
HAL Id: hal-00867571
https://hal.science/hal-00867571v1

Submitted on 30 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Higher order indexed monadic systems
Didier Caucal, Teodor Knapik

To cite this version:
Didier Caucal, Teodor Knapik. Higher order indexed monadic systems. FSTTCS 2011, Dec 2011,
Mumbai, India. pp.469-480, �10.4230/LIPIcs.FSTTCS.2011.469�. �hal-00867571�

https://hal.science/hal-00867571v1
https://hal.archives-ouvertes.fr

Higher order indexed monadic systems

Didier Caucal1 and Teodor Knapik2

1 CNRS, LIGM-Université Paris-Est

caucal@univ-mlv.fr

2 ERIM, Université de la Nouvelle Calédonie

knapik@univ-nc.nc

Abstract

A word rewriting system is called monadic if each of its right hand sides is either a single letter

or the empty word. We study the images of higher order indexed languages (defined by Maslov)

under inverse derivations of infinite monadic systems. We show that the inverse derivations of

deterministic level n indexed languages by confluent regular monadic systems are deterministic

level n+1 languages, and that the inverse derivations of level n indexed monadic systems preserve

level n indexed languages. Both results are established using a fine structural study of classes

of infinite automata accepting level n indexed languages. Our work generalizes formerly known

results about regular and context-free languages which form the first two levels of the indexed

language hierarchy.

1998 ACM Subject Classification F.4

Keywords and phrases Higher-order indexed languages, monadic systems.

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

A word rewriting system is a (possibly infinite) set of pairs of words called rules. The

rewriting relation −→ transforms a word xuy into xvy by applying a rule (u, v), leaving

unchanged the left and right contexts x and y. This is denoted by xuy −→ xvy. The

iteration (or reflexive and transitive closure under composition) of this relation is called the

derivation relation and written
∗

−→. Word rewriting systems form a Turing-complete model

of computation, which implies in particular that the reachability problem ‘Given words u

and v, is there a derivation from u to v?’ is in general undecidable. It becomes however

decidable for certain subclasses of monadic systems, i.e. systems in which the right hand

side of any rule is either a single letter or the empty word [BO 93]. Monadic systems form

an important class generalizing the well-known Dyck system, which we used in [CD 11]

to provide a decomposition technique for word rewriting systems and generalize existing

language preservation properties. The current work finds a direct application in further

exploiting this decomposition technique (see the conclusion).

Given a family of languages F , we call a system F -monadic whenever the set of left

hand sides of rules with the same right hand side forms a language in F (i.e. the inverse

single-step rewriting of any letter or the empty word is a language in F). As can be seen by

adapting the saturation method provided in [Ben 69], the (image under the) derivation of a

regular language by any F monadic system is also regular, and can be effectively computed

whenever the emptiness of the intersection of any language in F with a regular language

is decidable. This is the case for instance of regular and context-free monadic systems

[Od 83, BJW 82], but can be easily generalized to higher-order indexed monadic systems

of any level (where levels 0 and 1 correspond to regular and context-free languages; see

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Higher order indexed monadic systems

[Ma 74] for a definition of indexed languages). When effective, this regularity preservation

property directly implies the decidability of the reachability problem. It is also natural to

ask whether this preservation property still holds for classes of indexed languages above

level 0 i.e. above regular languages, but it turns out this is not the case: the derivation of

a context-free language by a finite monadic system can be non-recursive [BJW 82].

The situation is quite different when considering the inverse derivation relations of

monadic systems. Given a rewriting system R, we denote by Pre∗
R(L) the set of all words

which can be derived by R into a word in L, i.e. the image of L by the inverse derivation

of R. In contrast to the above results, when R is a confluent finite monadic system and L

is a regular set of R-irreducible words, then Pre∗
R(L) is a deterministic context-free (and in

general non-regular) language [BJW 82]. Moreover, when L is a context-free language and

R a context-free monadic system, Pre∗
R(L) is also context-free [BJW 82], in other words for

context-free monadic systems the operator Pre∗
R(L) effectively preserves context-freeness. In

this work, we generalize these two results to all higher levels of indexed languages.

This work relies on an automata-theoretic characterization of level n indexed languages

by automata with n-nested pushdown stores (i.e. ‘stacks of stacks’). We call these level

n automata [Ma 76]. We first show that for any confluent regular monadic system R, and

any deterministic level n indexed language L, Pre∗
R(L) is a deterministic level n + 1 indexed

language (Theorem 18). This is done using the notion of Cayley automaton, in which states

correspond to R-irreducible words, there is an a-labelled edge from u to v if and only if v is

the normal form of ua, and words in the n indexed language L are seen as accepting states.

This automaton is a deterministic level n + 1 automaton recognizing the language Pre∗
R(L)

which is thus a deterministic level n + 1 indexed language (Proposition 17).

