
HAL Id: hal-00867456
https://hal.science/hal-00867456v1

Submitted on 29 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lagrangian Duality in Online Scheduling with Resource
Augmentation and Speed Scaling

Kim Thang Nguyen

To cite this version:
Kim Thang Nguyen. Lagrangian Duality in Online Scheduling with Resource Augmentation and
Speed Scaling. 21st European Symposium on Algorithms (ESA 2013), Sep 2013, Sophia Antipolis,
France. pp.755–766, �10.1007/978-3-642-40450-4_64�. �hal-00867456�

https://hal.science/hal-00867456v1
https://hal.archives-ouvertes.fr

Lagrangian Duality in Online Scheduling with

Resource Augmentation and Speed Scaling

Nguyen Kim Thang⋆

IBISC, University of Evry Val d’Essonne, France.

Abstract. We present an unified approach to study online scheduling
problems in the resource augmentation/speed scaling models. Potential
function method is extensively used for analyzing algorithms in these
models; however, they yields little insight on how to construct poten-
tial functions and how to design algorithms for related problems. In the
paper, we generalize and strengthen the dual-fitting technique proposed
by Anand et al. [1]. The approach consists of considering a possibly
non-convex relaxation and its Lagrangian dual; then constructing dual
variables such that the Lagrangian dual has objective value within a de-
sired factor of the primal optimum. The competitive ratio follows by the
standard Lagrangian weak duality. This approach is simple yet powerful
and it is seemingly a right tool to study problems with resource augmen-
tation or speed scaling. We illustrate the approach through the following
results.
1. We revisit algorithms EQUI and LAPS in Non-clairvoyant Scheduling

to minimize total flow-time. We give simple analyses to prove known
facts on the competitiveness of such algorithms. Not only are the
analyses much simpler than the previous ones, they also explain why
LAPS is a natural extension of EQUI to design a scalable algorithm
for the problem.

2. We consider the online scheduling problem to minimize total weighted
flow-time plus energy where the energy power f(s) is a function of
speed s and is given by sα for α ≥ 1. For a single machine, we showed
an improved competitive ratio for a non-clairvoyant memoryless al-
gorithm. For unrelated machines, we give an O(α/ logα)-competitive
algorithm. The currently best algorithm for unrelated machines is
O(α2)-competitive.

3. We consider the online scheduling problem on unrelated machines
with the objective of minimizing

∑
i,j

wijf(Fj) where Fj is the flow-
time of job j and f is an arbitrary non-decreasing cost function with
some nice properties. We present an algorithm which is 1

1−3ǫ
-speed,

2K(ǫ)
ǫ

-competitive where K(ǫ) is a function depending on f and ǫ.
The algorithm does not need to know the speed (1 + ǫ) a priori.
A corollary is a (1 + ǫ)-speed, k

ǫ1+1/k -competitive algorithm (which
does not know ǫ a priori) for the objective of minimizing the weighted
ℓk-norm of flow-time.

⋆ Supported by the French National Agency (ANR) project COCA ANR-09-JCJC-
0066-01, and the GdR RO.

1 Introduction

We consider online scheduling problems where jobs arrive at unrelated machines
over time. Each job j has release date rj and its processing time pij and weight
wij on machine i. At the arrival time rj , job j becomes known to the schedul-
ing algorithm. We distinguish two different models. At time rj , in the non-

clairvoyant model only the weights wij ’s becomes known to the scheduler while
in the clairvoyant model, all parameter of jobs j are available. A scheduler must
determine how to process jobs in order to optimize a quality of service without
the knowledge about future. In the paper, we study natural qualities of service
related to the flow-times of jobs. The flow-time of a job is the total amount of
time it spends in the system, i.e., the difference of its completion time and its
release time.

