grammar R has a con-

stant non-terminal Z ∈ NR∩F0 which does not appear in any right hand side; the axiom of R
is the right hand side H of the rule corresponding to Z: Z−→H ∧ Z 6∈ FK for any K ∈ Im(R).

Starting from the axiom, we want R to generate a unique graph up to isomorphism.

So we finally assume that any grammar R is deterministic, meaning that there is only one

rule per non-terminal: (X,H), (Y,K) ∈ R ∧ X(1) = Y(1) =⇒ (X,H) = (Y,K). For any
rule X −→ H, we say that VX ∩ VH are the inputs of H and

⋃

{VY | Y ∈ H ∧ Y(1) ∈ NR}
are the outputs of H. For convenience and without loss of generality, it is simpler to assume

that any grammar R is terminal-outside [Ca 07], meaning that there should be at least one

non-input vertex in the support of any terminal arc or colour in a right hand side: H ∩
(TRVXVX∪TRVX) = ∅ for any rule (X,H) ∈ R. We use upper-case letters A, B,C, . . . to
denote non-terminals and lower-case letters a, b, c . . . for terminals.

The next figure shows an example of a (deterministic graph) grammar Doublewith non-

terminals Z, A, B, terminals a, b, ◦, • and rule inputs 1, 2, 3 (except for the axiom rule which

has no input).

; ;AZ A B B

b

b

a

b

(1)

(2)

(3)

(1)

(2)

(3)

(1)

(2)

(3)

(1)

(2)

(3)

b

A

b

4 BOOLEAN ALGEBRAS OF UNAMBIGUOUS CFL

Given a grammar R, the rewriting −→
R
is the binary relation between hypergraphs de-

fined as follows: M rewrites into N, written M−→
R
N, if we can choose a non-terminal hy-

perarc X = As1. . .sp in M and a rule Ax1. . .xp −→ H in R such that N can be obtained by
replacing X by H in M: N = (M − X) ∪ h(H) for some function h mapping each xi to si,
and the other vertices of H injectively to vertices outside of M; this rewriting is denoted by

M−→
R,X
N. The rewriting −→

R,X
of a hyperarc X is extended in an obvious way to the rewriting

−→
R, E
of any set E of non-terminal hyperarcs.

The complete parallel rewriting =⇒
R
is a simultaneous rewriting according to the set of

all non-terminal hyperarcs: M=⇒
R
N if M−→

R, E
N where E is the set of all non-terminal hyper-

arcs of M. We depict below the first three steps of the parallel derivation of the previous

grammar Double from its constant non-terminal Z:

=⇒ =⇒=⇒ B

b b b

A
a

b

AZ

b

b

Given a deterministic grammar R and a hypergraph H, we denote by [H] := H ∩
TRV

∗
H = H ∩ (TRVHVH∪TRVH) the set of terminal arcs and of terminal coloured vertices of

H. A graph G is generated by R (from its axiom) if G belongs to the set of isomorphic graphs

Rω:={
⋃

n≥0[Hn] | Z−→
R
H0=⇒

R
. . .Hn=⇒

R
Hn+1. . .}. For instance by indefinitely iterating the

previous derivation, we get the following infinite graph:

a

b

b

a

b

b

a

b

b

b b b bb b

b bb

We call regular a graph generated by a (deterministic graph) grammar. Given a (regular)

graph G =
⋃

n≥0[Hn] generated by a grammar R, with Z−→
R
H0=⇒

R
. . .Hn=⇒

R
Hn+1. . ., we

define the level ℓ(s) of a vertex s ∈ VG, denoted also ℓRG(s) to specify G and R, as the minimal
number of rewritings applied from the axiom to obtain s: ℓ(s) := min{n | s ∈ VHn}. The
previous graph is represented by vertices of increasing level: vertices of the same level are

vertically aligned for clarity. For any grammar R and for G ∈ Rω, we denote by L(R) :=
L(G) the language recognized by R, which is well-defined since all graphs generated by a
grammar are isomorphic. For instance, the grammar Double above recognizes the language

L(Double) = {anbn | n > 0} ∪ {anb2n | n > 0}.