Moreover, we show that for any level n (other than 0), the inverse derivation of any

level n indexed monadic system R preserves level n indexed languages (Theorem 23). From

any mapping h associating to each right hand side a of R a level n automaton recognizing

the set R−1(a) of the left hand sides producing a, we define the iterated substitution h∗

which transforms any level n automaton recognizing a language L into a level n automaton

recognizing Pre∗
R(L).

This work is organized as follows. In Section 2 we recall the necessary definitions, in

particular concerning Thue systems and Cayley graphs. In Section 3, we define a class of

graph transformations called inverse regular path functions, a technical tool of independent

interest generalizing the notion of inverse regular mapping. Finally in Section 4, we present

our main results concerning the inverse derivations of monadic systems.

2 Thue systems and Cayley graphs

We say that a system is canonical if each word derives into a unique irreducible word. To

any canonical Thue system R is associated its Cayley graph, which recognizes from ε to

any set L of irreducible words, the inverse derivation of L (Proposition 4).

2.1 Graphs

Let C and T be two disjoint countable set of symbols called respectively colours and

terminals. A graph G is a set of coloured vertices and labelled edges i.e.

G ⊂ C×V ∪ V ×T ×V

where V is an arbitrary set such that the following set of vertices :

D. Caucal and T. Knapik 3

VG = { s | ∃ c (c, s) ∈ G } ∪ { s | ∃ a, t (s, a, t) ∈ G ∨ (t, a, s) ∈ G }

is finite or countable, and the following sets of colours and labels :

CG = { c | ∃ s (c, s) ∈ G } and TG = { a | ∃ s, t (s, a, t) ∈ G }

are finite. A couple (c, s) ∈ G is a vertex s coloured by c ; it is also written c s ∈ G or

directly c s if G is understood. Let V c
G = { s | c s ∈ G } be the set of vertices of G

coloured by c ∈ C. A triple (s, a, t) ∈ G is an edge labelled by a from source s to target t ;

it is identified with the labelled transition s
a

−→G t or directly s
a

−→ t if G is understood.

The induced subgraph G|P of a graph G to a vertex subset P is

G|P = { (c, s) ∈ G | s ∈ P } ∪ { (s, a, t) ∈ G | s, t ∈ P }

the restriction of G to the vertices in P . The inverse G−1 of a graph G is the graph

G−1 = { (c, s) | (c, s) ∈ G } ∪ { (t, a, s) | (s, a, t) ∈ G }.

A graph G is deterministic if it has no two edges with the same source and the same label:

(r
a

−→ s ∧ r
a

−→ t) =⇒ s = t. A graph G is co-deterministic if G−1 is deterministic. A

graph G is (source) complete if for any a ∈ TG, every vertex s ∈ VG is source of an edge

labelled by a : ∃ t (s
a

−→ t) also written s
a

−→ .

Any tuple (s0, a1, s1, . . ., an, sn) for n ≥ 0 and s0
a1−→G s1 , . . . , sn−1

an−→G sn is a path

from s0 to sn labelled by u = a1. . .an ; we write s0
u

=⇒G sn or directly s0
u

=⇒ sn if G

is understood. The language recognized by a graph G from a vertex subset I ⊆ VG to a

vertex subset F ⊆ VG is the label set L(G, I, F) of all paths from I to F :

L(G, I, F) = { u ∈ T ∗
G | ∃ i ∈ I ∃ f ∈ F (i

u
=⇒G f) }.

We use colours to recognize languages. We fix an input colour ι ∈ C and an output colour

o ∈ C. An automaton is just a graph recognizing the language L(G) of path labels from ι

to o

L(G) = L(G, V ι
G, V o

G) = { u ∈ T ∗
G | ∃ s, t (s

u
=⇒G t ∧ ι s, o t ∈ G) }.

A deterministic automaton is a deterministic graph with at most one vertex coloured by ι.

A regular language is any language recognized by a finite automaton; we denote Reg(N∗)

the set of regular languages over N ⊆ T .

2.2 Thue systems

A Thue system R over an alphabet N ⊂ T is a (not necessarily finite) subset of N∗
×N∗.

Any element (u, v) ∈ R, also denoted by u R v, is a rule of R with left hand side (l.h.s.

for short) u and right hand side (r.h.s. for short) v. By interverting left and right hand

sides of R, we get the inverse R−1 = { (v, u) | u R v } of R. The domain of R is the

set DomR = { u | ∃ v (u R v) } and its range is the set RanR = DomR−1 . The identity

relation over a language L is the system IdL = { (u, u) | u ∈ L }. Given systems R and

S, their concatenation is R.S = { (ux, vy) | u R v ∧ x S y } and their composition is

RoS = { (u, w) | ∃v (u R v ∧ v S w) }. The left concatenation (resp. right concatenation) of a

system R by a language L ⊆ N∗ is the system L.R = IdL.R = { (xu, xv) | x ∈ L ∧ u R v }

(resp. R.L = R.IdL). A congruence R is an equivalence relation on N∗ which is closed

under left and right concatenation with N∗ i.e. R is an equivalence such that R.R ⊆ R.

