
HAL Id: hal-00867465
https://hal.science/hal-00867465

Submitted on 30 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling Mixed-critical Systems in Real-time BIP
Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga

To cite this version:
Dario Socci, Peter Poplavko, Saddek Bensalem, Marius Bozga. Modeling Mixed-critical Systems in
Real-time BIP. 1st workshop on Real-Time Mixed Criticality Systems, Aug 2013, Taipei, Taiwan.
�hal-00867465�

https://hal.science/hal-00867465
https://hal.archives-ouvertes.fr

Modeling Mixed-critical Systems in Real-time BIP

Dario Socci, Peter Poplavko, Saddek Bensalem and Marius Bozga

UJF-Grenoble 1

CNRS VERIMAG UMR 5104,

Grenoble, F-38041, France

{Dario.Socci | Petro.Poplavko | Saddek.Bensalem | Marius.Bozga}@imag.fr

Abstract—The proliferation of multi- and manycores creates
an important design problem: the design and verification for
mixed-criticality constraints in timing and safety, taking into
account the resource sharing and hardware faults. In our work,
we aim to contribute towards the solution of these problems by
using a formal design language – the real time BIP, to model
both hardware and software, functionality and scheduling. In
this paper we present the initial experiments of modeling mixed-
criticality systems in BIP.

I. INTRODUCTION

The introduction of many-cores and multi-cores is leading
to an increasing trend in embedded systems towards imple-
menting multiple subsystems upon a single shared platform.
However, in most applications, not all the subsystems are
equally critical. Especially this observation is important when
human lives depend on correct functionality, e.g. in avionics
systems. In mixed criticality systems different degrees of
failures, from minor, hazardous to major, need to be distin-
guished [1]. The previous work mostly assumes time or space
isolation of subsystems having different levels of criticality.
However, when integrating different subsystems on a single
multi-core die there is a need to share hardware resources (pro-
cessors, on-chip memory, and global interconnect) between
different subsystems. Also, handling safely the hardware fail-
ure is another design problem, that will only increase as multi-
core will become more and more commonplace. This problem
already manifested itself in popular many-core systems – the
GPUs – so it is relatively well studied how to manage the
resource sharing and safety when all subsystems have the
same level of criticality. However, adding the mixed criticality
assumption may easily boost the complexity from tractable to
intractable [2], and a general lack of design methodology can
be stated.

A popular language for programming safety-critical sys-
tems is Ada, and a great interest exists today to express
multi-core and especially mixed-critical applications in this
language [3], [4]. However, for verification of safety properties
(i.e., automatic check for absence of bugs), any program has
to be translated to a formal model, which is a non-trivial task
even for Ada, which was designed to facilitate an easier static
analysis of code [5]. Formalization is required not only for
analysis of safety properties, but also for timing [6]. Formal
models play important role in the analysis of hardware faults
and fault correction [7] and of the shared resource conflicts
in multicores [8]. Therefore in our mixed-criticality project

The research leading to these results has received funding from
CERTAINTY – European Community’s Seventh Framework Programme
[FP7/2007-2013], grant agreement no. 288175.

we target many-core systems addressing the technological
challenges by using a formal design language – BIP. The
design input can be either provided in BIP or obtained by
translation from other languages.

A wide range of formal design languages exist, but most of
them, referred to as models of computation, enable tractable
analysis in exchange of lack of expressiveness. The software-
based embedded systems would ideally be designed similarly
as hardware, i.e., using a language such as Verilog/VHDL, for
which all important physical properties like timing, consumed
energy, occupied space can be formally imposed and/or derived
in a fully automated design process. This is unfortunately
very often not the case for the software and it requires a
significant effort up to even a change in mentality of software
developers to write programs that are ‘aware’ of non-functional
constraints [9]. Synchronous languages, such as Lustre [10],
are an important step in the direction of solving this problem,
and they are actively developing in the direction of multi-core
mapping [11] and are becoming an important subject of re-
search for mixed critical systems [12]. Also application written
in widely used data-flow languages as Simulink can be trans-
lated into synchronous languages [13]. However, unlike their
hardware-language ‘brothers’, Verilog/VHDL, for software the
synchronous languages by far do not present a ‘one-size-fits-
all’ solution, because they assume very specific properties of
the system behavior, and it can be very difficult and costly
to tailor a given software project to fit these properties [14].
Therefore, rigorous embedded system design frameworks, such
as BIP, do not restrict themselves to synchronous languages
and offer themselves more openly and in more general way
to the functionality to be implemented in various safety-
critical systems. At the same time they share with synchronous
languages the ability to reason on the behavior formally and
the potential to achieve full automation for the given physical
constraints in terms of timing, energy and space/weight.

