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A NEW LARGE CLASS OF FUNCTIONS NOT APN INFINITELY OFTEN

In this paper, we show that there is no vectorial Boolean function of degree 4e, with e satisfaying certain conditions, which is APN over infinitely many extensions of its field of definition. It is a new step in the proof of the conjecture of Aubry, McGuire and Rodier. Vectorial Boolean function and Almost Perfect Non-linear functions and Algebraic surface and CCZ equivalence

Introduction

A vectorial Boolean function is a function f : F 2 m → F 2 m . This object arises in fields like cryptography and coding theory and is of particular interest in the study of block-ciphers using a substitution-permutation network (SP-network) since they can represent a Substition Box (S-Box). In 1990 Biham and Shamir introduced the differential cryptanlysis in [START_REF] Biham | Differential Cryptanalysis of DES-like Cryptosystems[END_REF]. The basic idea is to analysis how a difference between two inputs of an S-box will influence the difference between the two outputs. This attack was the motivation for Nyberg to introduce the notion of Almost Perfectly Nonlinear (APN) function [START_REF] Nyberg | Differentially uniform mappings for cryptography[END_REF] which are the function providing the S-Boxes with best resistance to the differential cryptanalysis. An APN function is a vectorial Boolean function such that ∀a = 0, b ∈ F 2 m there exist at most two solutions to the equation:

f (x + a) + f (x) = b
The problem of the classification of all APN functions is challenging and has been studied by many authors. In a first time, the studies focused on power functions and it was recently extended to polynomial functions (Carlet, Pott and al [START_REF] Carlet | Codes, bent functions and permutations suitable for DES-like crypto-systems[END_REF][START_REF] Edel | A new APN function which is not equivalent to a power mapping[END_REF][START_REF] Edel | A new almost perfect nonlinear function which is not quadratic[END_REF]) or polynomials on small fields (Dillon [START_REF] Dillon | APN Polynomials: An Update. Fq9[END_REF]). On the other hand, several authors (Berger, Canteaut, Charpin, Laigle-Chapuy [START_REF] Berger | On almost perfect nonlinear functions over F 2 n[END_REF], Byrne, McGuire [START_REF] Byrne | Quadratic Binomial APN Functions and Absolutely Irreducible Polynomials[END_REF] or Jedlicka [START_REF] Browning | An APN permutation in dimension six[END_REF]) showed that APN functions cannot exist in certain cases. Some also studied the APN functions on fields of odd characteristic (Leducq [START_REF] Leducq | New families of APN functions in characteristic 3 or 5, Arithmetic, Geometry, Cryptography and Coding Theory[END_REF], Pott and al. [START_REF] Dobbertin | APN functions in odd characteristic[END_REF][START_REF] Poinsot | Non-Boolean almost perfect nonlinear functions on non-Abelian groups[END_REF], Ness, Helleseth [START_REF] Ness | Tor A new family of ternary almost perfect nonlinear mappings[END_REF] or Wang, Zha [START_REF] Zha | Power functions with low uniformity on odd characteristic nite elds[END_REF][START_REF] Zha | Almost perfect nonlinear power functions in odd characteristic[END_REF] ). One way to approach the problem of the classification is to consider the function APN over infinitely many extensions of F 2 , namely, the exceptional APN functions. The two best known exceptional APN functions are the Gold functions: f (x) = x 2 i +1 and the Kasami functions f (x) = x 4 i -2 i +1 , both are APN whenever i and m are coprime. We will refer to 2 i + 1 and 4 We provide the definition of the Carlet Charpin Zinoviev equivalence:

Definition 1. ( [START_REF] Carlet | Codes, bent functions and permutations suitable for DES-like crypto-systems[END_REF]) Two functions f and g are Carlet Charpin Zinoviev (CCZ-)equivalent if there exist a linear permutation between their graphs (i.e. the sets {x, f (x)} and {x, g(x)}).

It has to be noted that all the functions CCZ-equivalent to an APN function are also APN [START_REF] Carlet | Codes, bent functions and permutations suitable for DES-like crypto-systems[END_REF].