A graph G is deterministic if ◦ colours a unique vertex, and two arcs with the same source

have distinct labels: r
a

−→
G
s ∧ r

a
−→
G
t =⇒ s = t. Deterministic graph grammars recognize the

family of context-free languages. The restriction to grammars generating a deterministic

graph yields the family of deterministic context-free languages [Ca 07]. A grammar R is

unambiguous if any pair of accepting paths have distinct labels: for G ∈ Rω,

s0
a1−→
G
s1. . .

an−→
G
sn ∧ t0

a1−→
G
t1. . .

an−→
G
tn ∧ ◦s0, ◦t0, •sn, •tn ∈ G =⇒ si = ti ∀i ∈ [0, n].

DIDIER CAUCAL FSTTCS 2008 5

Note that the previous grammar is unambiguous. Any grammar generating a determinis-

tic graph is unambiguous. However, unambiguous grammars recognize strictly more lan-

guages than deterministic ones.

PROPOSITION 1. Unambiguous grammars recognize the family of unambiguous context-
free languages.

Recall that there exist context-free languages which are not unambiguous i.e. which

cannot be generated by an unambiguous context-free grammar; they are called inherently

ambiguous context-free languages. An example of an ambiguous context-free language is

{ambmanbn | m, n ≥ 0} ∪ {ambnanbm | m, n ≥ 0}.
The synchronization relation we will soon define requires a slight generalization of un-

ambiguous grammars. A grammar R is called level-unambiguous if for any pair of accepting

paths λ, µ with the same label u and for every prefix v of u, the prefixes of λ and µ labelled

by v lead to vertices of the same level. Formally, for (any) G ∈ Rω,

s0
a1−→
G
s1. . .

an−→
G
sn ∧ t0

a1−→
G
t1. . .

an−→
G
tn ∧ ◦s0, ◦t0, •sn, •tn ∈ G =⇒ ℓ

R
G(si) = ℓ

R
G(ti) ∀i ∈ [0, n].

Note that any unambiguous grammar is also level-unambiguous. One can prove (Cf. Lem-

mas 13 and 14) that even though they are slightly more general, level-unambiguous gram-

mars do not recognize more languages than unambiguous ones.

PROPOSITION 2. Level-unambiguous grammars recognize the family of unambiguous
context-free languages.

4 Synchronization of grammars

The notion of synchronization was defined in earlier work as a binary relation between

grammars generating deterministic graphs [CH 08]. In this section, we extend it to all gram-

mars. To each grammar R, we associate the family Sync(R) of languages recognized by
grammars synchronized by R. We give closure properties of Sync(R) and show that this
family is independent of the way to generate Rω.

A grammar R synchronizes a grammar S, andwewrite R� S or S�R if for (any) G ∈ Rω

and (any) H ∈ Sω, whenever there exists a path t0
a1−→
H
t1. . .

an−→
H
tn with ◦t0, •tn ∈ H, then there

exists s0
a1−→
G
s1. . .

an−→
G
sn with ◦s0, •sn ∈ G and ℓRG(si) = ℓSH(ti) ∀i ∈ [0, n], meaning that for any

accepting path µ labelled by u in the graph generated by S, there must be an accepting path

λ label by u in the graph generated by R such that for every prefix v of u, the prefixes of λ

and µ labelled by v lead to vertices of the same level.