The BIP framework is expressive enough to model various
models of computations. Due to its unique expressiveness,
it takes a very special role in our design methodology. The
same language is used to express both the application and the
hardware, timing and functionality, scheduling and mapping.
The paradigm of updating and analyzing a homogeneous
intermediate formal model of a real design object to support
the design decisions is a well-recognized paradigm in the field
of electronic design automation in hardware design. The tools
for logic synthesis and physical synthesis exploit so-called
timing graphs, which provide an intermediate timing model
of the digital logic design, being updated in conjunction to the
modifications made in the design by the design flow and being
used to guide the decisions made in the flow. The idea to use

some sort of timing graph to express the application, mapping
and scheduling for the multicore applications is less widely
known, but there are such example, e.g., [15].

In this paper we first present the BIP framework in general,
and then present our current work on modeling the mixed-
criticality systems in BIP.

II. BIP COMPONENT FRAMEWORK

A. General BIP

The BIP (Behavior Interactions Priorities) framework [16]
builds around a component-based language. This language
enjoys a simple syntax with clear and expressive semantics. At
the heart of BIP lies an idea to use as few as possible different
kinds of building blocks. It is well-known that so-called finite-
state machines are ‘bricks’ used to construct the operational
semantics of many other more complex programming models
and are widely used for formal validation of software and
hardware. Therefore, BIP directly uses this basic concept in
its language.

BIP supports a component-based modeling methodology
based on the assumption that components are obtained as the
superposition of three independent layers, that is:
1. Behavior, specified as a set of finite-state machines (basic
components)
2. Interactions, used to coordinate the actions of behavior
3. Priorities, used to schedule among multiple enabled inter-
actions

The states inside the components denote control locations
where the components wait for interactions. A transition is
an execution step from one control location to another. Each
transition has an associated condition that enables this transi-
tion and an action that is executed at this transition. In BIP, all
actions executed by transitions are written in C/C++, a popular
and efficient programming language supported by most of the
mature professional embedded systems.

Multiple components run concurrently and execute interac-
tions with each other. A transition in every component is only
executed when some interaction for this transition is enabled.
An interaction can occur in two situations: when all involved
components are ready to participate (strong synchronization)
or when a component triggers the interaction without waiting
for other components (broadcast). Every interaction can result
in data transfer between the components. The valid interac-
tions are formally defined by algebraic expressions, enabling
a small but provably complete and powerful mechanism to
define various synchronous and asynchronous communication
protocols [17].

To filter amongst possible interactions, the designer can
specify priorities between simultaneously enabled interactions.
Interactions and priorities define a clean and abstract concept
of composition glue. The glue in BIP is thus a first class
concept with well-defined semantics that can be analyzed and
transformed. Moreover, it enables expressiveness unmatched
by any other existing programming model for concurrent
systems [18].

BIP supports the construction of composite, hierarchically
structured (sub-)systems. It lets developers compose systems

Fig. 1. BIP Toolset

by layered application of interactions and priorities. There is
a clear separation between behavior (the finite-state machines)
and composition glue (stateless interactions and priorities).

The BIP and its real-time extension RT-BIP are currently
supported by an extensible toolset including a concrete mod-
eling language together with associated analysis and imple-
mentation. The BIP language leverages on C++ style variables
and data type declarations, expressions and statements, and
provides additional structural syntactic constructs for defining
component behavior, interactions and priorities.