By means of a simple rewriting of the definition of APN function in terms of algebraic geometry, Rodier was able to prove that, if the projective closure of the surface X defined by the equation:

f (x) + f (y) + f (z) + f (x + y + z) (x + y)(y + z)(z + x) = 0
has an absolutely irreducible component defined over F 2 m , then f is not an exceptional APN function [START_REF] Rodier | Borne sur le degr des polynmes presque parfaitement non-linaires[END_REF]. The idea now is to exploit this criteria to prove that the functions which are not CCZ-equivalent to a Gold or Kasami function are not exceptional APN. This approach enabled Aubry, McGuire and Rodier to state, for example, that there is no exceptional APN function of degree odd not a Gold or Kasami exponent and of degree 2e with e an odd number [START_REF] Aubry | A few more functions that are not APN infinitely often, Finite Fields Theory and applications[END_REF].

From now on we let q = 2 m ,

φ(x, y, z) = f (x) + f (y) + f (z) + f (x + y + z) (x + y)(y + z)(z + x) and φ i (x, y, z) = x i + y i + z i + (x + y + z) i (x + y)(y + z)(z + x)
In this paper we continue in the same way than Aubry, McGuire and Rodier and are interested in the functions of degree 4e with e such that φ e is absolutely irreducible. As shown by Janwa and al. ([17] and [START_REF] Janwa | Double-error-correcting codes and absolutely irreducible polynomials over GF (2)[END_REF]) it is the case for example when e ≡ 3 (mod 4) or when e ≡ 5 (mod 8) and the maximum cyclic code of length e-1 4 has no codewords of weight 4. In particular, e cannot be a Gold or a Kasami exponent. There are many others e which satisfy the condition. It was even conjectured that it was the case of any e odd not a Gold or Kasami exponent but e = 205 was shown to be the smallest counter-example by Hernando and McGuire [START_REF] Hernando | Gary Proof of a conjecture on the sequence of exceptional numbers, classifying cyclic codes and APN functions[END_REF]. We now give an overview of the classification of the exceptional APN function.

The state of the art

Using the approach described in the introduction Aubry, McGuire and Rodier obtained the following results in [START_REF] Aubry | A few more functions that are not APN infinitely often, Finite Fields Theory and applications[END_REF].

Theorem 1. (Aubry, McGuire and Rodier, [START_REF] Aubry | A few more functions that are not APN infinitely often, Finite Fields Theory and applications[END_REF]) If the degree of the polynomial function f is odd and not an exceptional number then f is not an exceptional APN function.

Theorem 2. (Aubry, McGuire and Rodier [START_REF] Aubry | A few more functions that are not APN infinitely often, Finite Fields Theory and applications[END_REF]) If the degree of the polynomial function f is 2e with e odd and if f contains a term of odd degree, then f is not an exceptional APN function.

There are some results in the case of Gold degree 2 i + 1:

Theorem 3. (Aubry, McGuire and Rodier [1]) Suppose f (x) = x 2 i +1 + g (x)
where deg (g) 2 i-1 + 1. Let g (x) = 2 i-1 +1 j=0 a j x j . Suppose moreover that there exists a nonzero coefficient a j of g such that φ j (x, y, z) is absolutely irreducible. Then f is not an exceptional APN function.

This result has been consequently extended by Delgado and Janwa in [START_REF] Delgado | On the Conjecture on APN Functions[END_REF] with the two following theorems: Theorem 4. (Delgado and Janwa [START_REF] Delgado | On the Conjecture on APN Functions[END_REF]) For k ≥ 2, let f (x) = x 2 i +1 + h(x) ∈ F q where deg(h) ≡ 3 (mod 4) < 2 i + 1. Then f is not an exceptional APN function. and Theorem 5. (Delgado and Janwa [START_REF] Delgado | On the Conjecture on APN Functions[END_REF])

For k ≥ 2, let f (x) = x 2 i +1 + h(x) ∈ F q where deg(h) = d ≡ 1 (mod 4) < 2 i + 1. If φ 2 i +1 , φ d are relatively prime, then f is not an exceptional APN function.
There also exist a result for polynomials of Kasami degree 2 2i -2 i + 1: Theorem 6. (Férard, Oyono and Rodier [START_REF] Ferard | Some more functions that are not APN infinitely often. The case of Gold and Kasami exponents[END_REF]

) Suppose f (x) = x 2 2i -2 i +1 + g (x) where deg (g) 2 2k-1 -2 k-1 + 1. Let g (x) = 2 2k-1 -2 k-1 +1 j=0
a j x j . Suppose moreover that there exist a nonzero coefficient a j of g such that φ j (x, y, z) is absolutely irreducible. Then f is not an exceptional APN function.