For instance the grammar Double of the previous section synchronizes the following gram-

mar S:

;; ; ;

(1)

(2)

(1)

(2)

Z AA

(1)

(2)

(1)

(2)

CB

a(1)

(2)

(1)

(2)

B C

b b

b

a(1)

(2)

(1)

(2)
b b

D D A

whose generated graph is represented by vertices of increasing level as follows:

6 BOOLEAN ALGEBRAS OF UNAMBIGUOUS CFL

a

b

b b

a a

b b

b

b b

a a

b b

b

b b

and whose accepted language is L(S) = {a2n+1b4n+2 | n ≥ 0}.
Note in particular that S�R =⇒ L(S) ⊆ L(R). The relation� is reflexive and transitive

but not antisymmetric. We denote by �� the bi-synchronization relation: R�� S if R� S and

S � R. The following lemma states that level-unambiguity is preserved for synchronized

grammars.

LEMMA 3. For any level-unambiguous grammar R:
a) S� R =⇒ S is level-unambiguous;

b) S�� R ⇐⇒ S� R and L(S) = L(R).

A useful transformation preserving bi-synchronization is to restrict to vertices accessi-

ble from ◦ and co-accessible from •. The restriction G|P of a graph G to a subset P ⊆ VG of
vertices is the subgraph of G induced by P:

G|P := {s
a

−→t | s
a

−→
G
t ∧ s, t ∈ P} ∪ {cs | cs ∈ G ∧ s ∈ P}.

We write Rω
◦,• := {G|{s|◦=⇒

G
s=⇒
G

•} | G ∈ Rω} the restriction of Rω by accessibility from ◦

and co-accessibility from •. We can restrict synchronization to grammars generating graphs

accessible from their initial vertices and co-accessible from their final vertices.

LEMMA 4. Any grammar R can be transformed into a grammar S such that S�� R and
Sω = Rω

◦,•.

Another basic transformation, given in Lemma 6.1 of [Ca 07] allows us to restrict our-

selves to grammars with colours ◦ and • only in the axiom (i.e. whose generated graph only

contains initial and final vertices at level 0). We say that a grammar R is initial when this is

the case, i.e. when (X,H) ∈ R ∧ X 6= Z =⇒ VH,◦ = ∅ = VH,•.
This transformation works as follows. Let R be any grammar. We consider two arity 2

new symbols i, f ∈ F2 such that i, f 6∈ FR and i, f are not vertices of R. To any non-terminal
A ∈ NR −{Z}, we associate a new symbol Ai, f of arity ̺(A) + 2. We consider the grammar:

[R, i, f] := {(Z,Hi, f∪{◦i, • f}) | (Z,H) ∈ R} ∪ {(Ai, fXi f ,Hi, f) | (AX,H) ∈ R ∧ A 6= Z}

where Hi, f := ([H] − {◦, •}VH) ∪ {Ai, fXi f | AX ∈ H ∧ A ∈ NR}

∪ {i
i

−→s | ◦s ∈ H} ∪ {s
f

−→ f | •s ∈ H}.

This grammar [R, i, f] is an initial grammar such that, for any G ∈ Rω with i, f 6∈ VG,
Gi, f ∪ {◦i, • f} ∈ [R, i, f]ω . In particular L([R, i, f]) = iL(R) f . Moreover,
S� R ⇐⇒ [S, i, f] � [R, i, f] and [R, i, f] is (level-)unambiguous if and only if R is.

Note that if Rω has an infinite number of initial (resp. final) vertices then the initial (resp.

final) vertex of [R, i, f]ω is of infinite out-degree (resp. in-degree).
To any grammar R, we associate a family of synchronized languages

Sync(R) := {L(S) | S� R}

DIDIER CAUCAL FSTTCS 2008 7

which are the languages accepted by the grammars synchronized by R. Observe in particu-

lar that R�� S =⇒ Sync(R) = Sync(S), and Sync([R, i, f]) = {iL f | L ∈ Sync(R)}.
For any alphabet T ⊂ F2, all the regular languages in T∗ can be synchronized by the

grammar Reg defined as the unique axiom rule Z−→{0
a

−→0 | a ∈ T} ∪ {◦0, •0} (in other
words, Sync(Reg) = Reg(T∗)). Also note that any grammar R synchronizes any grammar
without colour ◦ or •, thus ∅ ∈ Sync(R). Let us generalize this fact.