The BIP framework provides constructs for dealing with
parametric and hierarchical descriptions as well as for express-
ing timing constraints associated with behavior. The toolset
allows functional validation, model transformation and code
generation features. See the illustration of the toolset in Fig-
ure 1. In particular, code generation targets both simulation and
execution (e.g., distributed, multi-threaded, real-time, etc.). It
is important to note that both of them are driven by specific
middleware, the so-called engines, available for both BIP
and RT-BIP, for a single platform and for distributed set of
platforms. This allows to run, explore and inspect execution
traces corresponding to systems. Also, the BIP toolset supports
translations from various input languages.

B. Real-time BIP

Correct deployment of systems where multiple real-time
applications run on a given hardware platform remains by far
an open problem. A key challenge is meeting safety and timing
constraints, whose satisfaction depends on the features of the
execution platform, in particular its speed and the run-time
variability of hardware characteristics such as probability of
hardware faults. Existing rigorous deployment techniques are
applicable to specific classes of systems e.g., with periodic

tasks (e.g., rate-monotonic analysis) and deterministic systems
(e.g., synchronous dataflow). When mixing different criticality
levels on a single platform, different deployment setups should
be combined, and one cannot consider them in isolation
or otherwise the isolation mechanisms themselves should be
rigorously modeled and verified.

Real-time (RT) BIP [19] is an extension of the BIP
component-based design language to continuous time model
closely related to timed automata [6]. In addition to offering
syntax and semantics for the timing-aware modeling of con-
current systems, the real-time BIP also envisions a general
model-based implementation method for safety-critical multi-
core systems. This method is based on the use of two models:
(1) an abstract model representing the behavior of real-time
software with user-defined timing constraints; (2) a physical
model representing the behavior of the real-time software
running on a given platform. The former is obtained directly
from the specification provided by the user. The latter is
derived from augmenting the software model with the detailed
models of the processor and memory hardware blocks, services
provided by on-chip communication networks, and the runtime
software libraries/kernels/schedulers. A necessary condition
for a correct deployment is time-safety, that is, any timed
execution sequence of the physical model is also an execution
sequence of the abstract model, thus meeting all the deadlines.
The time safety means that the platform is fast enough to
meet the timing requirements [19]. Also, if the time safety
property is preserved while reducing the execution times, then
the system is said to be time robust. It is the physical model
that is used for the final validation of the given design for
time safety. For a time robust system a simple simulation with
worst-case execution delays of actions is enough to validate
the time-safety, due to monotonic dependency of all system
timing on the delays of system components [19]. Sufficient
static analysis conditions are given in [19] to check whether
the system is time robust.

In Section III by means of an example, we show how
modeling and analyzing the mixed-critical systems in RT-
BIP. This example is composed manually, but according to
a particular architecture pattern for mixed-critical systems. We
use this example to introduce the elements of the BIP language
on the fly as we construct the example. Having constructed the
BIP model, we use the available RT-BIP engine to simulate all
possible simple scenarios after which the system comes back
into the original state. Because each scenario in this example
is time deterministic, this simulation is sufficient to prove the
time safety, showing the usefulness of the RT-BIP engine for at
least partial validation of mixed-critical systems. Moreover, for
non-preemptive variant of the considered systems, the engine
can be also used for their implementation.

III. MIXED-CRITICAL SYSTEMS IN BIP

In this section, we describe our current approach to model
mixed criticality systems in BIP. This approach follows the
architectural pattern shown in Figure 2. There are one or
more applications, plugged to the environment via environment
interfaces. To provide some fallback possibilities in the case of
errors, the applications support different modes, corresponding
to different levels of quality of service. The failure of an

Application

O
b

s
e
rv

e
r

RT Manager

Update Mode

Grant Resources

Violation

Environment

sensors, actuators, interfaces

Environment

Interface

FAILURE

Release Resources

Fig. 2. System overview

application means that it produces wrong results to its envi-
ronment, so they should be all detectable at the environment
interfaces, which therefore explicitly signal the failures. To
avoid the failures, the system includes so-called observers,
which monitor the state of the application at run time and
report violations, i.e. situations that are leading to failure
conditions, to run-time manager (RT Manager). The function
of the latter is granting the hardware resources to different
applications with proper scheduling policy and for updating the
mode of the applications such that when violations occur the
failures are prevented. This is done by acceptable degradation
of service of the low-criticality applications which will prevent
the failures and degradation of the high-criticality applications.