A popular measure for studying the performance of online algorithms is com-

petitive ratio. An algorithm is said to be c-competitive if for any instance its
objective is within factor c of the optimal offline algorithm’s objective. Unfor-
tunately, for many problems, any online algorithm has large competitive ratio
even that some heuristics have performance very close to the optimum in prac-
tice. To remedy the limitation of pathological instances in worst-case analysis,
a popular relaxation resource augmentation model was introduced in [22]. In
this relaxation, the online algorithm is given extra speed to process jobs and
compared to the optimal offline algorithm. This model has successfully provided
theoretical evidence for heuristics with good performance in practice. Besides,
algorithms could be classified according to their competitive ratios in the model
of resource augmentation for practical choices. We say an algorithm is s-speed
c-competitive if for any input instance the objective value of the algorithm while
running at speed s is at most c times the objective value of the optimal offline
scheduler while running at unit speed. Ideally, we would like algorithms to be
constant competitive when given (1+ ǫ) times a resource over the optimal offline
algorithm for any constant ǫ > 0. Such algorithms are called scalable.

The most successful tool until now to analyze online scheduling algorithms
with resource augmentation is the potential function method. Potential functions
has been designed and show that the corresponding algorithms behave well in
an amortized sense. Designing such potential functions is far from trivial and
often yields little insight about how to design such potential functions and al-
gorithms for related problems (a generalized variant with additional constraints
for example).

Recently, Anand et al. [1] gave a more direct and interesting approach for
analyzing online scheduling algorithms with resource augmentation based on
the technique of dual fitting for convex programming relaxation. Informally, the
technique could be described as follows. Consider a linear (convex) programming
relaxation of a given problem and the dual linear program (or Lagrangian dual).
Then construct a feasible solution for the dual (given an online algorithm) and
prove that its objective value is close to that of the online algorithm. The main
advantage of this technique is that the dual variables (which constitute the
desired dual solution) often have intuitive interpretations and their construction

could be naturally deduced from the algorithm. Consequently, the procedures of
analyzing and designing algorithms are more interactive and could be done in a
principled manner.

Independently, Gupta et al. [18] gave a principled method to design online
algorithms for non-linear programs. Their approach could be seen as an extension
of the online primal-dual method for linear programming [9]. Roughly speaking,
in the method the dual variables are set in such a way that the increase rate
in the dual objective is proportional to the one in the primal objective. This
approach is particularly powerful while the primal objective function is convex.

1.1 Approach and Contributions

The main contribution of the paper is to show a principled approach to de-
sign/analyze online scheduling algorithms with resource augmentation (or speed
scaling) by strengthening the dual fitting technique in [1]. The approach is
sharply inspired by the one in [1]. First, consider a mathematical programming
relaxation (associated with a given problem) which is not necessarily convex and
its Lagrangian dual. Then construct dual variables such that the Lagrangian
dual has objective value within a desired factor of the primal one (due to some
algorithm). Then by the standard Lagrangian weak duality for mathematical
programming, the competitive ratio follows.

Lemma 1 (Weak duality). Consider a possibly non-convex optimization prob-

lem

p∗ := min
x

f0(x) : fi(x) ≤ 0, i = 1, . . . ,m.

where fi : R
n → R for 0 ≤ i ≤ m. Let X be the feasible set of x. Let L :

R
n × R

m → R be the Lagragian function

L(x, λ) = f0(x) +

m∑

i=1

λifi(x).

Define d∗ = maxλ≥0 minx∈X L(x, λ) where λ ≥ 0 means λ ∈ R
m
+ . Then p∗ ≥ d∗.

Weak duality is indeed a direct consequent of the minimax inequality

max
λ∈Y

min
x∈X

L(x, λ) ≤ min
x∈X

max
λ∈Y

L(x, λ)

where X and Y are feasible sets of x and λ. Intuitively, our approach could
be considered as a one-shot game between an algorithm and an adversary. The
algorithm chooses dual variables λ∗ in such a way that whatever the choice
of the adversary, the value minx∈X L(x, λ∗) is always within a desirable factor
c of the objective due to the algorithm. In the model, the adversary has less
resource than the algorithm. For example, if the algorithm processes jobs with
unit rate then the adversary can run only with rate (1− ǫ). We extensively use
that advantage in proving bounds for the dual objective.