PROPOSITION 5. For any grammar R, the family Sync(R) is closed under union, and con-
tains L(R)∩M for any regular language M.

PROOF. Containment of all regular languages inside L(R) is done by synchronization
product of R with a finite automaton K [CH 08]. Let {q1, . . ., qn} = VK be the vertex set of
K. To each A ∈ NR, we associate a new symbol A

′ of arity n×̺(A), and to each hyperarc
Ar1. . .rm with m = ̺(A), let (Ar1. . .rm)′ := A′(r1, q1). . .(r1, qn) . . . (rm, q1). . .(rm, qn). As an
exception, we assimilate Z′ to Z. We then define the grammar R×K, which associates to each

rule (X,H) ∈ R the rule:

X′ −→ {(s, p)
a

−→(t, q) | s
a

−→
H
t ∧ p

a
−→
K
q} ∪ {(BU)′ | BU ∈ H ∧ B ∈ NR}

∪ {◦(s, p) | ◦s ∈ H ∧ ◦p ∈ K} ∪ {•(s, p) | •s ∈ H ∧ •p ∈ K}.

It is easily shown that R×K� R and L(R×K) = L(R)∩L(K).
Closure under union is done by addition of grammars synchronized by R.

Taking any grammars R1 and R2 and for any i ∈ {1, 2}, we denote

R′i := Ri ×
(

{ i
a

−→ i | a ∈ TRi } ∪ {◦ i , • i}
)

and for (Z,H1) ∈ R
′
1 and (Z,H2) ∈ R′2 , the disjoint union of R1 and R2 is the grammar

R1+ R2 := {(Z , H1 ∪ H2)} ∪ (R′1 − {(Z,H1)}) ∪ (R′2 − {(Z,H2)})
So (R1+ R2)

ω = { G1 ∪ G2 | G1 ∈ R
ω
1 ∧ G2 ∈ Rω

2 ∧ VG1 ∩ VG2 = ∅ }
hence L(R1+ R2) = L(R1) ∪ L(R2). Furthermore we have

R+ R �� R and S1 � R1 ∧ S2 � R2 =⇒ S1+ S2 � R1 + R2 .
Hence Sync(R) is closed under union.

By Proposition 2, Lemma 3 (a) and Proposition 5, we get Theorem 6.4.1 of [Ha 78].

COROLLARY 6. [Ha 78] The family of unambiguous context-free languages is closed under
intersection with a regular language.

For any grammar R, the family Sync(R) is in general not closed under intersection,
hence not closed under complement with respect to L(R), since

L∩M = L(R)− [(L(R)− L)∪ (L(R)−M)] for any L,M ⊆ L(R).
For instance the following grammar:

;Z A

A

(1) (1)

A

a
a, b

a, b

is not level-unambiguous, and for L = {ambman | m, n ≥ 0} and M = {ambnan | m, n ≥ 0},
we have L,M ∈ Sync(R) but L∩M = {anbnan | n ≥ 0} 6∈ Sync(R).

For Rω deterministic, Sync(R) coincides with the family of synchronized languages
defined in [CH 08].

8 BOOLEAN ALGEBRAS OF UNAMBIGUOUS CFL

PROPOSITION 7. For any grammar R such that Rω is deterministic,
Sync(R) = {L(S) | S� R ∧ Sω deterministic}.

As a corollary of Proposition 7, Sync(R) is a boolean algebra when Rω is deterministic

[CH 08]. For instance, let Single be the following grammar:

;Z

(x)(x)

(y) (y)

A A A

a

b

b

We have L(Single) = {anbn | n > 0} and Sync(Single) = {L(Gm,n, I) | m ≥ 0 ∧ n > 0},
where L(Gm,n, I) is the language generated from I by the linear context-free grammar Gm,n:

I = P+ amAbm with P ⊆ {ab, . . . , ambm}

A = Q+ anAbn with Q ⊆ {ab, . . . , anbn}.