Rodier proved the following results in [START_REF] Rodier | Functions of degree 4e that are not APN infinitely often[END_REF]. We recall that for any function f : F q → F q we associate to f the polynomial φ (x, y, z) defined by:

φ (x, y, z) = f (x) + f (y) + f (z) + f (x + y + z) (x + y) (x + z) (y + z) .
Theorem 7. (Rodier [START_REF] Rodier | Functions of degree 4e that are not APN infinitely often[END_REF]) If the degree of a polynomial function f is such that deg (f ) = 4e with e ≡ 3 (mod 4), and if the polynomials of the form

(x + y) (x + z) (y + z) + R, with R (x, y, z) = c 1 x 2 + y 2 + z 2 + c 4 (xy + xz + zy) + b 1 (x + y + z) + d 1 , for c 1 , c 4 , b 1 , d ∈ F q 3 , do not divide φ, then f is not an exceptional APN function.
There are more precise results for polynomials of degree 12.

Theorem 8. (Rodier [START_REF] Rodier | Functions of degree 4e that are not APN infinitely often[END_REF]) If the degree of the polynomial f defined over F q is 12, then either f is not an exceptional APN function or f is CCZ-equivalent to the Gold function x 3 .

Our main Result

The goal of this paper is to prove the following result:

Theorem 9. Let f : F q → F q of degree 4e with e > 3 such that φ e is absolutely irreducible. Then f is not an exceptional APN function.

The proof of this theorem is decomposed in two main steps. The first one is to show that the exceptional APN functions of degree as in the conditions of theorem 9 must be of a certain form. The second one is to prove that they are hence CCZ-equivalent to a nonexceptional APN function, which is a contradiction.

The divisibility condition

In the statement of theorem 7 in [START_REF] Rodier | Functions of degree 4e that are not APN infinitely often[END_REF] the condition that e must be 3 (mod 4) is only used to guarantee that φ e is absolutely irreducible (as shown in [START_REF] Janwa | Hyperplane sections of Fermat varieties in P 3 in char. 2 and some applications to cyclic codes[END_REF]). It is easy to see that the proof works whenever e is such that φ e is absolutely irreducible. As a consequence of this remark theorem 7 can be directly extended as follow: Theorem 10. Let f : F q → F q be of degree d = 4e with e such that φ e is absolutely irreducible. If the polynomials of the form

(x + y) (x + z) (y + z) + R(x, y, z), with R (x, y, z) = c 1 x 2 + y 2 + z 2 + c 4 (xy + xz + zy) + b 1 (x + y + z) + d, for c 1 , c 4 , b 1 , d 1 ∈ F q 3 ,
does not divide φ then f is not an exceptional APN function.

Remark. As said in the introduction, φ e is absolutely irreducible in many cases including e ≡ 3 (mod 4).

Remark. Among the examples where φ e is not absolutely irreducible, we would like to draw attention on two particular cases. Firstly, one can quickly verify that φ e is not irreducible when e is even (see [START_REF] Aubry | A few more functions that are not APN infinitely often, Finite Fields Theory and applications[END_REF] lemma 2.2). Secondly, when e is a Gold or a Kasami exponent there exists a decomposition of φ e into absolutely irreducible factors (see [START_REF] Janwa | Hyperplane sections of Fermat varieties in P 3 in char. 2 and some applications to cyclic codes[END_REF]).

We will now investigate the consequences of the last theorem. Let f : F q → F q be a function of degree d = 4e where e > 3 is odd and such that φ e is absolutely irreducible. Suppose now that f is an exceptional APN function. We recall that

