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Abstract—Using the advances of the modern microelectronics
technology, the safety-critical systems, such as avionics, can
reduce their costs by integrating multiple tasks on one device.
This makes such systems essentially mixed-critical, as this brings
together different tasks whose safety assurance requirements may
differ significantly. In the context of mixed-critical scheduling
theory, we studied the dual criticality problem of scheduling a
finite set of hard real-time jobs. In this work we propose an
algorithm which is proved to dominate OCBP, a state-of-the-
art algorithm for this problem that is optimal over fixed job
priority algorithms. We show through empirical studies that our
algorithm can reduce the set of non-schedulable instances by a
factor of two or, under certain assumptions, by a factor of four,
when compared to OCBP.

I. INTRODUCTION

Mixed-critical systems (MCS) integrate tasks with signifi-
cantly asymmetric safety requirements on a single assemble
of processing resources. For example, in avionics systems,
different maximal tolerated error counts range from 10−9 per
hour for the autopilot to 10−3 for the communication during
the flight. Mixing the asymmetric safety requirements is of
a significant importance for the scheduling of mixed-critical
tasks on modern microelectronic devices, because the hardware
technology improvements enable low cost and low weight by
integrating exponentially growing (in transistor count) amount
of processing power on a single device – a system-on-chip.

These technological developments and ever growing im-
portance of embedded computers in avionics and other safety-
critical areas have called into existence a special mixed-
critical (MC) real-time (RT) scheduling theory, that has been
developed at least since 2007 [1]. This theory is distinguished
by treating the asymmetric safety requirements by adequate
scheduling methods, which lead to much more efficient re-
source usage compared to classical scheduling approaches [2].
In particular, MCS-aware scheduling methodologies were
demonstrated in [3] to significantly outperform traditional
pragmatic approaches such as reservation-based techniques.
The latter is a widely adopted approach in safety-critical
systems that has an important disadvantage in that it provides
a symmetric isolation in timing or space, being redundant in
that it equally isolates not only high-critical from low-critical
tasks but also vice versa. Differently from this, the new theory
performs a paradigm shift towards asymmetric isolation, as
pointed out in [2]. Some previous literature achieves this goal
by on-demand best-effort priority switching in favor of highly
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critical tasks [2], others assume that lower-critical tasks are
soft real-time [4].

In this paper, we follow an important major branch of
the MCS scheduling theory, the certification-cognizant mixed-
critical scheduling, assuming that all tasks are hard real-time
and assuming the certification prescribed by safety-critical
standards such as DO-178B[5]. Although this approach tries to
follow these prescriptions in a rather simple pragmatic way, it
faces NP-complete problems even under basic assumptions [3].
In particular, simple polynomial fixed job priority scheduling
policies, such as EDF [6] (earliest-deadline-first), do not guar-
antee optimal schedulability. This is unfortunate, because a
significant part of theory and practice (RTOS) is dedicated
to supporting such policies, and therefore they remain of
big importance for MCS. The Own-Criticality Based Priority
(OCBP) [7] is theoretically the best among all fixed job priority
scheduling algorithms for MCS. Recent extensions of the fixed
job priority policy [8], [9] perform a switch between different
priority tables for different modes, showing empirically a sig-
nificant improvement of schedulability over fixed job priority,
while still reusing a lot in terms of implementation and theory
from the classical priority-based scheduling. However, to the
best of our knowledge none of such extended fixed job priority
policies has ever been theoretically proven to dominate OCBP,
despite their extra degree of freedom – to switch the priority
tables.

Our main contribution is to fill this gap by proposing a new
mode-switched priority assignment algorithm – mixed critical
EDF (MCEDF) – that we theoretically prove to dominate
OCBP. Another contribution is a thorough empirical evaluation
of the two algorithms through extensive simulations. Previous
works, in fact, evaluate OCBP only by specifying sufficient
analytical conditions for schedulability [3] or by running exper-
iments only for periodic jobs [9]. Our empirical comparison to
OCBP suggests that the probability of failing to find a correct
schedule reduces by roughly one half when applying MCEDF.
Finally our last contribution is to show how one can improve
the schedulability of the mode-switched policies even further
by splitting jobs into smaller subjobs. The empirical results
optimistically predict that the probability of schedulability
failure can further be halved after such a load-preserving
transformation, while mode-unaware algorithms like OCBP
cannot take any advantage of it by construction.

Following a significant volume of previous MC scheduling
work (e.g., [3], [7], [10], [11]) in this paper we do not work
directly with periodic/sporadic-task models and consider the
basic problem of single-core scheduling for a finite set of
jobs whose exact arrival times are known a priori. As argued



in [10], this assumption applies without restrictions when gen-
erating schedules for time-triggered architecture, in this case
one can just apply a finite job algorithm, like the one presented
in this paper, to a hyperperiod. Moreover, when applied at run-
time, it can be readily imported into computing the dynamic
priorities for the jobs of sporadic tasks [12]. Therefore, this
approach is worth considering in many practically relevant RT
scheduling contexts.

This paper is organized as follows. In Section II we
introduce the MC scheduling problems, giving the problem
definition and a basic taxonomy. In Section III we present
a new algorithm, show its dominance over OCBP, discuss
the characterization of schedulability. The experimental results
presented in Section IV evaluate how often OCBP may fail to
schedule an instance while MCEDF can. Section V compares
the MCEDF to related work. Section VI summarizes the paper
and indicates the directions for future work.