A. Modelling Task Systems

Following the architecture pattern in Figure 2, we imple-
mented in BIP the class of mixed-criticality systems originally
proposed by [20]. This class is a generalization of the clas-
sical real-time scheduling of periodic tasks on a single-core
machine. [20] proposes a mixed-critical scheduling approach
that ensures certification by certification authorities according
to currently existing procedures, hence this approach is called
certification-cognizant. The main idea is that the schedule
should be such that the high-criticality tasks conform to the
requirements of the certification agency, while at the same time
all tasks should also conform to (less demanding) conventional
requirements posed by system engineers. Finding a feasible
schedule in this setup becomes a hard problem to tackle from
the point of view of computer science theory. In particular,
it is an NP-complete problem when the number of criticality
levels is a fixed constant [2], which is always the case in every
practical application domain avionics, automotive, etc. (think
of five SIL levels in the IEC 61508 standard for safety of
industrial system). The bad news from this fact is that it is
hard, in general, to find a feasible schedule. The good news is,
nevertheless, that when a feasible schedule is found then it can
be verified in polynomial time with respect to number of tasks
and this can be done by simulating a (polynomial-size) set of
alternative scenarios (ideally, with some backtracking to avoid
re-exploration of the common parts of similar scenarios). This
is exactly the strategy (although, without backtracking yet) we
currently follow to verify the physical model which we build
in RT BIP for this class of the systems. The notions of (basic)
scenarios and the scenario-based verification of mixed-critical
schedule are defined formally in [2].

The scheduling problem is defined as a set of periodic
tasks, partitioned into two criticality levels: low (2) and high
(1). Each task has two values of WCET: WCETLO for the
lowest criticality level and WCETHI for the highest level (we
assume only two criticality levels to simplify explanation).
The former corresponds to the WCET level obtained with
conventional WCET estimation tools, and the latter to the
WCET obtained by (sometimes much more pessimistic) tools
used by the certification authorities. In addition WCETHI can
also model problems related to hardware faults. For instance
a software module may mask such errors implementing error
checking at the end of the execution. If an error is detected
the task is executed again. This (exceptional) event will, of
course, increase the execution time. Every task is also assigned
a criticality level that is ‘own’ for this task: either level
1 (HI=high) or level 2 (LO=low). Next to this, as in the
usual scheduling model, each task has a period and a relative
deadline. A schedule is feasible if the following conditions are
met:

Condition 1: (Normal mode) If all jobs run at most for
their LO WCET, then both critical (HI) and non-critical (LO)
jobs must complete before their deadline.

Condition 2: (Degraded mode) If at least one job runs
for more then its LO WCET, than all critical (HI) jobs must
complete before their deadline, whereas non-critical (LO) jobs
may be even dropped.

Figure 3 shows the structure of a BIP model for a simple
instance of this model that consists of two tasks. In BIP
component communicate via ‘ports’ (circles and triangles
in the figure), that are the transaction of the automata that
participate in interactions. To illustrate ports that take part into
the same interaction, we connected them with lines.

Every periodic task is placed in the context of an ‘applica-
tion’ consisting of three components: the Source, the (relative-
deadline) Sink and the task itself. The Source has a clock
variable that increments automatically with the passage of time
(like any clock in timed automata). We do not show the internal
details of the Source, but the behavior is simple. When the
value of his clock reaches the period of the corresponding
task, the Source executes an interaction at port ‘Job in’ and
resets the clock. As a result, it executes ‘Job in’ periodically.
The meaning of ‘Job in’ is that a new job starts and it has
to be executed by the corresponding task and finished by the
task’s relative deadline with the respect to the time of arrival
of ‘Job in’, and the deadline is checked at the Sink. Thus,
both the task and the Sink have to be notified on ‘Job in’ and
we see that they both have a port connected to ‘Job in’.