We conclude this section with a fundamental result concerning grammar synchroniza-

tion, which states that Sync(R) is independent of the way the graph Rω is generated.

THEOREM 8. For any grammars R and S, Rω = Sω =⇒ Sync(R) = Sync(S).

This theorem allows to transfer the concept of grammar synchronization to the level

of graphs: for any regular graph G, we can define Sync(G) as Sync(R) for any grammar R
generating G. For instance, the following regular graph:

b

c

b

a
c

b

a
c

b

a
c

defines by synchronization the family of visibly pushdown languages (with a pushing, b

popping and c internal) [AM 04].

5 Synchronization of level-unambiguous grammars

As previously stated, for any grammar R generating a deterministic graph, Sync(R) is an
effective boolean algebra. In this section, we show that this remains true when R is level-

unambiguous.

THEOREM 9. For any level-unambiguous grammar R, the family Sync(R) is an effective
boolean algebra with respect to L(R), containing all the regular languages included in L(R).

For instance, let us consider the initial and unambiguous grammar Double of Section 3.

We have Sync(Double) = {L(Gm,n, I) ∪ L(Hm′,n′ , I) | m,m′ ≥ 0 ∧ n, n′ > 0} where Gm,n is
defined above and Hm,n is the following linear context-free grammar:

I = P+ amAb2m with P ⊆ {abb, . . . , amb2m}

A = Q+ anAb2n with Q ⊆ {abb, . . . , anb2n}.

This is indeed a boolean algebra with respect to L(Double). Finally for the regular graph G

DIDIER CAUCAL FSTTCS 2008 9

b

b

b

b

b

b

b b b b bb b

b
a aa a

b b bb

b
b

the family Sync(G) is the regular closure of Sync(Double).
A particular consequence of Theorem 9 is that we can decide the inclusion L(S) ⊆ L(S′)

for two grammars S and S′ synchronized by a common level-unambiguous grammar. Recall

that the inclusion problem is undecidable for the so-called simple languages [Fr 77].

The constructions from [CH 08] cannot be trivially extended because level-unambiguity

is a global property of accepted words and not a local property like graph determinism.

However we can still work locally thanks to the notions of synchronization and level-

unambiguity, which both only require to work level by level.

Closure under union was already stated in Proposition 5. We now proceed to prove the

closures under intersection (Lemma 10) and complement (Lemma 15).

5.1 Closure under intersection

Wewill use other colours in addition to ◦ and •. For any set of colours C ⊆ F1− {◦} and any
grammar R, we denote RC the grammar obtained from R by colouring every C-coloured

vertex with • and removing • on all other vertices:

RC := {
(

X, (H − {•}VH)∪{•p | ∃c ∈ C, cp ∈ H}
)

| (X,H) ∈ R}.

We define a level-preserving version of the grammar synchronization product. Let •1, •2 be

new colours. Let R and S be two grammars, G ∈ Rω and H ∈ Sω two graphs they generate,

and letW := {(s, p) ∈ VG×VH | ℓRG(s) = ℓSH(p)}, the level synchronization product G×ℓH is

G×ℓH := (G×H)|W

with G×H := {(s, p)
a

−→(t, q) | s
a

−→
G
t ∧ p

a
−→
H
q}

∪ {◦(s, p) | ◦s ∈ G ∧ ◦p ∈ H} ∪ {•(s, p) | •s ∈ G ∧ •p ∈ H}

∪ {•1(s, p) | •s ∈ G ∧ •p 6∈ H} ∪ {•2(s, p) | •s 6∈ G ∧ •p ∈ H}.

We then simply define Rω×ℓS
ω as {K | ∃ G ∈ Rω ∃ H ∈ Sω, K isomorphic to G×ℓH}. The

standard synchronization product of two regular graphs can be non regular, but the level

synchronization product Rω×ℓS
ω can be generated by a grammar R×ℓS that we define.