II. SCHEDULING IN MIXED CRITICAL SYSTEMS

A. Background

Consider a set of hard real-time jobs where different
jobs have different levels of criticality, i.e., different levels
of tolerated error rate. A common approach is to model
different criticality requirements by giving different worst-case
execution times (WCETs) for the same job. We consider dual-
criticality systems, having two levels of criticality, the high
level, denoted as ‘HI’, and the low (normal) level, denoted as
‘LO’. Every highly critical job gets a pair of WCET values: the
LO WCET and the HI WCET. The former one is for normal
safety assurance, used to assess the sharing of processor with
the LO jobs, and the other one, a higher value, is used to
ensure certification [1]. One important remark is that both HI
and LO jobs are hard real-time, so both must complete their
executions before the deadlines. But only HI jobs undergo
certification. This means that the designer is confident that
the jobs will never exceed their LO WCET. However, it is
required to prove to the certification authorities that the HI
jobs will meet the deadlines even under the unlikely event
that some jobs would execute at their HI WCET, calculated
by very pessimistic certification tools. This necessity thus
comes from certification needs (i.e., legal constraints) and not
from engineering considerations. For this reason, upon the
hypothetical event in which some jobs violate their LO WCET,
the scheduling policy tolerates that the LO jobs may miss their
deadlines or even drops them altogether, in order to certify
the HI jobs at the least processor capacity requirements. This
approach for mixed-critical RT systems is called certification-
cognizant [3], [10].

Even two criticality levels are enough to elevate the com-
plexity of the classical uniprocessor scheduling problem from
polynomial to NP-complete [3]. Dual-criticality system are
of practical interest, since certain safety-critical application
domains can be classified as such. For instance in the un-
manned aerials vehicle (UAV’s) domain, functionalities are
divided into mission-critical functionalities and flight-critical
functionalities, and only the latter undergo certification [7].
Generalization of the proposed algorithm to more criticality
levels is future work.

B. MC Scheduling Formalism

In a dual-criticality MCS, a job Jj is characterized by a
5-tuple Jj = (j, Aj , Dj , χj , Cj), where:

• j ∈ N+ is a unique index

• Aj ∈ Q is the arrival time, Aj ≥ 0

• Dj ∈ Q is the deadline, Dj ≥ Aj

• χj ∈ {LO,HI} is job’s criticality level

• Cj ∈ Q2
+ is a vector (Cj(LO), Cj(HI)) where Cj(χ)

is the WCET at criticality level χ.

The index j is technically necessary to distinguish be-
tween the jobs with the same parameters. We assume that
Cj(LO) ≤ Cj(HI). We also assume that the LO-criticality jobs
are forced to terminate after Cj(LO) time units of execution,
so (χj = LO) ⇒ Cj(LO) = Cj(HI). An instance J of
the MC-scheduling problem is a set of K jobs with indexes
1 . . .K. A scenario of an instance J is a vector of execution
times of all jobs: (c1, c2, . . . , cK). If at least one cj exceeds
Cj(HI), the scenario is called erroneous. The criticality of
scenario (c1, c2, . . . , cK) is the least critical χ such that
cj ≤ Cj(χ), ∀j ∈ [1,K]. A scenario is basic if for each
j = 1, . . . ,K either cj = Cj(LO) or cj = Cj(HI).

A (preemptive) schedule of a given scenario is a mapping
from physical time to J ∪ {ǫ}, where ǫ denotes no job. Every
job should start at time Aj or later and run for no more than
cj time units. The online state of a run-time scheduler at every
time instance consists of the set of completed jobs, the set of
ready jobs, i.e., jobs that have arrived in the past and did not
complete yet, the progress of ready jobs, i.e., how much each
of them has executed so far, and the current criticality mode,
χmode, initialized as χmode = LO and switched to ‘HI’ as
soon as a HI job exceeds Cj(LO). A schedule is feasible if
the following conditions are met:

Condition 1: If all jobs run at most for their LO WCET,
then both critical (HI) and non-critical (LO) jobs must com-
plete before their deadline.

Condition 2: If at least one job runs for more then its LO
WCET, than all critical (HI) jobs must complete before their
deadline, whereas non-critical (LO) jobs may be even dropped.

An instance J is clairvoyantly schedulable if for each non-
erroneous scenario, when it is known in advance (hence
clairvoyantly), one can specify a feasible schedule.

Based on the online state, a scheduling policy determin-
istically decides which ready job is scheduled at every time
instant. A scheduling policy is optimal (or correct) for the
given instance J if for each non-erroneous scenario it generates
a feasible schedule. We assume without loss of generality that
the scheduling policies are monotonic, i.e., never postponing
any jobs when getting less workload. One can check optimality
of such policies by simulating them for all basic scenarios. A
mode-switched scheduling policy uses χmode in the scheduling
decisions, e.g., to drop the LO jobs, otherwise it is mode-
ignorant. An instance J is MC-schedulable if there exists an
optimal scheduling policy for it. A fixed-priority scheduling
policy is a mode-ignorant monotonic policy that can be defined
by a priority table PT , which is a K-sized vector specifying



all jobs (or, optionally, their indexes) in a certain order. The
position of a job in PT is its priority, the earlier a job is to
occur in PT the higher the priority it has. Among all ready
jobs, the fixed-priority scheduling policy always selects the
highest-priority job in PT . If a scheduling policy cannot be
defined by a static priority table, it is called dynamic-priority.

C. Optimal Priority Assignment

For the ‘ordinary’ non-MC scheduling, the fixed priority
policy EDF (earliest-deadline first) is optimal for any schedu-
lable instance [6]. In the MC scheduling, for some schedulable
instances no fixed priority tables PT are optimal (we will
see examples later). Nevertheless, when an optimal PT exists,
it will be computed by the own criticality-based priority
(OCBP) algorithm [7]. It is based on the so-called “Audsley
approach” [13], where the priorities are assigned by repeatedly
assigning the least priority (i.e., the last position in PT ) to a
job that will meet its deadline even when executing at the
least priority. The job that has got the least priority assigned
is removed from the working set of jobs, as it has no impact
on the behavior of the higher-priority jobs. This procedure is
repeated in multiple steps until no jobs remain in the working
set. If at some step, no job can be selected for the least priority
in the set then the instance is considered non-schedulable.