The rewriting of a system R is the relation →R = N∗.R.N∗ i.e. xuy →R xvy for some rule

4 Higher order indexed monadic systems

u R v with left and right contexts x, y ∈ N∗. For any language L ⊆ N∗, PreR(L) = { u |

∃ v ∈ L (u →R v) } is the set of predecessors of L, and PostR(L) = { v | ∃ u ∈ L (u →R v) }

is the set of successors of L. The derivation →∗
R by R is the reflexive and transitive closure

of →R under composition. For any language L, Pre∗
R(L) = { u | ∃ v ∈ L (u →∗

R v) } is the

set of ascendants of L, and Post∗
R(L) = { v | ∃ u ∈ L (u →∗

R v) } is the set of descendants

of L. We denote by IrrR = { u ∈ N∗ | ¬ ∃v (u →R v) } = N∗ − N∗DomRN∗ the set of

irreducible words of R. The Thue congruence ↔∗
R = →∗

R ∪ R−1 is the finest congruence

containing R, and we denote by [u]↔∗
R

the Thue congruence class of u ∈ N∗. The word

problem for R is, given words u and v, to decide whether u ↔∗
R v.

We say that a system R is terminating if each word derives to an irreducible word: ∀ u ∈

N∗ ∃ v ∈ IrrR (u →∗
R v). Recall that R is noetherian if there is no infinite rewriting chain

u0 →R u1 →R . . . So any noetherian system is terminating but for a, b ∈ N , the system

{(a, a) , (a, b)} is terminating but not noetherian. A system R is confluent if every pair of

words with a common ancestor have a common descendant: if Pre∗
R(u) ∩ Pre∗

R(v) 6= ∅ then

Post∗
R(u) ∩ Post∗

R(v) 6= ∅. A canonical system R is a terminating and confluent system

which is equivalent to the condition that each word u derives into a unique irreducible word

u↓R called the normal form of u. In that case, the congruence class of any word is the set

of ascendants of its normal form.

◮ Lemma 1. For any canonical system R, we have

[L]↔∗
R

= Pre∗

R(L↓R) for any L ⊆ N∗,

{ [L]↔∗
R

| L ⊆ N∗ } is a boolean algebra.

2.3 Cayley graphs

Let us begin with an elementary example. For letters a and b, the finite system R0 =

{(a, ε) , (b, ε)} is canonical: ε is the normal form of any word. The rewriting →R0
restricted

to the words in a∗b∗ is the following grid:

aab

aabb

ε a aa

ab

abbbb

b

which has an undecidable monadic second order (MSO) theory, an even an undecidable

FO∗ theory [WT 07] where FO∗ denotes the first order logic extended with the transitive

closure operator of arity one and without parameter. The Thue systems constitute a Turing-

complete model of computation, hence their rewritings define a large family of graphs [Ca 01]

having (by Rice’s theorem) strong undecidability results. Instead of considering the rewriting

→R of any Thue system R, [CK 98] defines the Cayley graph of R as

[R] = { u
a

−→ v | u, v ∈ IrrR ∧ a ∈ N ∧ ua →∗
R v }.

This is inspired by the analogous notion for groups. The Cayley graph of R0 is [R0] =

{ε
a

−→ ε , ε
b

−→ ε} and the Cayley graph [R1] of the noetherian system R1 = {(ab, b) , (b, ε)}

is depicted as follows:

D. Caucal and T. Knapik 5

aa

b

a

b

a

b

aa

b b

b

aaaε

b b b b

This graph is prefix-recognizable hence it has a decidable MSO theory [Ca 96].

Note that [R] = ∅ ⇐⇒ IrrR = ∅ ⇐⇒ ε ∈ DomR, and that [R] contains the tree

{ u
a

−→ ua | u ∈ N∗ ∧ a ∈ N ∧ ua ∈ IrrR }

hence V[R] = IrrR. The Cayley graphs of canonical systems are deterministic and complete.

◮ Lemma 2. For any system R over N ,

R is terminating =⇒ [R] is N-complete,

R is confluent =⇒ [R] is deterministic.

Let us express the path labels of Cayley graphs of canonical systems.

◮ Lemma 3. For any canonical system R,

u
v

=⇒[R] w ⇐⇒ uv →∗
R w for every u, w ∈ IrrR and v ∈ N∗.

The set of path labels of the Cayley graph of any canonical system from vertex ε to any

vertex subset F is the set of ascendants of words in F .

◮ Proposition 4. For any canonical system R and any F ⊆ IrrR ,

L([R], ε, F) = Pre∗
R(F) = [F]↔∗

R
.

Note that the Cayley graph of the empty relation is the N -complete tree:

[∅] = { u
a

−→ ua | u ∈ N∗ ∧ a ∈ N }.