In high level, our approach is the same as the one in [1] except that the relax-
ation is possibly non-convex. However, the flexibility of our approach provides
many advantages. First, a problem could be more directly and naturally for-
mulated as a non-convex program. For example, the online scheduling problem
to minimize total weighted flow time plus energy could be naturally formulated
by a non-convex relaxation (Section 4) while it is unclear how to formalize the
problem by a convex program. Consequently, the analysis is usually simpler,
cleaner and the performance guarantee is improved. Inversely, the simplicity of
the analysis gives insights on the problems and so (simple) algorithms could be
designed. Second, as it is not constrained to be a convex optimization program,
additional constraints for generalized variants of a problem could be easily incor-
porated (for example, from a single machine to unrelated machines). Thereby an
algorithm for generalized variants could be derived based on the previous ones
for the basic problem and the ideas of the analyses remain essentially the same.

We illustrate the advantages of the approach through the following results.

1. In Section 3, we revisit algorithms EQUI and LAPSǫ in Non-clairvoyant
Scheduling to minimize total flow-time. We give simple analyses to prove
known facts that EQUI is 1

1/2−ǫ -speed,
1
ǫ -competitive [14] and LAPSǫ is 1

1−2ǫ -

speed, 2
ǫ2 -competitive [15]. Not only are the analyses much simpler than the

previous ones, they also explain why LAPSǫ is a natural extension of EQUI
to design a scalable algorithm for the problem.

2. In Section 4, we consider the online scheduling problem to minimize total
weighted flow-time plus energy where the energy power f(s) is a function of
speed s and is given by sα for α ≥ 1. For a single machine, we showed an im-
proved competitive ratio O(2α) for a non-clairvoyant memoryless algorithm
(its performance was previously known to be O(3α)). For unrelated ma-
chines, we give an O(α/ logα)-competitive algorithm. This bound matches
to the currently best algorithm for a single machine [5]. The currently best
algorithm for unrelated machines is O(α2)-competitive [1].

3. In Section 5, we consider the online scheduling problem on unrelated ma-
chines with the objective of minimizing

∑
i,j wijf(Fj) where Fj is the flow-

time of job j and f is an arbitrary non-decreasing cost function with some
nice properties (for example, f is in class C1 and f ′ is non-decreasing). We

derive an algorithm which is 1
1−3ǫ -speed,

2K(ǫ)
ǫ -competitive where K(ǫ) is

a function depending on f and ǫ. The algorithm does not need to know
the speed (1 + ǫ) a priori. A corollary is a (1 + ǫ)-speed, k

ǫ1+1/k -competitive
algorithm (which does not know ǫ a priori) for the objective of minimiz-
ing the weighted ℓk-norm of flow-time. That answers an open question in
[19] and marginally improves the currently best known algorithm which is
(1 + ǫ)-speed, k

ǫ2+1/k -competitive [1].

Besides, using the approach, related problems and direct generalizations of
the above problems could be proved.

1.2 Related work

The online problems of minimizing objectives related to (weighted) flow-times
of jobs have been extensively studying. For the basic problem of minimizing
total flow-time on single machine, it is well-known that Shortest Remaining
Processing Time (SRPT) is the optimal algorithm. However, that is the only
constant competitive algorithm. Bansal and Chan [3] showed that no algorithm
is constant competitive for the problem of minimizing total weighted flow-time on
single machine. In fact, no bounded competitive ratio holds for parallel machines
setting [13,17].

The strong lower bounds motivate the use of resource augmentation, orig-
inally introduced by Kalyanasundaram and Pruhs [22], which circumvents the
persimist worst-case paradigm. In the same paper, the authors gave an O(1/ǫ)-
competitive algorithm, called SETF, for the objective of minimizing flow-time on
a single machine in the non-clairvoyant setting. In this setting, without resource
augmentation the competitive ratios of every deterministic and randomized al-
gorithms are Ω(n1/3) and Ω(log n), respectively [26]. Edmonds [14] considered
algorithm EQUI and showed that it was (2 + ǫ)-speed, 2/ǫ-competitive. Later
on, Edmonds and Pruhs [15] proposed a generalized algorithm called LAPSǫ.
They proved that LAPSǫ is (1 + 2ǫ)-speed, 4/ǫ2-competitive for minimizing the
objective of total flow-time (even with sublinear non-decreasing speedup curves).