OCBP selects the least-priority job Ji using the following
criterion: when having the least priority in the working set,
job Ji still meets its deadline in the scenario cj = Cj(χi), ∀j,
i.e., the basic scenario with the WCET at the level that is ‘own’
for Ji. This can be checked by simulating1 the scheduling with
any priorities for the other jobs in the working set provided
that they are higher than Ji. The correctness of this check is
due to the following lemma [3]:

Lemma 2.1: The execution time available for a job Ji in a
fixed priority scheduling algorithm depends on the arrival and
execution times of jobs Jj with a priority higher than Ji, but
not on their relative priority assignment.

Example 2.1: Let J be described by the following table:

Job A D χ C(LO) C(HI)

1 3 4 LO 1 1

2 3 5 HI 1 1

3 0 6 HI 1 4

At the first step OCBP tries to find a job to assign the least
priority. We check job J1 first. We simulate the execution of
J assuming that J1 has the least priority, under the hypothesis
that every job executes for its C(LO) execution time (since
χ1 = LO). At time 0, only J3 is ready, so it executes for
1 time unit. Then the CPU is idle for 2 time units, until at
time 3 J1 and J2 arrive. J2 has higher priority, so it executes
for 1 time unit, completing its execution at time 4. We can
now schedule J1, but it already missed its deadline. So now
we check whether job J2 can have the least priority instead.
Since χ2 = HI, J3 now has a WCET of 4. At time 0, J3 is
scheduled, switching to HI mode at time 1. At the mode switch
the fixed priority policy, assumed by OCBP, keeps the same
priority table and does not drop any LO jobs. After the switch,
J3 executes for 2 time units more until at time 3 J1 and J2
arrive. Since J2 has the least priority, at time 3 only J1 and

1[7] uses a more efficient procedure - makespan

1: Algorithm: MCEDF
2: Input: job instance J

3: Output: priority table PT
4: if LOscenarioFailure(J) then
5: return (FAIL-NON-SCHEDULABLE)
6: end if
7: G← GeneratePriorityTree(J, ∅, (∅, ∅)))
8: PT ← TopologicalSort(G)
9: if anyHIscenarioFailure(PT,J) then

10: return (FAIL-NON-SCHEDULABLE-BY-MCEDF)
11: end if

Fig. 1. The MCEDF algorithm for computing priorities

J3 compete for the CPU. J3 and J1 will then execute for a
total of 2 time units, completing at time 5. In this case J2 will
miss its deadline. We then check J3 for the least priority. At
time 0, J3 will be scheduled and it will execute until time 3.
Then we have to execute J1 and J2 for 2 time units. At time
5 we can schedule J3 again, which will execute for another
time unit, completing at time 6, thus meeting its deadline.

At the second step we repeat a similar procedure for the
working set J′, J′ = J\J3. If J1 has less priority than J2, the
first possibility for it to start would be at its deadline time 4,
so J1 cannot have the least priority. But J2 can be delayed by
1 time unit due to J1. J1 meets its deadline when it has the
highest priority. Thus, we obtain the following priority table
for J: PT = (J1, J2, J3).

III. MCEDF ALGORITHM

A. Fixed Priority per Mode (FPM)

A fundamental limitation of the default fixed-priority
scheduling is that it is by definition mode-ignorant, so it cannot
change the priority of jobs or drop them when switching to
the HI criticality mode. The algorithm proposed in this paper
computes the priority table for the scheduling policy which
we call fixed priority per mode (FPM). This (mode-switched)
scheduling policy has two priority tables: PTLO and PTHI. The
former includes all jobs. The latter includes only the HI jobs.
As long as the current mode is LO, this policy performs the
fixed priority scheduling according to PTLO. After the switch
to the HI mode, this policy drops all pending LO jobs and
applies priority table PTHI. (Optionally, the LO jobs can be
still executed at the least priority if their tardy completion is
still desired.)

One can always use the EDF priority assignment for PTHI

because scheduling after the mode switch is a single-criticality
problem, for which the EDF is optimal. Therefore, the priority
assignment reduces to computing PTLO, in sequel denoted
simply as PT .

B. MCEDF

Our proposed mixed-criticality earliest deadline first
(MCEDF) algorithm computes a PT for FPM policy, see
Figure 1.

Initially, we compute the schedulability of LO scenario
in subroutine LOscenarioFailure , by running EDF. By op-
timality of EDF for single criticality level, if a job misses



1: Algorithm: GeneratePriorityTree
2: Input: job instance J

3: Input: node vparent
4: In/out: priority tree G
5: B← PartitionIntoBIs(J);
6: for all BI ∈ B do
7: J least ← SelectLeastPriorityJob(BI)
8: vchild ← (BI, J least)
9: G.V ← G.V ∪ {vchild}

10: if vparent 6= ∅ then
11: G.E ← G.E ∪ {(vparent, vchild)}
12: end if
13: J

′ ← BI \ {J least}
14: GeneratePriorityTree(J′, vchild, G)
15: end for

Fig. 2. The MCEDF algorithm for computing priority tree

the deadline, then the instance is not schedulable. Thus the
algorithm establishes that MC schedulability Condition 1 (see
Section II-B) is satisfiable, and it considers this condition as
a constraint in the construction of the final solution. While
satisfying Condition 1, the algorithm applies a best-effort
heuristic to ensure Condition 2, i.e., that the deadlines of all
HI jobs are met in any basic HI scenario, trying to ensure that
the priorities of the HI jobs are as high as possible.