Let (A, B) ∈ NR×NS be any pair of non-terminals, we consider binary relations E
over inputs such that ∀i, j ∈ [̺(A)], E(i) ∩ E(j) 6= ∅ =⇒ E(i) = E(j), where E(i) =
{j | (i, j) ∈ E} denotes the image of i ∈ [̺(A)]. To any such A, B and E, we associate
a new symbol [A, B, E] of arity |E| (where [Z,Z,∅] is assimilated to Z). To each non-
terminal hyperarc Ar1. . .rm of R (A ∈ NR and m = ̺(A)) and each non-terminal hyperarc
Bs1. . .sn of S (B ∈ NS and n = ̺(B)), we associate the hyperarc [Ar1. . .rm, Bs1 . . . sn, E] :=
[A, B, E](r1, s1)

E
. . . (r1, sn)

E
. . . (rm, s1)

E
. . . (rm, sn)

E
with (ri, sj)

E
:= (ri, sj) if (i, j) ∈ E, and ε

otherwise. The grammar R×ℓS is then defined as the set of rules

[AX, BY, E]−→
(

[P]×[Q]
)

|E
∪ {[CU,DV, E′] | CU ∈ P ∧ C ∈ NR ∧ DV ∈ Q ∧ D ∈ NS}

10 BOOLEAN ALGEBRAS OF UNAMBIGUOUS CFL

for each (AX, P) ∈ R, each (BY,Q) ∈ S, and each E ⊆ [̺(A)]×[̺(B)] with

E := {(X(i),Y(j)) | (i, j) ∈ E} ∪
(

VP −VX
)

×
(

VQ −VY
)

E′ := {(i, j) ∈ [̺(C)]×[̺(D)] | (U(i),V(j)) ∈ E}

Finally we restrict R×ℓS to the non-terminals accessible from Z. This grammar indeed gen-

erates the level synchronization product (R×ℓS)
ω = Rω×ℓS

ω of their generated graphs, and

also satisfies the following properties:

(R×ℓS)•,•1 � R ; (R×ℓS)•,•2 � S ; S� R =⇒ R×ℓS�� S.

This implies that for any level-unambiguous R, Sync(R) is closed under intersection.

LEMMA 10. For any S, S′ � R with R level-unambiguous, L(S×ℓS
′) = L(S)∩L(S′).

5.2 Level-wise determinization

Before proving the closure under complement of Sync(R) in the next subsection, we need to
define a suitable notion of level-wise determinism, and show that any level-unambiguous

grammar is equivalent, in terms of synchronized languages, to one generating a level-wise

deterministic graph. We say that a grammar R is level-deterministic if for any G ∈ Rω, there

is at most one initial vertex per level, and the targets of any pair of arcs with the same source

and label have distinct levels: ◦s, ◦t ∈ G ∨ (r
a

−→
G
s ∧ r

a
−→
G
t) =⇒ s = t ∨ ℓG(s) 6= ℓG(t).

In otherwords for Rω accessible from ◦, R is level-deterministic if and only if there exists

no pair of level-synchronized initial paths in Rω. So any grammar generating a deterministic

graph is level-deterministic. We state another property of level-deterministic grammars.

LEMMA 11. Any level-deterministic and level-unambiguous grammar is unambiguous.

Another advantage of level-deterministic grammars is that the synchronization relation

is recursive when the synchronizer is level-deterministic (this is proved using a generalized

grammar synchronization product).

LEMMA 12. We can decide whether R� S for R level-deterministic.

Similarly to way level synchronization is done, we perform the standard powerset con-

struction only level by level.