Let us show how to construct [R] from [∅] for a general system R.

Recall that the suffix rewriting −→|R = N∗.R of any system R is the binary relation

on N∗ defined by xu −→|R xv i.e. the application of a rule u R v under any left context

x ∈ N∗ (the right context being empty). The suffix derivation −→|
∗
R is the reflexive and

transitive closure under composition of the suffix rewriting. We say that a system R is

suffix if

PostR(IrrR.N) ⊆ {ε} ∪ IrrR.N .

Note that this condition is effective for any finite system R and more generally for any

recognizable system : R = U1×V1 ∪ . . . ∪ Un×Vn for some n ≥ 0 and U1, V1, . . . , Un, Vn ∈

Reg(N∗). In that case, DomR is regular, hence IrrR and PostR(IrrR.N) are regular lan-

guages. The Cayley graph of a suffix system can be obtained by the suffix derivation.

◮ Lemma 5. For any suffix system R,

ua −→∗
R v ⇐⇒ ua −→|

∗
R v for any u, v ∈ IrrR and a ∈ N .

In the next section, we introduce a class of graph transformations allowing us to construct

from [∅] the Cayley graph [R] of any recognizable suffix system R.

6 Higher order indexed monadic systems

3 Path functions

We introduce a generalization of the notion of inverse regular mapping introduced in [Ca 96],

called inverse path function.

Let Tε = T ∪ {ε} and F = {−1 , ¬ , ∨ , ∧ , · , +}. We define the set Exp of boolean

path expressions as the smallest language over C ∪ Tε ∪ F ∪ {(,)} such that

C ∪ Tε ⊆ Exp

(u−1) , (¬ u) , (u ∨ v) , (u ∧ v) , (u · v) , (u+) ∈ Exp for any u, v ∈ Exp.

The word label u ∈ T ∗ of a path s
u

=⇒G t from s to t of a graph G is extended to a

regular expression u ∈ Exp by induction on the length of u as follows:

for any a ∈ T , c ∈ C and u, v ∈ Exp,

s
a

=⇒ t if s
a

−→ t ; s
c

=⇒ t if s = t ∧ c s

s
ε

=⇒ t if s = t ; s
(u · v)
=⇒ t if ∃ r (s

u
=⇒ r ∧ r

v
=⇒ t)

s
(u−1)
=⇒ t if t

u
=⇒ s ; s

(¬ u)
=⇒ t if ¬ (s

u
=⇒ t)

s
(u ∨ v)
=⇒ t if s

u
=⇒ t ∨ s

v
=⇒ t ; s

(u ∧ v)
=⇒ t if s

u
=⇒ t ∧ s

v
=⇒ t

s
(u+)
=⇒ t if s (

u
=⇒)+ t.

For instance s
(ε ∧ (a . (a−1)))

=⇒ t means that s = t ∧ s
a

−→ .

We can remove parentheses using the associativity of ∨ , ∧ , · and by assigning priorities to

operators as usual. Finally · can be omitted. The expression u∗ corresponds to ε ∨ u+.

A function h : C ∪ T −→ Exp of finite domain is called a regular path function and is

applied by inverse to any graph G to get the graph:

h−1(G) = { s
a

−→ t | a ∈ Dom(h) ∩ T ∧ s
h(a)
=⇒G t } ∪ { c s | c ∈ Dom(h) ∩ C ∧ s

h(c)
=⇒G s }.

◮ Example 6. For instance we take the following graph G = { xn a
−→ xn+1 | n ≥ 0 }

depicted as follows:

ε

a a a a

x xx xxx xxxx

and the path function h defined by h(a) = a and h(ι) = ε ∧ ¬(a−1a).

So h−1(G) is the following graph:

ε

a a a aι

x xx xxx xxxx

By applying to this graph the inverse of the path function g defined by

g(ι) = ι ; g(a) = (ε ∧ (a−1)∗ ι (aa)∗) a a ; g(o) = ι ∨ a−1 ι a

g(b) = (ε ∧ (a−1 a−1)∗ ι a∗) a−1 ∨ (ε ∧ (a−1 a−1)∗a−1 ι a∗) a−1 a−1

we get the following graph K = g−1(h−1(G)) depicted as follows:

ε a a

b b
b boι

o
x xxx

xx xxxx

D. Caucal and T. Knapik 7

where L(K) = { anbn | n ≥ 0 }.

Any path function h : C ∪ T −→ Exp is extended by morphism to a function Exp −→ Exp.

The expression h(u) is also denoted by u[h(a1)/a1, . . ., h(ap)/ap] for {a1, . . ., ap} = Dom(h)

and is only defined when Letter(u) ∩ (C ∪ T) ⊆ Dom(h).

The family of inverse path functions is closed under composition.

◮ Lemma 7. For any path functions g and h, we can construct a path function k such

that

g−1(h−1(G)) = k−1(G) for any graph G.