To compute the final priority table, the MCEDF algorithm
first calls subroutine GeneratePriorityTree , which generates
constraints on the priorities. These constraints are represented
by a directed graph G, which consists of one or more trees;
for simplicity, we refer to G just as a priority tree. Every
node in G associates to a unique job, and every edge to a
‘strictly greater than’ constraint between the job priorities, thus
G defines a partial order on job priorities. In fact, any possible
total order PT respecting this partial order would give equally
good result, as shown later. It is easy to generate such an
arbitrary total order, and we chose to employ the well-known
TopologicalSort procedure (see e.g., [14]), which traverses the
trees in G from the roots to the leafs while adding the visited
nodes to PT . Finally, the subroutine anyHIscenarioFailure
evaluates whether Condition 2 is met. In this case the algorithm
succeeds. The check is done by a simulation over the set of
all basic HI scenarios where a particular HI job is the first in
the schedule to switch to the HI mode and all the HI jobs
that execute after the switch conservatively use the C(HI)
execution times. Because the FPM policies, like MCEDF, can
be shown monotonic and because the HI scenarios we check
are the most conservative HI scenarios, anyHIscenarioFailure
thus indirectly covers a complete schedulability check over all
possible HI scenarios. Combined with the algorithm’s property
that the computed PT is schedulable in the basic LO scenario,
this implies that a successful MCEDF run ensures a correct
solution to the MC scheduling problem.

The core of the algorithm, i.e., generating priority tree
G, performs the schedulability checks only in the basic LO
scenario. In the remainder of this subsection we explain this
procedure. Hereby, by default, we conservatively assume that
all jobs execute using the C(LO) execution times exactly.

The subroutine GeneratePriorityTree is defined in Fig-
ure 2. The algorithm is based on the concept of a busy interval.

A busy interval for an (sub-)instance J
′ is a time interval in a

priority-based schedule for J
′ that is a maximal time interval

(τ1, τ2] where the set of ready jobs is never empty. Note that
the interval is half-open because the jobs arriving at time t
count ready only for the time instances strictly later than t. It
is obvious that neither the start time nor the length of a busy
interval depends on the exact priority assignment, because the
former corresponds to the earliest job arrival and the latter is
equal to the sum of C(LO) of all jobs in the interval. By abuse
of terminology, we apply the term ‘busy interval’ also to the
subset of jobs running in that interval, and denote it BI . In
general, a job set J

′ can be partitioned into multiple BI’s,
because some jobs in J

′ may arrive at or later than the end of
a busy interval of some other jobs in J

′.

The priority tree construction algorithm splits the instance
into BI’s and selects the least priority job in each BI (see
Figure 2, line 5). Observe that in a busy interval (τ1, τ2], the
selected job will complete at time τ2. Let J late

LO
and J late

HI

be the latest deadline2 job among the LO and the HI jobs
of BI respectively. Subroutine SelectLeastPriorityJob selects
the least priority job according to the following rule.

• if ∃Jj ∈ BI : χj = LO ∧ J late
LO

.D ≥ τ2

• then J least ← J late
LO

• else J least ← J late
HI

This rule prefers to assign the least priority to J late
LO

if BI
has LO jobs and if the latest-deadline one would not miss its
deadline. Otherwise the algorithm has no other choice but to
select a HI job. Thus, the algorithm greedily avoids assigning
a HI job the least priority. Let us now show that in a feasible
problem instance this rule makes a choice that is feasible for
the LO scenario. The choice of the least-priority job affects
the schedulability of that job only. The job selected by the
described rule can only miss its deadline if the latest-deadline
job among all jobs in BI would also miss its deadline, which
is only possible in an unfeasible instance.

The priority tree G is formally defined as a directed graph
G = (V,E), where V is the set of nodes v = (BIv, J

least
v ),

where BIv is a busy interval associated with node v and
J least
v ∈ BIv is the job selected in BIv as defined above. This

definition of a node v conforms with line 8 in Figure 2, where
new priority tree nodes are constructed. As for the edges, any
edge (v, v′) by construction satisfies the property: BIv′ ⊂ BIv
(see line 13). This implies that J least

v has less priority than the
J least
v′ at all the children of v and, by induction, at the whole

subtree below. Let PP (Jj) denote the position of job Jj in PT
i.e., the larger numerically the less the priority. Let v ≺G v′

denote that (v, v′) is an edge in G. The priority constraints
implied by priority tree G can be defined as:

v ≺G v′ ⇒ PP (J least
v ) > PP (J least

v′ ) (1)

In general, the priority tree G has multiple subtrees whose
root nodes correspond to the BI’s of the complete problem
instance J. Subroutine PartitionIntoBIs in Figure 2 splits

2for equal-deadline jobs we break the ties by selecting the job with minimal
Cj(HI)−Cj(LO). This choice minimizes the uncertainty (see Section III-D).
Other heuristics are also possible.



Fig. 3. The Gantt charts for Example 3.1 with PT = (2, 4, 3, 5, 1)

the currently examined instance into BI’s. Then the sub-
routine GeneratePriorityTree examines every busy interval
BI to select the least-priority job in that interval. After-
wards the algorithm continues recursively with sub-instances
J
′ = BI \ {J least}. Removing a job from a BI reveals

further fragmentation into busy intervals, which become direct
children of BI in the priority tree. In those new BI’s the same
algorithm is used to find the least-priority job and to construct
the subtree further from the roots to the leafs.

Example 3.1: Let the instance J be defined by:

Job A D χ C(LO) C(HI)

1 0 30 HI 10 12

2 2 10 HI 2 8

3 1 8 LO 2 2

4 8 17 HI 2 7

5 7 11 LO 2 2

MCEDF computes the following solution PTMC =
(2, 4, 3, 5, 1). Let us demonstrate MCEDF computations step-
by-step. MCEDF starts by checking whether the instance
is schedulable in the ‘LO’ scenario by a simulation with
PTEDF = (3, 2, 5, 4, 1). Instead, Figure 3 row ‘LO’ shows
a simulation for the PTMC ; no deadline is missed there, and
hence the same should hold for PTEDF as well.