φ (x, y, z) = f (x) + f (y) + f (z) + f (x + y + z) (x + y) (y + z) (z + x) , Writing f (x) = d i=0 a i x i we have φ f = d i=0 a i φ i ,
We can fix a d to 1 without loss of generality as F q is a field. Let ρ be a generator of the Galois group Gal F q 3 /F q . and let us consider

c 1 , c 4 , b 1 , d 1 ∈ F q 3 , R (x, y, z) = c 1 x 2 + y 2 + z 2 +c 4 (xy + xz + zy)+b 1 (x + y + z)+ d and A = (x + y) (y + z) (z + x).
As a consequence of theorem 10, we may assume that the polynomial P = (A + R) (A + ρ (R)) A + ρ 2 (R) divides φ. We denote P i the homogeneous component of degree i of P . As φ is of total degree d -3, there exists a polynomial Q ∈ F q 3 [x, y, z] of total degree d -12 such that φ = P × Q. Denoting Q i the homogeneous component of Q of degree i we get

9 i=0 P i • d-12 i=0 Q i = d i=0 a i φ i .
As φ is a symmetrical polynomial in x, y, z we can write it using symmetrical functions s 1 = x + y + z, s 2 = xy + xz + yz and s 3 = xyz (see [START_REF] Bourbaki | Élments de mathmatique[END_REF] chapter 6). Denoting

p i = x i + y i + z i , we have p i = s 1 p i-1 + s 2 p i-2 + s 3 p i-3 . We remark that φ i = pi+s i 1 A and that A = (x + y) (y + z) (z + y) = s 1 s 2 + s 3 .
We shall now determine all the coefficients of R identifying degree by degree P , Q and φ.

Proposition 1. If A + R divides φ f , then R = c 1 φ 5 + c 3
1 and the trace of c 1 in F q 3 is 0. Moreover the polynomial

(A + R) (A + ρ (R)) A + ρ 2 (R) is equal to L (x) 3 + L (y) 3 + L (z) 3 + L (x + y + z) 3 (x + y) (y + z) (z + x)
where

L (x) = x (x + c 1 ) (x + ρ (c 1 )) x + ρ 2 (c 1 ) .
Proof. We will need the following lemmas :

Lemma 1. Suppose e ≡ 3 (mod 4) and let s = x + y. We have :

(x + z)
2 φ e = x e-1 + z e-1 +s x e-2 z + z e-2 x x + z +s 2 x e-3 + z e-3 x 2 + z 2 + xz (x + z)

2

(mod s 3 )

Proof. We have Aφ e = x e + y e + z e + (x + y + z) e .

Let us put s = y + z. We get (x + z) (s + x + z) sφ e = x e + (s + z)

e + z e + (x + s) e = s x e-1 + z e-1 + s 2 x e-2 + z e-2 + s 3 x e-3 + z e-3 (mod s 4 ).

Hence (1) s (x + z) φ e + (x + z) 2 φ e = x e-1 + z e-1 + s x e-2 + z e-2 + s 2 x e-2 + z e-2 + s 3 x e-3 + z e-3 (mod s 4 ).

As we have (x + z)

2 φ e = x e-1 + z e-1 (mod s), and hence (x + z) φ e = x e-1 + z e-1

x + z (mod s), we deduce (x + z) 2 φ e = x e-1 + z e-1 + s x e-2 + z e-2 + s (x + z) φ e (mod s 2 )

= x e-1 + z e-1 + s x e-2 + z e-2 + s x e-1 + z e-1

x + z (mod s 2 )

= x e-1 + z e-1 + s x e-2 z + z e-2 x x + z (mod s 2 ).

So we have (2) (x + z)

2 φ e = x e-1 + z e-1 + s x e-2 z + z e-2 x x + z (mod s 2 ) and

(3)

(x + z) φ e = x e-1 + z e-1 x + z + s x e-2 z + z e-2 x (x + z) 2 (mod s 2 ).
Using 2 and 3 in 1 we get (x + z) 2 φ e = x e-1 + z e-1 + s (x + z) φ e + s x e-2 + z e-2 + s 2 x e-3 + z e-3 (mod s 3 ) = x e-1 + z e-1 + s x e-1 + z e-1

x + z + s 2 x e-2 z + z e-2 x (x + z)

2 + s x e-2 + z e-2 + s 2 x e-3 + z e-3 (mod s 3 ) = x e-1 + z e-1 + s x e-2 z + z e-2 x x + z + s 2 x e-3 + z e-3 x 2 + z 2 + xz (x + z) 2 (mod s 3 ).
Lemma 2. Suppose e ≡ 1 (mod 4) and let s = x + y. We have :

(x + z)
2 φ e = x e-1 + z e-1 + s x e-1 + z e-1

x + z + s 2 x e-1 + z e-1 (x + z)

2 (mod s 3 )
Proof. The proof of lemma 2 is similar to the proof of lemma 1.