For any recognizable suffix system, we can construct its Cayley graph.

◮ Proposition 8. For any recognizable suffix system R, we can construct a path function h

such that [R] = h−1([∅]).

Let us combine Propositions 4 and 8.

◮ Corollary 9. For any recognizable canonical suffix system R and for any regular language

L ⊆ IrrR, Pre∗
R(L) = [L]↔∗

R
is a deterministic context-free language.

This follows from the fact that a deterministic prefix-recognizable graph recognizes, from a

vertex to a regular vertex set, a deterministic context-free language [Ca 96].

4 Monadic systems

We review language preservation properties of the derivation and inverse derivation relations

of regular and context-free monadic systems. We generalize these results to higher-order

indexed monadic systems using the Shelah-Stupp and Muchnik iterations together with

inverse path functions.

4.1 Regular and context-free monadic systems

A system R is monadic if ε is not a l.h.s. and any r.h.s. is either a single letter or ε i.e.

R ⊆ N+
×Nε for Nε = N ∪ {ε}. Contrary to the usual definition of monadic systems

[Od 83, BJW 82, BO 93], we allow unitary rules a → b for a, b ∈ N . Hence a monadic

system R is not in general noetherian. However and in a standard way, we consider the

equivalence ∼ on N defined for any a, b ∈ N by a ∼ b if a →∗
R b →∗

R a. We take a

mapping from N into T such that a = b ⇐⇒ a ∼ b, that we extend by morphism from

N∗ into T ∗. So R = { (u, v) | u R v ∧ u 6= v } is a monadic system over N = { a | a ∈ N }

such that for any u, v ∈ N∗ (u →∗
R v ⇐⇒ u →∗

R
v). The system R can still have

unitary rules but R is noetherian, and R is confluent ⇐⇒ R is confluent.

We say that a monadic system R is finite (resp. regular, context-free) if for each a ∈ Nε,

the language R−1(a) of the l.h.s. producing a is finite (resp. regular, context-free). All

these subclasses of monadic systems are effective in the sense that for each r.h.s. a ∈ Nε

we can decide whether R−1(a) ∩ L = ∅ with L ∈ Reg(N∗). Note that a monadic system is

recognizable if and only if it is regular. A particular finite monadic system is the Dyck system:

D = { (a a, ε) | a ∈ N} ∪ { (a a, ε) | a ∈ N} where a is a new letter for each a ∈ N .

The operator Post∗
D preserves regularity: L ∈ Reg(N∗) =⇒ Post∗

D(L) ∈ Reg(N∗). This

property has been established in [Ben 69] with a saturation method that can be extended

to any monadic system.

8 Higher order indexed monadic systems

◮ Theorem 10. For any monadic system R, the operator Post∗
R preserves regularity, and

effectively when R is effective.

This effective regularity preservation has been given for the context-free monadic systems

[BJW 82] (Theorem 2.5). Let us apply Theorem 10 on R when R is confluent.

◮ Corollary 11. The word problem is decidable for any effective confluent monadic system.

The confluence property is decidable for regular monadic systems [Od 83] but is undecidable

for context-free monadic systems [BJW 82]. Furthermore Post∗
D for the Dyck system D

does not preserve context-freeness [JKLP 87]. In fact Post∗
R(L) may not be recursive when

L is context-free, even if R is a confluent finite monadic system [BJW 82] (Theorem 4.1).

We will thus focus on preservation properties of Pre∗
R for monadic systems R. Note that

Pre∗
R does not preserve regularity: for the finite monadic system R = {(ab, ε)}, we have

Pre∗
R(ε) ∩ a∗b∗ = { anbn | n ≥ 0 } hence Pre∗

R(ε) is not regular. However any monadic

system is suffix, hence we can apply Corollary 9 on R for R confluent.

◮ Corollary 12. For any confluent regular monadic system R and any regular language

L ⊆ IrrR, the set Pre∗
R(L) is a deterministic context-free language.

This was already known for the restricted case of finite confluent monadic systems [BJW 82]

(Theorem 3.9) and of unequivocal monadic systems [Od 83]. Note that the confluence as-

sumption in Corollary 12 cannot be dropped: let R2 = {(ab, ε) , (aab, ε)} whose Cayley

graph restricted to the vertices in a∗ is the following non deterministic graph:

a

b

a

b

a

b

b

a aa aaaε

b b

The language Pre∗
R2

(ε) ∩ a∗b∗ = { ambn | n ≤ m ≤ 2n } is context-free but not deter-

ministic context-free [Yu 89], hence Pre∗
R2

(ε) is not a deterministic context-free language.

However Pre∗
R2

(ε) is context-free. In fact, the inverse of a finite monadic system is a context-

free grammar allowing ε as a l.h.s., and we know that the expressive power of context-free

grammars is not increased when allowing a context-free set of r.h.s. for each l.h.s.