Then MCEDF generates the priority tree, see Figure 4.
Instance J has one busy interval BI . We can see this by the
LO-scenario simulation in Figure 3, where job J1 remains
ready in interval (0, 18], which implies that the processor
is continuously busy until all jobs finish. Thus BI = J

comes into the root of the tree. For this BI , J late
LO

= J5 and
J late

HI
= J1. Since D5 = 11 < 18, we cannot select J5, so

we select J1 as J least for the tree root. Now we split the
subinstance J \ {J1} into BI’s, obtaining BI ′ = {J3, J2},
running in (1, 5] and BI ′′ = {J5, J4}, running in (7, 11],
selecting, respectively, J3 (since D3 ≥ 5) and J5 (since
D5 ≥ 11). The remaining subinstances have only one job, so
the final tree generation steps are trivial (see Figure 4). Priority
table PTMC satisfies the partial order of the resulting tree.
Finally the algorithm runs the simulations for the HI scenarios,
which deviate from the basic LO scenario by switching to the
HI mode at some HI job Jj , as illustrated in rows ‘HI-Jj’ in
Figure 3. Because, as the reader can verify, the deadlines are
met, the algorithm succeeds.

Lemma 3.1 (Partial Priority Order): Given a partial prior-
ity order defined by the priority tree G as given in Equation (1).
If G was generated by a successful run of MCEDF then any
priority table PT compliant to this partial order will provide
a correct solution for the FPM policy.

Proof: In any LO-scenario execution any two jobs that are
not comparable by ≺G are never ready at the same time, being

1

3 5

2 4

BI = (0, 18]

PTEDF = (3, 2, 5, 4, 1)

BI = (1, 5]

PTEDF = (3, 2)

BI = (2, 4]

PTEDF = (2)

BI = (7, 11]

PTEDF = (5, 4)

BI = (8, 10]

PTEDF = (4)

Fig. 4. The priority tree for Example 3.1; each node is annotated by the
selected job index; underlined job indices indicate HI jobs.

located in different busy subintervals of the common parent in
tree G. So the basic LO scenario schedule is exactly the same
for any PT compliant to the partial order. At any possible
switch to the HI mode the FPM policy switches from PT to the
EDF priority for the HI jobs. Therefore, the selection of a PT
compliant to ≺G has no impact on the schedule whatsoever in
neither the LO mode nor the HI mode. Since it is given that
for one compliant PT the procedure anyHIscenarioFailure
returns success, and hence the result would be the same for
any other compliant PT .

Lemma 3.2 (MCEDF Complexity): MCEDF has an imple-
mentation with complexity O(K2 logK) where K = |J|.

Proof: Each fixed-priority schedule simulation, which
is done once in LOscenarioFailure and several times in
anyHIscenarioFailure, sorts the jobs by the arrival times, in
an O(K logK) time. Every simulation examines the jobs in
the order of arrivals, adding each arriving job to the priority
queue data structure [14]. At most once per job arrival or
completion the greatest-priority job needs to be selected in the
queue. Once per job completion, a job is removed from the
queue. Because the addition, removal and selection operations
are done O(K) times and each priority-queue operation costs
O(logK), the total cost of one simulation is O(K logK).
Because anyHIscenarioFailure performs O(K) simulations,
its complexity is O(K2 logK).

Graph G, being a collection of trees, has K nodes and
at most (K − 1) edges. The complexity of TopologicalSort
for such graphs is O(K) [14]. What remains to be shown is
that the complexity of GeneratePriorityTree does not exceed
O(K2 logK). The most time-costly procedure at each node v
is the partitioning of a subinstance J

′
v = BIv − {J least

v } into
busy intervals. The partitioning can be computed simultane-
ously for all nodes v at the same tree level, by the simulation
of subinstance J

′′ =
⋃

v∈Level J
′
v with arbitrary PT . In the

simulation, whenever the set of ready jobs becomes empty the
next jobs are assigned to a new BI . Now observe that all
BI’s together at each tree level contain at most K jobs, with
exactly K jobs at the root level and removing some of them
when going from the roots to the leafs. So, the tree generation
cost is O(K logK) per level. Because there are at most K tree
levels, the total tree generation complexity is O(K2 logK).

C. Dominance over OCBP

In this subsection we provide a theoretical evidence that
MCEDF dominates OCBP. Example 3.1 gives an MCEDF-
schedulable instance which is not OCBP-schedulable. The



latter can be shown as follows. Suppose one can select the
least OCBP-priority job in this instance. It cannot be a LO
job, because, as shown earlier, instance J consists of a single
BI that finishes at time 18, when any LO job would miss
its deadline. If we could select a HI job, then OCBP would
evaluate its completion time by effectively extending the
aforementioned LO-scenario BI into a longer HI-scenario BI
where all HI jobs take Cj(HI)−Cj(LO) extra time. Summing
up these differences, this adds 13 time units to completion
time 18. But the completion time 31 is beyond the latest HI
job deadline, D1 = 30.

Thus, the dominance is given by the following:

Theorem 3.3: If an instance is OCBP schedulable, then it
is schedulable by the MCEDF algorithm as well.

Proof: Recall that, by Lemma 3.1, the preference for
one particular topological order of the priority tree does not
impact the MCEDF schedulability. Similarly, when OCBP has
multiple choices for the selection of the least priority job then
preferring a particular choice does not matter for the OCBP
schedulability [7]. So, we will show that if one follows certain
rules in making a choice in the MCEDF and OCBP, then both
algorithms will construct the same priority table PT for any
OCBP-schedulable instance J.

Let us first examine in detail how MCEDF constructs PT .
At any step of the topological sort, there is a ‘ready set’ (RS),
i.e., the set of busy intervals {BIRS

i } of the priority tree nodes
vi that are not yet selected but whose parent node has already
been selected. Implicitly, there is a sub-instance J

′ of which
BIRS

i are the busy intervals. MCEDF can choose to pick any
BI to provide its J least as the least-priority job in sub-instance
J
′. What we have to show is that if J

′ is OCBP-schedulable
then at least one BI will provide a job J least that can be
selected for the least OCBP priority as well.

• Case 1: There is a BIRS
i whose J least is a LO job.