Lemma 3. For all odd e ∈ N we have

φ e (x, z, z) = x e-1 + z e-1 (x + z) 2
The proof is straightforward from previous lemma. It can also be found in [START_REF] Delgado | On the Conjecture on APN Functions[END_REF] For all k ∈ {0, 1, . . . , d} we have

a k φ k = 9 i=0 P i Q k-i-3 . Degree d -3
We have

φ d = A 3 φ 4 e = P 9 Q d-12 . As P 9 = A 3 , we get Q d-12 = φ 4 e . Degree d -4
We have

a d-1 φ d-1 = P 9 Q d-13 + P 8 Q d-12 .
As P 8 = A 2 (s 2 1 tr(c 1 ) + s 2 tr(c 4 )), it gives us

a d-1 φ d-1 = A 3 Q d-13 + A 2 φ 4 e (s 2
1 tr(c 1 ) + s 2 tr(c 4 )). By lemma 3 φ d-1 is not divisible by A, so a d-1 = 0 and AQ d-13 = φ 4 e (s 2 1 tr(c 1 ) + s 2 tr(c 4 )). We know that A is prime with s 2 1 tr(c 1 ) + s 2 tr(c 4 ) because (x + y) does not divide this polynomial, and A does not divide either φ 4 5 , which implies Q d-13 = P 8 = 0 and tr(c 1 ) = tr(c 4 ) = a d-1 = 0.

Degree d -5

We have

a d-2 φ d-2 = a d-2 (Aφ 2 2e-1 ) = P 9 Q d-14 + P 8 Q d-13 + P 7 Q d-12 . Knowing that P 8 = Q 7 = 0 we obtain a d-2 (Aφ 2 2e-1 ) = P 9 Q d-14 + P 7 Q d-12 .
We also know that

P 7 = A(s 4 1 q 1 (c 1 ) + s 2 2 q 1 (c 4 ) + s 2 1 s 2 q 5 (c 1 , c 4 )) + A 2 s 1 tr(b 1 ), denoting q 1 (c i ) = c i ρ(c i ) + c i ρ 2 (c i ) + ρ(c i )ρ 2 (c i ) and q 5 (c 1 , c 4 ) = c 1 (ρ(c 4 ) + ρ 2 (c 4 )) + c 4 (ρ(c 1 ) + ρ 2 (c 1 )) + ρ(c 1 )ρ 2 (c 4 ) + ρ(c 4 )ρ 2 (c 1 ). So (4) a d-2 φ 2 2e-1 = A 2 Q d-14 + φ 4 e (s 4
1 q 1 (c 1 ) + s 2 2 q 1 (c 4 ) + s 2 1 s 2 q 5 (c 1 , c 4 ) + As 1 tr(b 1 )), Putting y = z we have a d-2

x 4e-4 + z 4e-4 (x + z) 4 + x 4e-4 + z 4e-4 (x + z) 8 (q 1 (c 1 )x 4 +q 1 (c 4 )z 4 +x 2 z 2 q 5 (c 1 , c 4 )) = 0, hence we obviously have q 5 (c 1 , c 4 ) = 0 and q 1 (c 1 ) = q 1 (c 4 ) = a d-2 . We do not assume that y = z anymore. We know from (4

) that A divides a d-2 (φ 2 2e-1 + φ 4 e (s 4 1 + s 2 2
)), as it is a square, A 2 divides it too. Replacing in (4) we get

a d-2 (φ 2 2e-1 + φ 4 e (s 4 1 + s 2 2 )) 2 + A 2 Q d-14 = Aφ 4 e s 1 tr(b 1 ), so A divides tr(b 1 )s 1 φ 4
e . But A divides neither s 1 nor φ 4 e so tr(b 1 ) = 0. In conclusion we have

P 7 = q 1 (c 1 )(s 2 1 + s 2 ) 2 A = q 1 (c 1 )Aφ 2 5 . and Q d-14 = q 1 (c 1 ) φ 2 2e-1 +φ 4 e φ 2 5 A 2 . Lemma 4. The polynomial Q d-14 (x, z, z) is equal to zero.
Proof. from lemma 2 and 1 we get, if either e ≡ 3 (mod 4) or e ≡ 1 (mod 4):