◮ Proposition 13. [BJW 82] For any context-free monadic system R, the operator Pre∗
R

effectively preserves context-freeness.

We propose to generalize Corollary 12 and Proposition 13 to a hierarchy of monadic systems

whose first two levels are the regular and context-free monadic systems.

4.2 Higher-order indexed monadic systems

Level n indexed languages were introduced for n = 2 by Aho et al. [ASU 68], and for

arbitrary n by Maslov [Ma 74]; level 0 and level 1 indexed languages are the regular and

context-free languages. These classes of languages coincide with the OI hierarchy of [ES 77].

A monadic system R is n-indexed if for each a ∈ Nε, the language R−1(a) is n-indexed; in

that case, R is effective [Ma 76] and by Theorem 10, Post∗
R effectively preserves regularity.

The n-indexed languages are the languages recognized by automata using a n-nested push-

down store [Ma 76] and called level n automata. We can describe level n+1 automata from

level n automata using two basic graph transformations [CW 03]: the previously defined

inverse path functions and the full iteration defined by Muchnik [Se 84]. This operation is a

generalization of the basic iteration G# of a graph G with a new label # ∈ T − TG defined

by Shelah and Stupp [Sh 75, St 75]:

D. Caucal and T. Knapik 9

G# = { (s1, . . . , sn, s)
a

−→ (s1, . . . , sn, t) | n ≥ 0 ∧ s1, . . ., sn ∈ VG ∧ s
a

−→G t }

∪ { (s1, . . . , sn)
#

−→ (s1, . . . , sn, s) | n ≥ 0 ∧ s1, . . ., sn, s ∈ VG }

∪ { c (s1, . . . , sn, s) | n ≥ 0 ∧ s1, . . ., sn, s ∈ VG ∧ c s ∈ G }.

Muchnik extended this basic iteration to the full iteration G#,& by marking with a new

colour & ∈ C − CG, in each copy of G in G#, the vertex from which the copy originates:

G#,& = G# ∪ { & (s1, . . . , sn, s, s) | n ≥ 0 ∧ s1, . . ., sn, s ∈ VG }.

We give below an illustration of the full iteration of a ‘triangle’.

G

&

&

&

&

&
#

&

#

#

#

#

#

#

#

#

By iteratively applying from the family F0 of finite graphs the full iteration followed by an

inverse path function, we get a hierarchy of graphs [Ca 02]: for every n ≥ 0,

Fn+1 = { h−1(G#,&) | G ∈ Fn ∧ # ∈ T − TG ∧ & ∈ C − CG ∧ h path function }.

Since inverse path functions are particular MSO-interpretations and the full iteration pre-

serves the decidability of the monadic theory [Se 84, Wa 02], all graphs in this hierarchy

have a decidable MSO theory. By Lemma 7, each family Fn is closed under inverse path

functions. For n 6= 0, Fn is also closed under Shelah and Stupp’s iteration (but not under

Muchnik’s iteration).

◮ Theorem 14. For any n > 0, the set Fn is closed under basic iteration.

For each n ≥ 0, the n-indexed languages are the languages recognized by level n automata

[CW 03] ; we denote by Indexn this family:

Indexn = { L(G) | G ∈ Fn }.

We also define the subfamily Indexdet
n of n-indexed deterministic languages :

Indexdet
n = { L(G) | G ∈ Fn ∧ G deterministic automaton }.

So Indexdet
0 = Index0 is the family of regular languages, and Indexdet

1 is the family of

deterministic context-free languages. Recall that a substitution is a function h : T −→ 2T ∗

of finite domain that we extend by morphism: h(uv) = h(u).h(v) for any u, v ∈ (Dom(h))∗;

we say that h is an Indexn-substitution for n ≥ 0 if h(a) ∈ Indexn for all a ∈ Dom(h).

The inverse substitution h−1 of a language L ⊆ T ∗ is the language

h−1(L) = { u ∈ (Dom(h))∗ | h(u) ∩ L 6= ∅ }.

An Index0-substitution is a regular substitution which is a particular path function. Let us

apply the closure of each family Fn under inverse path functions.

◮ Corollary 15. For any n ≥ 0, Indexn is closed under inverse regular substitutions.

By Theorem 14, each family Fn is closed under synchronization product with finite au-

tomata.

10 Higher order indexed monadic systems

◮ Corollary 16. For any n ≥ 0, the families Indexn and Indexdet
n are closed under inter-

section with any regular language.

The Cayley graph [R] of any Thue system R is extended to the Cayley automaton [R, L]

for any final set L ⊆ IrrR by

[R, L] = [R] ∪ {ε
ι

−→ ε} ∪ { u
o

−→ u | u ∈ L }.

where ι (resp. o) labelled loops mark initial (resp. final) states. For R canonical and by

Lemma 2, [R, L] is a deterministic and complete automaton recognizing by Proposition 4

the language L([R, L]) = Pre∗
R(L) = [L]↔∗

R
. Let us generalize Proposition 8.