Figure 4 zooms into the BIP model of a task which we
use in this example. The task has three groups of ports (see
them on the left). The first group is for starting and finishing a
job. It also includes one port that controls the mode in which
the current job is running. The second group consists of two
ports: Read and Write to read the input data in the beginning
of the job and write the output data in the end. The third
group is for obtaining and releasing the CPU resource from the
scheduler of the core where the task is running. A triangle next
to the port corresponds to the fact that the given component
(in this case task) takes initiative to do an interaction and the
other components connected to it are supposed to be ready

Scheduler

Preempted

GrantCPU

AskCPU

UpdateMode

UpdateMode

Violation

Load

CPUIdle

RelCPU

Mode Controller

Level 2 Controller (low)

NORMAL DEGRADED

RT Manager

Job_in

Task

UpdateMode

Task Observer

AskCPU

GrantCPU

RelCPU

Preempted

AskCPU

GrantCPU

RelCPU

Preempted

Sink

Mode

Job_outStartGenerate

Source

Violation

Level 1

Task 1

HIGH

Job_out

Reactive Application 1

Interface

Job_in

Task

UpdateMode

Task Observer

AskCPU

GrantCPU

RelCPU

Preempted

AskCPU

GrantCPU

RelCPU

Preempted

Sink

Mode

Job_outStartGenerate

Source

Violation

Level 2

Task 2

LOW

Job_out

Reactive Application 2

Interface

Fig. 3. BIP Model for a Mixed-Critical System

AskCPU

Preempted

Job_out

Job_in

UpdateMode

Read

Read

Write

AskCPU

RelCPU

GrantCPU

Preempted

GrantCPU

GrantCPU

UpdateMode

!has_read

has_read

Write
!drop

RelCPU
drop

Job_in

reset x

resume x

resume x

freeze x

RelCPU

Job_out

0 ≤ x ≤ WCET(scenario

Fig. 4. BIP Task Model

to participate in this interaction at any moment when it can
arrive. For example, it is the task that takes initiative to ask
for a CPU. Otherwise the port is marked by a thick dot.

A task initially starts in a state where it is ready to receive
a ‘Job in’ immediately. The task asks the scheduler for a CPU.
Having obtained the CPU, the task goes into state ‘begin’ and
clock ‘x’ is reset to 0. This clock is used to model the execution
cycles consumed by this task on the CPU. At any time when
the given task is preempted by another task, the clock is frozen.
The task asks for CPU and waits again, and when it gets the
CPU back then clock ‘x’ is resumed. To facilitate modeling

the shared resource conflicts in future work, the job execution
between the ‘begin’ and the ‘end’ states follows the so-called
‘superblock’ model, as described in [21]. In line with this
work, we split the process execution into subsequent phases
that may have different access patterns to the shared resources.
In the typical case described here we assume three phases.
First the task reads all input data from shared to local memory
(the ‘Read’ transition), then it executes (‘Execute’) and then it
writes the output data from local to shared memory (‘Write’).

Let us now examine the ‘Execute’ phase. Note that
only this phase is assumed in this example to consume
non-negligible amount of execution cycles, to support mode
changes and preemption. The number of execution cycles is
bounded by function WCET (scenario), which can take one
of two possible values, WCETLO or WCETHI, depending
on the execution scenario selected during the schedulability
analysis (see the next sub-section). When clock ‘x’ reaches
the WCET value of the current scenario the task releases the
CPU. It can also be forced to release CPU if the mode, set
through interaction UpdateMode, implies that the task should
be dropped (i.e. enforced to complete). As we see in the figure,
UpdateMode changes the variable called ‘drop’ depending on
the variable ‘mode’ communicated from outside this task at
this interaction. This is in fact a Boolean data variable. If its
value is set to true, the task is forced to finish the current job
urgently in the next interaction. This is required to allow that
the LO tasks can be dropped to free the CPU for the HI tasks
so that the latter do not miss their deadlines. When a task is
dropped, the mode of its Sink component is updated so that it
does not expect a timely Job out from the task.