Q d-14 =   x 2e-2 +z 2e-2 (x+z) 2 + s x 2e-2 +z 2e-2 (x+z) 3 + s 2 R 1 A   2 +   x 2e-2 +z 2e-2 (x+z) 4 + s 2 R 2 ((x + z) 2 + s(x + z) + s 2 ) A   2 = s (x + y)(x + z) R 3 , hence Q d-14 (x, z, z) = 0. Degree d -6
We have

a d-3 φ d-3 = P 9 Q d-15 + P 8 Q d-14 + P 7 Q d-13 + P 6 Q d-12 = P 9 Q d-15 + P 6 Q d-12 .
We know that

P 6 = A 2 tr(d 1 ) + A(s 3 1 q 5 (c 1 , b 1 ) + s 1 s 2 q 5 (c 1 , b 1 )) + s 6 1 N (c 1 ) + s 4 1 s 2 q 4 (c 1 , c 4 )+ s 2 1 s 2 2 q 4 (c 4 , c 1 ) + s 3 2 N (c 4 ) where N (a) = aρ(a)ρ 2 (a)which is the norm of a in F q , q 4 (a, b) = aρ(a)ρ 2 (b) + aρ(b)ρ 2 (a) + bρ(a)ρ 2 (a)
and

q 5 (a, b) = a(ρ(b) + ρ 2 (b)) + b(ρ(a) + ρ 2 (a)) + ρ(a)ρ 2 (b) + ρ(b)ρ 2 (a),
for all a, b in F q 3 . Making y = z we get:

a d-3 φ d-3 (x, z, z) = P 6 (x, z, z)φ 4 e (x, z, z), with P 6 (x, z, z) = (c 1 x 2 + c 4 z 2 )(ρ(c 1 )x 2 + ρ(c 4 )z 2 )(ρ 2 (c 1 )x 2 + ρ 2 (c 4 )z 2 ).
As

φ d-3 (x, z, z) = x d-4 + z d-4 (x + z) 2 and φ 4 e (x, z, z) = x d-4 + z d-4 (x + z) 8 , we have (c 1 x 2 + c 4 z 2 )(ρ(c 1 )x 2 + ρ(c 4 )z 2 )(ρ 2 (c 1 )x 2 + ρ 2 (c 4 )z 2 ) = a d-3 (x + z) 6 . Hence c 1 = c 4 . Now we have (5) N (c 1 ) φ d3 + φ 3 5 φ 4 e = A 3 Q d-15 + tr(d 1 )A 2 φ 4 e + q 5 (c 1 , b 1 )Aφ 5 s 1 φ 4 e .
One can verify with lemma 1 and 2 that A 2 divides φ d3 + φ 3 5 φ 4 e and we obtain q 5 (c 1 , b 1 ) = 0 since φ 5 s 1 φ 4 e is prime with A. Plugging the last result into 5 and dividing the whole expression by A 2 we get

AQ d-15 = N (c 1 ) φ d3 + φ 3 5 φ 4 e A 2
+ tr(d 1 )φ 4 e . Putting y = z, we obtain

N (c 1 ) φ d3 + φ 3 5 φ 4 e A 2 (x, z, z) = tr(d 1 )φ 4 e (x, z, z). Now either (φd 3 +φ 3 5 φ 4 e ) A 2 (x, z, z) is different from φ 4 e (x, z, z) and tr(d 1 ) = N (c 1 ) = 0, or (φd-3+φ 3 5 φ 4 e ) A 2
(x, z, z) = φ e (x, z, z) and tr(d 1 ) = N (c 1 ) but in both case we have tr(d 1 ) = N (c 1 ).