For R a grammar generating G, let Π := {P | ∅ 6= P ⊆ VG ∧ ∀p, q ∈ P, ℓ(p) = ℓ(q)}
be the set of subsets of vertices with same level, and let Succa(P) be the set of successors of
vertices in P ∈ Π by a ∈ FG∩F2: Succa(P) := {q | ∃p ∈ P(p

a
−→
G
q)}. The level-determinization

of any grammar R is defined as Det(Rω) := {K | ∃ G ∈ Rω, K isomorphic to Det(G)},
where Det(G) is:

Det(G) :={P
a

−→Q | P,Q ∈ Π ∧Q ⊆ Succa(P) ∧ ∀q ∈ Succa(P)− Q,Q∪{q} 6∈ Π}

∪ {◦P | P ∈ Π ∧ ∀p ∈ P(◦p ∈ G) ∧ ∀q(◦q ∈ G ∧ q 6∈ P =⇒ P∪{q} 6∈ Π)}

∪ {cP | P ∈ Π ∧ c ∈ F1 − {◦} ∧ ∃p ∈ P(cp ∈ G)}

DIDIER CAUCAL FSTTCS 2008 11

restricted to the vertices accessible from ◦.

Contrary to the level synchronization product, Det does not preserve regularity. How-

ever Det(Rω) can be generated by a grammar when R is in a certain normal form which
preserves synchronized languages.

Let us define an arc grammar R as an initial grammarwhose rules (except the axiom rule)

are all of the form A12−→HA where HA is a finite graph with no terminal arc of target 1, or

of source 2, or of source 1 and target 2 : s
a

−→
[HA]
t =⇒ s 6= 2∧ t 6= 1∧ (s, t) 6= (1, 2). We tranform

a grammar into an arc grammar by splitting non-terminal hyperarcs into non-terminal arcs

of arity 2 (hence the name).

LEMMA 13. Any initial grammar can be transformed into a bi-synchronized arc grammar,

while preserving unambiguity.

This lemma allows to prove Proposition 1 by translating any unambiguous arc gram-

mar R into an unambiguous context-free grammar generating L(R), and conversely.

For any arc grammar R, Det(Rω) can be generated by a grammar Det(R) that we define.
Let R be an arc grammar generating a graph accessible from ◦. To any A ∈ NR − {Z}, we
associate a new symbol A of arity 2 and we define the grammar R obtained from R by

adding the rules A12−→HA for all A ∈ NR − {Z}, and then by replacing in the right hand

sides any non-terminal arc s
B

−→2 by s
B

−→2:

R := {(Z,HZ)} ∪ {
(

A12, (HA − NRVHA2)∪{Bs2 | B ∈ NR ∧ Bs2 ∈ HA}
)

| A ∈ NR − {Z}}

∪ {
(

A12, (HA − NRVHA2)∪{Bs2 | B ∈ NR ∧ Bs2 ∈ HA}
)

| A ∈ NR − {Z}}.

Let< be a linear order over 2NR−{Z} of smallest element ∅. For each P ⊆ NR − {Z}, P 6= ∅,

we take a new symbol P′ of arity 2|P| and a hyperarc <P> = P′p1. . .pm with {p1, . . ., pm} =

2P and p1 < . . . < pm, and we define a graph HP such that {Z
A

−→A | A ∈ P} ∪ {◦Z}=⇒
R
HP.

In the special case where P = ∅, we let <∅> = Z and H∅ = HZ.

For every P ⊆ NR − {Z}, we apply to HP the level-determinization procedure de-
scribed above to get the graph H′

P := Det(HP)[∅/{Z}] − {◦∅}whose vertex level mapping
ℓ is defined by ℓ(A) = 0 for all A ∈ P− NR, ℓ(A) = 1 for all A ∈ P∩NR and ℓ(s) = 2 for all
s ∈ VHP − (P∪{Z}). Note that the level ℓ(Z) of Z is not significant because there is no arc of
target Z in HP. We define grammar Det(R) by associating to each P ⊆ NR − {Z} the rule:

<P> −→ [H′
P] ∪ {<Q>[UE/E]E⊆Q | U ⊆ VH′

P
∧Q 6= ∅}

with Q := {A ∈ NR | ∃ s ∈ U, s
A

−→
H ′
P

}, U∅ := U and for any ∅ 6= E ⊆ Q, UE := {t | ∃s ∈

U ∃A ∈ E, s
A

−→
H ′
P

t}.