The task component illustrates the basic elements of real-
time BIP used to construct the BIP components. Those are
the clocks (e.g. ‘x’), the states (e.g. ‘ini’), the interactions
enabled depending on conditions (e.g. ‘Release CPU’ depends
on ‘drop’), and the data variables (e.g. ‘drop’). The other
components, such as Source, Sink, Scheduler, etc., are also
composed of these elements, we skip their details for space
reasons.

Let us come back to the BIP implementation of our two-
task scheduling example, given Figure 5. Let us explain how
the mixed-critical scheduling is reflected in this BIP model. Ev-
ery task is equipped with a component, called Observer, which
has an own analogue of task’s clock ‘x’ and verifies whether
the clock goes beyond WCETLO. According to Condition 2,
in this case Task 2, which is a LO task, is not obliged to
meet its deadline and in fact can be dropped. When one of the
two Observers in the figure report to the Resource Manager
component that WCETLO budget is violated, the Resource
Manager goes from state NORMAL to DEGRADED. In this
state, Resource Manager updates the mode of Task 2 such that
it immediately drops.

The scheduler in this example is a fixed priority sched-
uler, which uses the fixed priority per tasks computed by
applying so-called Audsley’s approach to the mixed-critical
set of tasks [20]. According to this approach, one task has a
higher priority than the other and the priority assignment is
done taking into account the periods, deadlines, WCETs and
criticality levels of the tasks. The scheduler also monitors the
current (work-)load of the processor. When the processor is
idle (i.e. waiting for jobs to arrive without any task requesting

for the CPU), this is reported to the Resource Manager so
that it can go back to the NORMAL mode if the mode is
DEGRADED. Thus, we can stop dropping the low-criticality
Task 2 when the conditions permit this.

B. Schedulability Analysis

In Figure 5 we show the WCETs for one of our experi-
ments. Here T1 is a HI task, T2 is a LO task and D denote
the relative deadline.

T1 T2

8

4 4

4

D=10 D=8

WCETHI

WCETLO

Fig. 5. WCET of our example

The tasks in this example have different deadlines1 but,
for simplicity of presentation, they have the same period and
are perfectly synchronized with each other. By the beginning
of each period, the CPU is idle, so the system comes back
at the exactly same state as at the start. Thus, to exhaustively
study all possible scenarios of this example it is enough to only
consider what happens in one period. We use this fact and the
verification of schedulability proposed in [2] to demonstrate
verification by simulation, to show that the simulation tools
(already available in the BIP framework) form an important
first step towards verification with more general and realistic
assumptions.

Consider two scenarios where the high-criticality task
chooses to use execution time in interval [0,WCETLO] or
(WCETLO,WCETHI]. The low criticality task may only
choose from interval [0,WCETLO) because when it exceeds
this interval violation is reported and it is dropped. In every
scenario one can show that the fixed-priority schedule is time
robust (in the classical schedule, it is known to be such, but the
mixed-critical systems deviate from classical schedules by the
fact that the LO jobs may be dynamically dropped). From this
it follows that to verify the time safety (i.e. the schedulability)
of this example it is enough to use upper bounds of each
scenario (WCETLO and WCETHI) to simulate the schedule
(see also Lemma 1 from [2]).