Degree d -7

We have ( 6)

a d-4 φ d-4 = P 9 Q d-16 + P 8 Q d-15 + P 7 Q d-14 + P 6 Q d-13 + P 5 Q d-12
, where P 5 = q 4 (c 1 , b 1 )s 1 φ 2 5 + A(q 1 (b 1 )s 2 1 + q 5 (c 1 , d 1 )φ 5 ), We know that φ d-4 = A 7 φ e-1 2 so making again y = z enables us to obtain:

0 = P 5 (x, z, z) = q 4 (c 1 , b 1 )(x(x 2 + z 2 ))
and finally q 4 (c 1 , b 1 ) = 0. Now 6 becomes a d-4 A 7 φ e-1 2 = A 3 Q d-16 + q 1 (c 1 )Aφ 2 5 Q d-14 + q 1 (b 1 )s 2 1 + q 5 (c 1 , d 1 )φ 5 Aφ 4 e . We divide this expression by A and we put y = z and it gives q 1 (b 1 )x 2 = q 5 (c 1 , d 1 )(x 2 + y 2 ), so q 1 (b 1 ) = q 5 (c 1 , d 1 ) = 0. degree d -8 For this step we have:

a d-5 φ d-5 = P 9 Q d-17 + P 8 Q d-16 + P 7 Q d-15 + P 6 Q d-14 + P 5 Q d-13 + P 4 Q d-12 . with P 4 = q 4 (b 1 , c 1 )s 2 1 φ 5 + q 4 (c 1 , d 1 )φ 2 5 + q 5 (b 1 , d 1 )
As 1 , Putting y = z we get:

a d-5 x d-6 + z d-6 (x + z) 2 = 1 (x + z) 8 ((q 4 (b 1 , c 1 ) + q 4 (c 1 , d 1 ))(x d + x 4 z d-4 )+ q 4 (b 1 , c 1 )(x d-2 z 2 + x 2 z d-2 ) + q 4 (c 1 , d 1 )(x d-4 z 4 + z d )).
Putting on the same denominator we have a d-5 (x d-6 z 6 + x 6 z d-6 ) = 0 and then a d-5 = 0, therefore q 4 (b 1 , c 1 ) = q 4 (c 1 , d 1 ) = 0 Now let us consider L (x) = x (x + c 1 ) (x + ρ (c 1 )) x + ρ 2 (c 1 ) , since tr (c 1 ) = 0, L is a q-affine polynomial and as L(x) has only one root of 0 in F q (that is x = 0), L(x) is a q-affine permutation. One can verify that

L (x) 3 + L (y) 3 + L (z) 3 + L (x + y + z) 3 (x + y) (y + z) (z + x) = (A + R) A + ρ (R) A + ρ 2 (R .
So it means that the polynomial φ associated to L (x) 3 divides φ f , which proves the second part of proposition 1.

We can now complete the proof of theorem 9 by showing that f is CCZ-equivalent to a polynomial of degree e.

CCZ-equivalence

Let us consider c 1 ∈ F q 3 such that tr(c 1 ) = 0 and R (x, y, z)

= c 1 φ 5 + c 3 1 , ∈ F q 3 [x, y, z]. We recall that L (x) = x (x + c 1 ) (x + ρ (c 1 )) x + ρ 2 (c 1 ) .
Theorem 11. Let f be a function such that deg (f ) = 4e, with e > 3 such that φ e is absolutely irreducible, and such that the polynomials of the form

(x + y) (x + z) (y + z) + R, divides φ, therefore f is CCZ-equivalent to x e + S (x), where S ∈ F q [x] is of degree at most e -1.
Proof. Let us consider the set G of the polynomials of the form g (x) = L (x)

e + S (L (x)), where S is a polynomial of F q [x] of degree at most e-1 with no monomials of exponent a power of 2. Let δ be the number of power of 2 less or equal than e -1. It is easy to remark that G defines an affine subspace of the vector space F q [x] of dimension e -δ. We denote by φ g the polynomial φ associated to g and φ L n the polynomial φ associated to L n . So we have φ g = φ L e + S (φ L i ) . Now let us consider the set F of all the polynomials f of degree 4e with leading coefficient 1 such that φ L 3 divides their associated polynomials φ and such that f does not have any monomial of exponent a power of 2. The goal of this proof is to show that F = G. We begin by proving that G ⊂ F , then we show that they have the same dimension. Lemma 5. The set G is a subset of F .

Proof. It is sufficient to prove that φ L 3 divides φ L n for all n 3.