Note that when R is unambiguous, we can restrict <P> = P′p1. . .pm to {p1, . . ., pm} = P.

LEMMA 14. For any arc grammar R, Det(R) �� R and Det(R) is level-deterministic, hence
Det(R) is unambiguous for R level-unambiguous.

12 BOOLEAN ALGEBRAS OF UNAMBIGUOUS CFL

5.3 Closure under complement

We now consider the closure under complement of Sync(R) for R level-unambiguous.
First we have to extend the level synchronization product R×ℓS of any grammars R� S

in order to retain a path for all the words accepted by R. We take a new colour •1 and for

R� S, we define RS := R×ℓS + R•1/• whose R•1/• is obtained from R by replacing • by •1 .

The grammar RS satisfies (RS)•,•1,•1�� R ; (RS)•,•2�� S ; ∀ f ∈ {•, •1, •2}, (RS) f �� (R×ℓS) f .

The language L(R)− L(S) for S� R is the set of non accepting words labelling initial paths

in (RS)
ω which end in a vertex coloured by •1 or •1:

L(R)− L(S) = L(R)− (L(R) ∩ L(S)) = L((RS)•,•1,•1) − L(RS) = L((RS)•1,•1) − L(RS).

When a grammar R•,•0 is unambiguous, the language L(R•0) − L(R) is the set of words
which label paths ending in non final vertices coloured by •0.

As (RS)•,•1,•1 is level-unambiguous when R is, we get the closure under complement of

Sync(R) using Lemmas 13 and 14.

LEMMA 15. For R level-unambiguous and S� R, L(R)− L(S) ∈ Sync(R).

Many other examples of grammars and their families of synchronized languages also

have to be studied.

Acknowledgements. Many thanks to Antoine Meyer for helping me prepare the final
version of this paper.

References
[AM 04] R. ALUR and P. MADHUSUDAN Visibly pushdown languages, 36th STOC, ACM
Proceedings, L. Babai (Ed.), 202–211 (2004).

[Ca 07] D. CAUCAL Deterministic graph grammars, Texts in Logic and Games 2, Amsterdam Univer-
sity Press, J. Flum, E. Grädel, T. Wilke (Eds.), 169–250 (2007).

[Ca 06] D. CAUCAL Synchronization of pushdown automata, 10th DLT, LNCS 4036, O. Ibarra, Z. Dang
(Eds.), 120-132 (2006).

[CH 08] D. CAUCAL and S. HASSEN Synchronization of grammars, 3rd CSR, LNCS 5010, E. Hirsch, A.
Razborov, A. Semenov, A. Slissenko (Eds.), 110–121 (2008).

[Fr 77] E. FRIEDMAN Equivalence problems for deterministic context-free languages and monadic recursion
schemes, JCSS 14, 344–359 (1977).

[Gi 66] S. GINSBURG The mathematical theory of context free languages, McGraw-Hill (1966).
[Ha 78] M. HARRISON Introduction to formal language theory, Addison-Wesley (1978).
[LMM 08] N. LIMAYE, M. MAHAJAN and A. MEYER On the complexity of membership and counting in
height-deterministic pushdown automata, 3rd CSR, LNCS 5010, E. Hirsch, A. Razborov, A. Semenov,
A. Slissenko (Eds.), 240–251 (2008).

[MS 85] D. MULLER and P. SCHUPP The theory of ends, pushdown automata, and second-order logic,
Theoretical Computer Science 37, 51–75 (1985).

[NS 07] D. NOWOTKA and J. SRBA Height-deterministic pushdown automata, 32nd MFCS, LNCS 4708,
L. Kucera, A. Kucera (Eds.), 125–134 (2007).

[Wi 04] K. WICH Ambiguity functions of context-free grammars and languages, PhD Thesis, Universität
Stuttgart (2004).

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