In this case, OCBP can select the J least of any such
busy interval. This is because when evaluating whether
a LO job can be assigned the least priority OCBP
simulates the basic LO scenario, effectively doing the
same check as MCEDF.

• Case 2: The J least in every busy interval is a HI
job
In this case, the MCEDF rule to select the J least in
a BI implies that the end time of every BIRS

i is
later than the deadline of any LO job contained in it.
Consequently, no LO job can be selected by OCBP,
because in an OCBP simulation a least-priority LO
job will complete at a time equal to the end time of
its BIRS

i , thus missing its deadline.

Therefore, because instance J
′ is OCBP-schedulable,

OCBP should be able select a HI job. Let us denote

this job J ′ and let J ′least be the HI job selected
by MCEDF for the busy interval BIRS

i where J ′ is
located. Because MCEDF selects the latest-deadline
HI job, we have: J ′least.D ≥ J ′.D.

The HI jobs are evaluated by OCBP using the HI
scenario where no LO jobs are dropped and the jobs
have Cj(HI) execution times. Because these execution
times are larger or equal than the execution times in

the basic LO scenario and no LO jobs are dropped

we conclude that J ′ and J ′least must be located in
the same busy interval also in the HI scenario. The
fact that J ′ can be selected by OCBP means that if
it completes at the end of this HI busy interval then
it still meets its deadline. But because the deadline of
J ′least is not less than that of J ′, it is eligible to let

J ′least complete at the end of that HI busy interval as
well, and hence it can also be selected by OCBP.

Thus, for an OCBP-schedulable instance, both algorithms can
construct the same PT . MCEDF uses this priority table before
the mode switch, thus having exactly the same behavior as
OCBP under these conditions. After the mode switch OCBP
meets the HI job deadlines without dropping the LO jobs, and
MCEDF will surely be able to do the same because it drops
the LO jobs and employs EDF, an optimal strategy.

To the best of our knowledge, so far MCEDF is the only
FPM scheduler that exploits the freedom to drop the LO jobs
(or to reduce their priority) to perform, in theory, strictly better
than OCBP, the optimal fixed-priority scheduler.

D. Characterization

The characterization of a scheduling algorithm means
defining certain metrics that estimate the schedulability of
problem instances under different scheduling algorithms.
These estimations are not always necessary to evaluate whether
an algorithm can schedule an instance, as for a finite-job
problem it can be more efficient to run the algorithm itself
together with its built-in verification of the correctness of
the solution, for example MCEDF does this verification in
LOscenarioFailure and anyHIscenarioFailure. In this con-
text, the characterization metrics are only used as convenient
indicators of algorithm performance, but not necessarily for a
schedulability test.

One metric, proved useful for mixed-critical scheduling,
is speedup factor [7]. A scheduling algorithm has a speedup
factor s if any instance that is clairvoyantly schedulable on a
unit-speed processor is also schedulable by the algorithm on a
processor of speed s. We know from [7], [3] that OCBP has
a speedup factor of (

√
5 + 1)/2 ≈ 1.62, and that this value

is optimal, i.e., no non-clairvoyant scheduling algorithm can
have a smaller speedup factor. From this observation and due
to dominance of MCEDF over OCBP we derive the following:

Corollary 3.4: MCEDF has the optimal speedup factor
s = (

√
5 + 1)/2

The most common and well-known characterization metric
is the utilization – i.e., the percentage of CPU cycles utilized
by all tasks, but it is usually defined only for the infinite sets of
jobs produced by periodic tasks, where the intervals between
the releases of the jobs of the same task are equal. When the
intervals between the jobs are arbitrary, the utilization gener-
alizes to load, i.e., the maximal ratio between the processing
demand and the processing capacity. Baruah et al. [15] defined
the load metrics for mixed-critical scheduling problems and
applied them to analyze the OCBP algorithm. The authors
determine the load a CPU can experience in a LO and in a



HI scenario as shown below:

LoadLO(J) = max
0≤t1<t2

∑

Ji: t1≤Ai∧Di≤t2

Ci(LO)

t2 − t1

LoadHI(J) = max
0≤t1<t2

∑

Ji: χi=HI ∧ t1≤Ai∧Di≤t2

Ci(HI)

t2 − t1

An instance can only be schedulable if the processor is not
overloaded. Hence, a necessary condition for MC schedulabil-
ity is [15]:

LoadLO(J) ≤ 1 ∧ LoadHI(J) ≤ 1 (2)

This is also a sufficient condition for clairvoyant scheduling,
but not for the online policies, [15].

The following sufficient condition for an instance to be
schedulable by the OCBP algorithm is proven in [15]:

Load2
LO
(J) + LoadHI(J) ≤ 1 (3)

Due to the dominance over OCBP we have:

Corollary 3.5: Equation (3) is a sufficient condition for
MCEDF schedulability.

The characterization above proved useful for the fixed-
priority policy. However, we would like to stress that a
shortcoming of LoadLO and LoadHI is that they ignore a
phenomenon which we call the WCET uncertainty. This phe-
nomenon makes a practically realizable policy inferior to a
clairvoyant scheduler. The latter ‘knows for certain’ whether
and when a mode switch will occur at runtime, whereas an
ordinary policy is ‘uncertain’ about this. By definition, this
knowledge can be exploited online only by mode-switched
policies. The job WCET uncertainty can be measured as
∆Cj = Cj(HI) − Cj(LO) (strictly positive only for the HI
jobs). In [11] it is proposed to consider a new set of job
deadlines for the LO scenario: D′

j = Dj−∆Cj . It was noticed
in [11] that in the LO scenario the jobs should meet deadlines
D′

j , otherwise deadlines Dj are missed in a HI scenario. A new
metric, LoadMIX is thus defined as the one equal to LoadLO after
substituting D′

j into Dj [11]:

LoadMIX(J) = max
0≤t1<t2

∑

Ji:t1≤Ai∧D′

i
≤t2

Ci(LO)

t2 − t1

By the reasoning above, the necessary condition (2) can be
refined to:

LoadMIX(J) ≤ 1 ∧ LoadHI(J) ≤ 1 (4)

LoadMIX is a better indicator of schedulability than LoadLO,
especially for mode-switched policies. To demonstrate this,
consider splitting, a theoretical transformation3 of a job in-
stance into a new instance where a HI job is equally divided
into a certain number (called split factor) of equal smaller
jobs, whose total execution times Cj(LO) and Cj(HI) add
up to that of the original job. Obviously, the splitting does

3we ignore the overhead incurred by such a transformation.

not impact LoadLO and LoadHI, but it reduces the uncertainty
and LoadMIX. Therefore, for mode-switched policies, such as
MCEDF, the splitting can translate an unschedulable instance
into a schedulable one. An infinitely large splitting of all
HI jobs can bring the optimality of a mode-switched policy
infinitely closer to that of the clairvoyant scheduling. For some
instances, a finite splitting is enough to equate the clairvoyant
scheduling. Mode-ignorant policies, such as OCBP, cannot take
any advantage of splitting by construction. These observations
are confirmed in our experiments in Section IV.

The following example demonstrates the effect of splitting.
It has LoadMIX = 1.166 . . .:

Job A D χ C(LO) C(HI)

1 0 6 LO 5 5

2 0 12 HI 2 12

This instance is not schedulable because the necessary con-
dition (4) is broken and due to uncertainty of the execution
time. If J1 executes first then J2 starts at time 5. In the LO
scenario there would be no problem, but J2 misses its deadline
should it ‘decide’ to execute in the HI scenario, for 12 time
units. Otherwise, if J2 starts first then even in the HI scenario it
meets its deadline (whereby the LO job J1 can be dropped), but
there is a problem in the LO scenario, as J2 would delay J1 by
two time units, leading to a missed deadline. The clairvoyant
scheduler would know the scenario in advance and make the
proper choice accordingly.

It is easy to check that after splitting J2 into two jobs, the
instance becomes MCEDF-schedulable.

Job A D χ C(LO) C(HI)

1 0 6 LO 5 5

21 0 12 HI 1 6

22 0 12 HI 1 6

The scheduler can execute J22 until completion, effectively
getting from it the online knowledge of the execution scenario
that was missing in the previous case. If job J22 has executed
in the LO scenario, J1 can follow, starting at time 1, and then
J21 can run from time 6 even until time 12 in the HI scenario.
If job J22 has executed in the HI scenario, J1 will be skipped,
and J22 together with J21 meet the deadline. Compared to the
instance before the split, LoadMIX reduces from 1.166 . . . to 1,
whereas LoadLO = 0.833 . . . and LoadHI = 1 stay constant, not
showing any advantage of the split instance w.r.t. the original
one.

Note that the splitting, even being a theoretical transfor-
mation, may have some practical significance. This depends
on the WCET tools, in particular, by what extent the sum of
WCETs may change by the splitting of code into blocks. Note
that despite the fact that the arrival times of all subjobs are
equal, they are not restricted to be data-independent of one
another. This is due to the fixed-priority per job scheduling
policy, which has the property that the jobs with equal arrival
times never preempt each other but instead execute in a
sequential priority-driven order and the sequential blocks of
the job code can be assigned to the subjobs in the same order.



IV. IMPLEMENTATION AND EXPERIMENTS

We evaluated the schedulability performance of MCEDF
relative to OCBP in experiments with randomly generated
job instances of 20 jobs4 with integer timing parameters,
simulating CPU clock cycle count of some imaginary machine.
Every job instance was generated for a target LO and HI load
pair. The method to generate a job instance is described in
[16].

We ran multiple job generation experiments, ranging each
target of Load LO and LoadHI from 0.0025 to 1 with step
0.0025. Per each target, ten experiments were run, generating
the points lying near the target with tolerance 1%. We only
selected the ‘overloaded’ targets i.e., those lying at or above the
parabola Load2

LO
(J)+LoadHI(J) = 1, yielding instances where

OCBP could potentially fail. By looking at the loads below
1 we compare both OCBP and MCEDF to the clairvoyant
scheduler, which can schedule all such points and which gives
an upper bound on the best scheduling performance. Fig 5(a)
gives the contour graph of the density of the generated points
in grayscale. The grid follows the parabolic lines of equal
Load2

LO
(J)+LoadHI(J). The total number of trials was 537460,

whereas we failed to generate 2.7% (14427) of points due to
the limitations of the job instance generation algorithm. All
these missing points are at the right bottom corner in Fig 5(a).

Around 14% (77005) of points showed failure for OCBP.
In those 14%, roughly 5% (28806) were not schedulable by
MCEDF as well, whereas 9% (48199) were schedulable by
MCEDF. Thus, MCEDF proved to reduce the set of non-
schedulable instances by more than one half. The density
distributions in Figure 5 suggest that MCEDF is less sensitive
to high loads.

For the 5% (28806) non-MCEDF schedulable jobs we
ran additional experiments. We split all HI jobs by factors
2, 3, and 4. This kept the load the same but reduced the
WCET uncertainty. After splitting the instances remained to
be non-OCBP schedulable (as OCBP cannot take advantage of
less uncertainty) but the number of non-MCEDF schedulable
instances has reduced, coming to 3% (16991). So if we can
accept this load-preserving transformation, we go from 14%
non-schedulability of OCBP to the 3% non-schedulability of
MCEDF. Note that 2% (11812) were gained due to the split-
ting, whereby in the most of cases, 1.5% (7877), split factor
2 was sufficient. So assuming that in practice we can split the
HI jobs into a few sub-jobs such that both WCET values scale,
then we can in many cases obtain a schedulable instance. That
the fragmentation of jobs would preserve the same total WCET
is likely to be an overly optimistic assumption for the WCET
tools, but still doing this is worth a try.