Thus, to verify the example of Figure 5 it is enough to run
the BIP simulation for the duration of two periods, trying a
different scenario in each period. With our BIP model, we
did experiments with different parameter settings of tasks,
including the cases where there is no failure or, due to an
error in deployment (wrong priority assigned to tasks), a failure
occurs (meaning a deadline miss of a HI task or unexpected
miss of a LO task). If T2 is assigned a higher priority, it will
execute first and meet its deadline 8, because it takes at most
4 units to execute. However, in the scenario where T1 runs
at its WCETHI it will miss its deadline (completing at time
4+8=12), which is a failure (wrong priority assignment done
by the deployment algorithms). Nevertheless, if T1 is assigned
a higher priority, the worst thing that can happen is that in the
scenario where T1 runs at its WCETHI it will thus violate

1different deadlines make this problem NP-hard

its WCETLO, task T2 will be dropped (by RT Manager, as
explained in the following session) and hence will not complete
by the deadline. But this is acceptable degradation of a LO task
that is allowed in this scheduling problem.

The scalability of our methodology is guaranteed by the
theoretical results of [2], where is shown that the scheduling
problem is time robust and only a polynomial number of
experiments is necessary to ensure the schedulability of all
the possible scenarios.

IV. DISCUSSION AND FUTURE WORK

A possible direction of future work is to generalize the
‘time-robust per scenario’ schedulabilty analysis from this ex-
ample to more general cases. We have explained this reasoning
for two tasks of equal periods and two levels of criticality,
but in fact it can be generalized to more tasks with different
periods and more criticality levels. In this case, one can still
formulate verification by (possibly very lengthy) simulation
using the current scheduling theory. However if we upgrade the
tasks to have unknown relative arrival time inside each period
or to be sporadic then it is not trivial. Example of mixed-
critical scheduling policies for this case are EDF-VD [22]
and demand-based [23]. However they provide schedulability
conditions for their specific scheduling algorithm, and we are
not aware of any generic schedulability verification procedure.
Modeling in BIP potentially opens possibilities for using
formal verification methods of time automata for such cases.
Figuring out how this verification can be done in BIP is an
interesting direction for future work.

Also, because the goal of our project is to study multicore
system and resource conflicts, we will not always deal with
time-robust systems, so more advanced methodology than
simulations are required, such as compositional verification
and (for lower criticality levels) statistical model checking.
Extending the corresponding BIP verification methodologies
to the real-time BIP is an important direction of work. Also
we are interested in extending our scheduling algorithm [24]
in the same way as the schedulability analysis.

In order to prove the effectiveness of our approach, we are
also planning to apply the proposed methodology to model a
real-life avionic application as a case study.

REFERENCES

[1] L. A. Johnson, “DO-178B: Software considerations in airborne sys-
tems and equipment certification.,” in Radio Technical Commission for

Aeronautics., RTCA, 1992.

[2] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
N. Megow, and L. Stougie, “Scheduling real-time mixed-criticality
jobs,” IEEE Trans. Comput., vol. 61, pp. 1140 –1152, aug. 2012.

[3] S. Baruah and A. Burns, “Implementing mixed criticality systems in
Ada,” in Reliable Software Technologies - Ada-Europe 2011 (A. Ro-
manovsky and T. Vardanega, eds.), vol. 6652 of Lecture Notes in

Computer Science, pp. 174–188, Springer Berlin Heidelberg, 2011.

[4] P. Amey, R. Chapman, and N. White, “Smart certification of mixed
criticality systems,” in Proceedings of the 10th Ada-Europe interna-

tional conference on Reliable Software Technologies, Ada-Europe’05,
pp. 144–155, Springer-Verlag, 2005.

[5] J. M. Faria, J. a. Martins, and J. S. Pinto, “An approach to model
checking Ada programs,” in Proceedings of the 17th Ada-Europe inter-

national conference on Reliable Software Technologies, Ada-Europe’12,
pp. 105–118, Springer-Verlag, 2012.

[6] R. Alur and D. Dill, “Automata for modeling real-time systems,” in
Automata, Languages and Programming (M. Paterson, ed.), vol. 443
of Lecture Notes in Computer Science, pp. 322–335, Springer Berlin
Heidelberg, 1990.