We know that x 3 +y 3 +z

3 +(x + y + z) 3 = A divides x n +y n +z n +(x + y + z) n . Putting X = L (x) Y = L (y) Z = L (z) we have X 3 + Y 3 + Z 3 + (X + Y + Z) 3 divides X n + Y n + Z n + (X + Y + Z) n . As tr(c 1 ) = 0, L (x) is a linearized polynomial so X + Y + Z = L (x) + L (y) + L (z) = L (x + y + z) therefore L (x) 3 + L (y) 3 + L (z) 3 + L (x + y + z) 3 divides L (x) n + L (y) n + L (z) n + L (x + y + z) n then φ L 3 divides φ L n .
Lemma 6. F defines an affine subspace of the vector space F q [x] of dimension less or equal than e -δ.

Proof. We consider the mapping:

ϕ : F → F e-δ q f → (a d-4 , . . . , a 12 )

It is sufficient to prove that this mapping is one-to-one. Let f and f ′ in F be two elements such that ϕ (f ) = ϕ (f ′ ). We write f = d i=0 a i x i and f ′ = d i=0 a ′ i x i . We note a k φ k = 9 i=0 P i Q k-i-3 and a ′ k φ k = 9 i=0 P i Q ′ k-i-3 . We will show by induction that a i = a ′ i for all 0 i d and that Q i = Q ′ i for all 0 i d -12.

We have a d = a ′ d = 1 and Q d-12 = Q ′ d-12 = φ 4 e . Suppose that a j = a ′ j and that Q j-12 = Q ′ j-12 for j > i. Let us show that a i = a ′ i and Q i-12 = Q ′ i-12 if 4 does not divide i. If i 12, we have

a i φ i = 9 sup(0,i-d+9) P k Q i-k-3 = A 3 Q i-12 + 8 sup(0,i-d+9) P k Q i-k-3 , so A 3 divides a i φ i + 8 sup(0,i-d+9) P k Q i-k-3 .

It divides

a ′ i φ i + 8 
sup(0,i-d+9)

P k Q ′ i-k-3 = a ′ i φ i + 8 
sup(0,i-d+9)

P k Q i-k-3 ,
because i -k -3 i -11. So it divides (a i + a ′ i ) φ i . If 4 does not divide i then A 3 does not divide φ i so a i = a ′ i and

Q i-12 = a i φ i + 8 sup(0,i-d+9) P k Q i-k-3 A 3 = a ′ i φ i + 8 sup(0,i-d+9) P k Q ′ i-k-3 A 3 = Q ′ d-12 .
From lemma 5 and 6 we obtain F = G. So every f ∈ F is of the form L (x) e + S (L (x)) and hence they are CCZ-equivalent to x e + S (x). If f is of degree 4e with leading coefficient 1 such that φ L 3 divides their associated polynomials φ and has monomials of exponent a power of 2, then f is CCZ-equivalent to a polynomial in F therefore it is also CCZ-equivalent to x e + S (x).

We now have that f is CCZ-equivalent to a polynomial of degree e which is odd. As e is odd and not a Gold or Kasami number (see remark 2), we can deduce from theorem 1 that f cannot be an Exceptional APN function. Contradiction.

  i -2 i + 1 respectively as the Gold and Kasami exponent. It was proved by Hernando and McGuire in [15] that those two functions are the only monomial exceptional APN functions. It was the starting point for Aubry, McGuire and Rodier to formulate the following conjecture:

	Conjecture 1. ([1]) The only exceptional APN functions are, up to Carlet Charpin
	Zinoviev-equivalence (as defined below), the Gold and Kasami functions.

Summary

At this point we get the following system

Let us suppose that c 1 = 0. The linear system in b 1 , ρ(b 1 ), ρ 2 (b 1 ) formed by the three first equations gives b 1 = 0. Indeed, the determinant of this system is (c

If, moreover, c 1 = ρ(c 1 ), the last 3 equations form a linear system in d 1 , ρ(d 1 ), ρ 2 (d 1 ) which can gives

1 which is the form given in the proposition 4. If c 1 = ρ(c 1 ) then, as tr(c 1 ) = 0, c 1 = 0. Let us suppose from now on that it is the case. We need to use

when we replace c 1 by zero we get

, where P 3 = N (b 1 )s 3 1 + q 1 (d 1 )A. If moreover we make y = z we obtain

We now use

which gives:

Putting on the same denominator we get a d-9 = 0 and therefore N (d 1 ) = 0, hence d 1 = 0. It means that R = 0, finally proving the first part of proposition 1.