◮ Proposition 17. For any recognizable suffix system R, any n ≥ 0 and L ⊆ IrrR with

L ∈ Indexdet
n , we have [R, L] ∈ Fn+1 .

This entails a generalization of Corollary 9 : Pre∗
R modifies by adding at most 1 the level of

n-indexed deterministic languages when R is a confluent regular monadic system.

◮ Theorem 18. For any recognizable system R which is canonical and suffix, for any

language L ⊆ IrrR and any n ≥ 0, L ∈ Indexdet
n =⇒ Pre∗

R(L) = [L]↔∗
R

∈ Indexdet
n+1.

Let us generalize Proposition 13 to indexed monadic systems. Like for the previous finite

monadic system R0, the rewriting →R of an n-indexed monadic system R has in general

an undecidable monadic theory, hence is not in the class Fn for any n. But for any n-

indexed language L, we can recognize the language Pre∗
R(L) by a graph in Fn (in F1

for n = 0). The construction uses automaton substitutions which are functions h of finite

domain Dom(h) ⊂ T such that h(a) is an automaton for each a ∈ Dom(h); we say that

h is an Fn-substitution for some n ≥ 0 if h(a) ∈ Fn for each a ∈ Dom(h). We also use

ε-automata G allowing the label ε (ε ∈ TG); its ε-closure is the automaton

Gε = { s
a

−→ t | s
ε∗

=⇒G
a

−→G
ε∗

=⇒G ∧ a 6= ε } = g−1(G)

for the path function g defined for any a ∈ TG − {ε} by g(a) = ε∗ a ε∗. The image h(G)

of an automaton G by an automaton substitution h is the automaton

h(G) = (hε(G))ε ∪ { ι s | ι s ∈ G } ∪ { o s | o s ∈ G }

where hε(G) is the following ε-automaton:

hε(G) =
⋃

(s,a,t)∈G
{ (s, a, p)

b
−→ (s, a, q) | p

b
−→h(a) q }

∪ { s
ε

−→ (s, a, q) | ι q ∈ h(a) } ∪ { (s, a, q)
ε

−→ t | o q ∈ h(a) }.

To express the language recognized by h(G), we associate to h the (language) substitution

ĥ defined by ĥ(a) = L(h(a)) for any a ∈ Dom(h).

◮ Lemma 19. For any automaton substitution h and any automaton G,

L(h(G)) = ĥ(L(G))

and for any n ≥ 0, the automaton

h(G) ∈ Fn for G ∈ Fn and h is an Fn-substitution.

Let us apply Lemma 19.

◮ Corollary 20. For all n ≥ 0, Indexn is closed under any Indexn-substitution.

D. Caucal and T. Knapik 11

The iterated automaton substitution h∗(G) of an automaton G by an automaton substitu-

tion h is the automaton

h∗(G) =
(⋃

n≥0 hn
ε (G)

)ε
.

Similarly the iterated language substitution h∗ of a (language) substitution h is the substi-

tution of domain Dom(h) defined for any a ∈ Dom(h) by

h∗(a) =
⋃

n≥0 hn
ε (a)

where hε is the substitution defined for any a ∈ Dom(h) by hε(a) = {a, ε}. For h(a) = aa,

we have h∗(a) = a+ 6=
⋃

n≥0 hn(a) = { a2n

| n ≥ 0 }. For the substitution h defined by

h(a) = bab and h(b) = b, we have h∗(a) = { bnabn | n ≥ 0 } and h∗(b) = b. When h is a

finite substitution, h∗ is a context-free substitution. Note that h∗ remains a context-free

substitution when h is a context-free substitution. To any automaton substitution h, we

associate the monadic system
−→
h = { (u, a) | a ∈ Dom(h) ∧ u ∈ L(h(a)) }. Let us iterate

Lemma 19.

◮ Lemma 21. For any automaton substitution h and any automaton G over TG ⊆ Dom(h),

L(h∗(G)) = ĥ∗(L(G)) = Pre∗
−→
h

(L(G))

and for any n > 0, the automaton

h∗(G) ∈ Fn for G ∈ Fn and h is an Fn-substitution.

Let us apply Lemma 21.

◮ Corollary 22. For all n > 0, any iterated Indexn-substitution is an Indexn-substitution.

It remains to combine Theorem 14 with Lemma 21 to get for n 6= 0 that any n-indexed

monadic system preserves n-indexed languages by inverse derivation.

◮ Theorem 23. For any level n ≥ 1 indexed monadic system R,

L ∈ Indexn =⇒ Pre∗
R(L) ∈ Indexn.

Let us combine Theorems 18 and 23.

◮ Corollary 24. For any confluent regular monadic system R and any n ≥ 1,

L ∈ 2IrrR ∩ Indexdet
n =⇒ Pre∗

R(L) ∈ Indexn ∩ Indexdet
n+1 .