[7] P. Axer, M. Sebastian, and R. Ernst, “Reliability analysis for mp-
socs with mixed-critical, hard real-time constraints,” in Proceedings

of the seventh IEEE/ACM/IFIP international conference on Hard-

ware/software codesign and system synthesis, CODES+ISSS ’11,
pp. 149–158, ACM, 2011.

[8] R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, and L. Thiele,
“Worst case delay analysis for memory interference in multicore sys-
tems,” in Design, Automation Test in Europe Conference Exhibition

(DATE), 2010, pp. 741–746, 2010.

[9] E. Lee, “Absolutely positively on time: what would it take? [embedded
computing systems],” Computer, vol. 38, no. 7, pp. 85–87, 2005.

[10] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous
dataflow programming language lustre,” in Proceedings of the IEEE,
pp. 1305–1320, 1991.

[11] A. Cohen, L. Gérard, and M. Pouzet, “Programming parallelism with
futures in lustre,” in Proceedings of the tenth ACM international

conference on Embedded software, EMSOFT ’12, pp. 197–206, ACM,
2012.

[12] S. Baruah, “Semantics-preserving implementation of multirate mixed-
criticality synchronous programs,” in Proceedings of the 20th Inter-

national Conference on Real-Time and Network Systems, RTNS ’12,
pp. 11–19, ACM, 2012.

[13] N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Maraninchi,
“Defining and translating a ”safe” subset of simulink/stateflow into
lustre,” in EMSOFT ’04: Proceedings of the 4th ACM international

conference on Embedded software, pp. 259–268, ACM, 2004.

[14] H. Fuhrmann, R. von Hanxleden, J. Rennhack, and J. Koch, “Model-
based system design of time-triggered architectures - avionics case
study,” in 25th Digital Avionics Systems Conference, 2006 IEEE/AIAA,
pp. 1–12, 2006.

[15] N. Bambha, “Intermediate representations for design automation of
multiprocessor DSP systems,” in In Design Automation for Embedded

Systems, pp. 307–323, Kluwer Academic Publishers, 2002.

[16] A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-H. Nguyen,
and J. Sifakis, “Rigorous component-based system design using the BIP
framework,” Software, IEEE, vol. 28, no. 3, pp. 41–48, 2011.

[17] S. Bliudze and J. Sifakis, “Causal semantics for the algebra of connec-
tors,” Form. Methods Syst. Des., vol. 36, pp. 167–194, June 2010.

[18] S. Bliudze and J. Sifakis, “A notion of glue expressiveness for
component-based systems,” in Proceedings of the 19th international

conference on Concurrency Theory, CONCUR ’08, pp. 508–522,
Springer-Verlag, 2008.

[19] T. Abdellatif, J. Combaz, and J. Sifakis, “Model-based implementation
of real-time applications,” in Proceedings of the tenth ACM interna-

tional conference on Embedded software, EMSOFT ’10, pp. 229–238,
ACM, 2010.

[20] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in Real-Time Systems

Symposium, 2007. RTSS 2007. 28th IEEE International, pp. 239–243,
2007.

[21] G. Giannopoulou, K. Lampka, N. Stoimenov, and L. Thiele, “Timed
model checking with abstractions: Towards worst-case response time
analysis in resource-sharing manycore systems,” in Proc. International

Conference on Embedded Software (EMSOFT), pp. 63–72, ACM, Oct
2012.

[22] S. Baruah, V. Bonifaci, G. DAngelo, A. Marchetti-Spaccamela, S. Ster,
and L. Stougie, “Mixed-criticality scheduling of sporadic task systems,”
in Algorithms ESA 2011 (C. Demetrescu and M. Halldrsson, eds.),
vol. 6942 of Lecture Notes in Computer Science, pp. 555–566, Springer
Berlin Heidelberg, 2011.

[23] P. Ekberg and W. Yi, “Bounding and shaping the demand of mixed-
criticality sporadic tasks,” in Real-Time Systems (ECRTS), 2012 24th

Euromicro Conference on, pp. 135–144, 2012.

[24] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga, “Mixed critical
earliest deadline first,” in Proc. ECRTS’13, 2013.