Figure 6 demonstrates an example of generated problem
instance and its execution in MCEDF using Gantt charts.
J [χ][i] defines the jobs of criticality χ by the intervals between
arrival, earliest completion for the LO and HI WCETs, and
deadline. Figure 6(b) shows the basic LO scenario and all
basic HI scenarios where a particular HI job is the first to
switch to the HI mode. The instance of Figure 6 is non OCBP-
schedulable.

4The instance size was restricted due to the computation delays of job
generation algorithm and our intention to evaluate a large number of points.
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Fig. 7. The measured computation times of OCBP and MCEDF

We also performed some experiments to evaluate the
computation times of both algorithms, implemented using
the same software library. Every point was obtained as the
average computation time for 20 different randomly generated
instances with Load LO = LoadHI = 0.8. The results are shown
in Figure 7. They confirm our expectation of almost one order
of magnitude of difference, as we estimate the best direct
implementation of OCBP to be O(K3) and the best MCEDF
to be O(K2 logK), according to Lemma 3.2.

V. DISCUSSION AND RELATED WORK

MCEDF uses the flexibility of fixed-priority per mode
policies to be dominant over fixed priority algorithms. An
important advantage of MCEDF over other non fixed-priority
schedulers is that this algorithm can be implemented on
existing systems that support fixed priority algorithms with
minimal modification. In fact, if the MCEDF topological
ordering proceeds according to the rules given in the OCBP
dominance proof then one can trivially restrict it to select the
latest deadline HI job whenever a HI job should be selected.
Hence, the MCEDF will produce a PT where the HI jobs are
placed in the EDF order relatively to each other. Consequently,
instead of dropping the LO jobs and switching to the EDF
priority table at the mode switch, we can get exactly the same
result if we use a fixed-priority scheduler, just signalling to the
LO jobs to speedily return if a mode switch occurs.

To the best of our knowledge, in the previous work no FPM
algorithm [12], [8], [9] has been proven to be theoretically
dominant over OCBP. The priority assignment of [12] applies
OCBP to compute PTLO, thus having equivalent schedulability.
[8] proposes an efficient online algorithm with the optimal
scaling factor and [9] presents a highly efficient priority
computation method that dominates OCBP and several other
algorithms empirically. Note, however, that [8], [9] are not
directly applicable to the problem studied in this paper as they
are designed for a periodic job model with unknown arrival
times.

The FPM policy provides better results than fixed priority,
but in general dynamic-priority policies are necessary for
optimality. Fortunately, according to [3], also for these policies
the time instances for job preemption can be restricted to job
arrivals and the mode switch. Consider the following example
instance Jd:
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Fig. 5. The contour graphs of random instances; the horizontal axis is LoadLO, the vertical is LoadHI.
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Fig. 6. The Gantt charts of a randomly generated job instance, LoadLO = 0.85, LoadHI = 1.0



Job A D χ C(LO) C(HI)

1 0 5 HI 2 3

2 1 3 HI 1 2

3 0 3 LO 1 1

No FPM policy would schedule Jd, a dynamic-priority one
is required. The only correct scheduling policy for Jd is to
execute J1 for 1 time unit, then J2. If J2 completes after 1
time unit, we execute J3 and then J1 again, otherwise we drop
J3 and execute J1. It is easy to see that this is not an FPM
schedule, as J1 changes its priority w.r.t. J3 in the LO scenario.

In [11], an idea for a dynamic-priority scheduling algo-
rithm is proposed. Unfortunately, this idea was evaluated only
indirectly, by claiming condition (4) sufficient for schedu-
lability and checking this condition experimentally over a
set of randomly generated instances. However, should this
claim ever be true then (4) would be both a necessary and
sufficient condition, and we would thus have a polynomial-to-
compute exact check for an NP-complete decision problem,
which already raises doubts about this claim. Indeed, this
sufficiency claim is erroneous and (4) is only a necessary but
not a sufficient schedulability check. The table below gives a
counter-example for the sufficiency of (4):

Job A D χ C(LO) C(HI)

1 0 20 LO 10 10

2 0 40 HI 5 10

3 0 40 HI 15 30

It is easy to check that this instance satisfies (4). Lemma 2
in [3] implies that if all jobs arrive simultaneously then the
MC schedulability can be checked by enumerating all possible
FPM priority assignments. If we choose J1 as the highest-
priority job then we will not have enough time to execute both
J2 and J3 if they both execute in HI scenario. If we choose
J3, then J1 would miss its deadline. And if we choose J2 then
if we execute J1 next, J3 will not have enough time for its HI
WCET, while if we execute J3, then J1 will miss its deadline.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a new real-time scheduling algorithm
for mixed-critical systems, fitting into the context of a real-time
scheduling approach that supports the formal certification of
safety-critical systems. In this context, even the basic problem
of uniprocessor scheduling for a finite number of jobs is NP-
complete and cannot be solved in general by classical fixed
job priority scheduling policies. Our scheduling algorithm
can be implemented as a simple extension of the fixed job
priority scheduling, enjoying the advantages of relative ease of
implementation and analysis of such schedulers. We both prove
in theory and demonstrate in practice that the proposed algo-
rithm dominates and significantly outperforms an algorithm
that is optimal among all basic fixed job priority scheduling
algorithms for this problem. In addition, our algorithm can take
advantage of reduced uncertainty about worst-case execution
time per job that can result from fragmentation of jobs into
smaller jobs.

In future work we plan to extend this algorithm for sporadic
and time-triggered tasks and to introduce support for more than
two levels of criticality. Also, it is necessary to investigate
the mixed-critical scheduling of task graphs, where there are

data dependencies between jobs. For this variant of scheduling
problem, it is important to extend the research from single-
core to multicore systems and to manage the access conflicts
at shared memory and on-chip interconnection framework.
Where purely analytical techniques would fall short due to
complexity of the problem, we plan to apply compositional
verification techniques to ensure hard-real time and safety
guarantees. Also we plan to apply our methodology to real-life
avionics applications.
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