For instance taking the finite system R = {(abc, b)} which is monadic and confluent and

taking the language L = { anbn | n ≥ 0 } which is an irreducible deterministic context-free

language, the set

Pre∗
R(L) = { aman1bcn1 . . .anmbcnm | m ≥ 0 ∧ n1, . . . , nm ≥ 0 }

is a context-free language which is deterministic at level 2 but not at level 1.

5 Conclusion

We have generalized language preservation properties of regular and context-free monadic

systems to higher-order indexed monadic systems. These results were obtained by applying

two basic graph transformations: the basic iteration and inverse path functions.By applying

Theorem 14 and Theorem 23 to the decomposition of the derivation of word rewriting

systems [CD 11], we can extend the preservation of context-free languages to n-indexed

languages for each n > 0.

12 Higher order indexed monadic systems

Acknowledgements Many thanks to Antoine Meyer for helping us make this paper read-

able, and to anonymous referees for helpful comments.

References

ASU 68 A. Aho, R. Sethi and J. Ullman, Indexed grammars - an extension of context-free

grammars, JACM 15-4, 647–671 (1968).

Ben 69 M. Benois, Parties rationnelles du groupe libre, C.R. Académie des Sciences, Paris,

Série A, 1188–1190 (1969).

BJW 82 R. Book, M. Jantzen and C. Wrathall, Monadic Thue systems, Theoretical

Computer Science 19, 231–251 (1982).

BO 93 R. Book and F. Otto, String-rewriting systems, Texts and Monographs in Computer

Science, Springer-Verlag, 189 pages (1993).

CK 98 H. Calbrix and T. Knapik, A string-rewriting characterization of Muller and

Schupp’s context-free graphs, 18th FSTTCS, LNCS 1530, V. Arvind, R. Ramanujam (Eds.),

331–342 (1998).

CW 03 A. Carayol and S. Wöhrle, The Caucal hierarchy of infinite graphs in terms of

logic and higher-order pushdown automata, 23rd FSTTCS, LNCS 2914, P. Pandya, J. Rad-

hakrishnan (Eds.), 112–123 (2003).

Ca 96 D. Caucal, On infinite transition graphs having a decidable monadic theory, 23rd

ICALP, LNCS 1099, F. Meyer auf der Heide, B. Monien (Eds.), 194–205 (1996)

or in Theoretical Computer Science 290, 79–115 (2003).

Ca 01 D. Caucal, On the transition graphs of Turing machines, 3rd MCU, LNCS 2055, M.

Margenstern, Y. Rogozhin (Eds.), 177–189 (2001).

Ca 02 D. Caucal, On infinite terms having a decidable monadic theory, 27th MFCS, LNCS

2420, K. Diks, W. Rytter (Eds.), 165–176 (2002).

CD 11 D. Caucal and T.H. Dinh, Regularity and context-freeness over word rewriting sys-

tems, 14th FOSSACS, LNCS 6604, Martin Hofmann (Ed.), 214–228 (2011).

ES 77 J. Engelfriet and E. Schmidt, IO and OI, Journal of Computer and System

Sciences 15, 328–353 (1977).

JKLP 87 M. Jantzen, M. Kudlek, K.-J. Lange and H. Petersen, Dyck1-reductions of

context-free languages, 6th FCT, LNCS 278, L. Budach, R. Bakharajev, O. Lipanov (Eds.),

218–227 (1987).

Ma 74 A. Maslov, The hierarchy of indexed languages of arbitrary level, Doklady Akademii

Nauk SSSR 217, 1013–1016 (1974).

Ma 76 A. Maslov, Multilevel pushdown automata, Problemy Peredacy Informacii 12-1, 55–62

(1976).

Od 83 C. Ó’Dúnlaing, Infinite regular Thue systems, Theoretical Computer Science 25, 171–

192 (1983).

Se 84 A. Semenov, Decidability of monadic theories, 11th MFCS, LNCS 176, M. Chytil, V.

Koubek (Eds.), 162–175 (1984).

Sh 75 S. Shelah, The monadic theory of order, Annals of Mathematics 102, 379–419 (1975).

St 75 J. Stupp, The lattice model is recursive in the original model, The Hebrew University

(1975).

Wa 02 I. Walukiewicz, Monadic second-order logic on tree-like structures, Theoretical

Computer Science 275, 311–346 (2002).

WT 07 S. Wöhrle and W. Thomas, Model checking synchronized products of infinite tran-

sition systems, Logical Methods in Computer Science 3 (4:5), 1–18 (2007).

Yu 89 S. Yu, A pumping lemma for deterministic context-free languages, Information

Processing Letters 31-1, 47–51 (1989).

	Introduction
	Thue systems and Cayley graphs
	Graphs
	Thue systems
	Cayley graphs

	Path functions
	Monadic systems
	Regular and context-free monadic systems
	Higher-order indexed monadic systems

	Conclusion