In the clairvoyant setting, Bansal and Pruhs [6] proved that the Highest
Density First (HDF) algorithm is (1 + ǫ)-speed, O(1/ǫ)-competitive for the ob-
jective of weighted ℓk-norm of flow-time on a single machine. Chadha et al.
[10] gave the first (1 + ǫ)-speed, O(1/ǫ2)-competitive algorithm for minimizing
weighted flow time on unrelated machines. Recently, using the approach based
on linear programming and dual-fitting, Anand et al. [1] derived another sim-
ple algorithm which is (1+ ǫ)-speed, O(1/ǫ)-competitive. Moreover, the authors
extended this to an (1 + ǫ)-speed, O(k/ǫ2+1/k)-competitive algorithm for the
objective of weighted ℓk-norm of flow-time. Note that the latter needs to know
the speed (1 + ǫ) a priori.

For the objective of total flow-time plus energy on a single machine, Bansal et
al. [5] gave a (3 + ǫ)-competitive algorithm. Besides, they also proved a (2 + ǫ)-
competitive algorithm for minimizing total fractional weighted flow-time plus
energy. Their results hold for a general class of convex power functions. Those
results also imply an O(α/ logα)-competitive algorithm for weighted flow-time
plus energy when the energy function is sα. Again, always based on linear pro-
gramming and dual-fitting, Anand et al. [1] proved an O(α2)-competitive al-
gorithm for unrelated machines. The total (weighted) flow-time plus energy in
non-clairvoyant setting has been also considered [11,25]. Chan et al. [12] proved
that a memoryless non-clairvoyant algorithm, which a variant of algorithm EQUI

with a policy on speed, was O(3α) competitive.
The objective of minimizing

∑
i,j wijf(Fj) for general cost function f aims

to capture multiple standard objectives in literature (weighted ℓk-norm of flow-
time, weighted tardiness). A competitive algorithm for a general cost function
could be useful particularly in scheduling with multiple objectives or in setting

where objectives may compete with each other [2,24]. For the offline version on a
single machine, Bansal and Pruhs [7] presented a polynomial time O(log logP)-
approximation algorithm [7,8] where P is the ratio of the maximum to minimum
job size. Im et al. [21] showed that the HDF algorithm is (2 + ǫ)-speed, O(1)-
competitive for arbitrary non-decreasing cost function f on a single machine.
They also gave a scalable algorithm when f is a concave and twice differentiable.

Almost all of competitive algorithms with resource augmentation are proved
by potential functions. Those clever functions are used to show that a particu-
lar algorithm is locally competitive in an amortized sense. Recently, a principle
approach to construct potential functions for online scheduling has been sys-
tematically formalized and given in [20] for many problems. However, it does
not apply to all, for example the problem we consider in Section 5. More impor-
tantly, that still yields little insight about how to design algorithms and construct
potential functions for related problems or for non-trivial generalized variants.

Anand et al. [1] was the first who proposed studying online scheduling with
resource augmentation by linear (convex) programming and dual fitting. By this
elegant approach, they gave simple algorithms and simple analysis with improved
performance for problems where the analyses based on potential functions are
complex or it is unclear how to design such functions. Our approach is greatly
inspired by the one in [1].

Independently, Gupta et al. [18] gave a principled method to design online
algorithms for non-linear programs. They showed the application of the method
to online speed-scaling problems. Subsequently, [23] have applied the method to
design an αα-competitive for the problem of minimizing the consumed energy
plus lost values.

2 Preliminaries

In unrelated machine environment, we are given a set of m machines and jobs
arrive over time. A job j is released at time rj and requires pij units of processing
time if it is scheduled on machine i. The machines are allowed to process jobs
preemptively. The flow-time of a job j is Fj = Cj − rj where Cj is its the
completion time. If a job j is assigned to machine i then its weighted flow-time
is wijFij . Consider a scheduling algorithm. A job j is pending at time t if it
is not completed by the algorithm, i.e., rj ≤ t < Cj . At time t, we denote
qij(t) the remaining processing time of job j on machine i. The total weight of
pending jobs assigned to machine i at time t is denoted as Wi(t). In case where
all jobs have unit weight, we use Ni(t) (number of pending jobs) instead of
Wi(t). The residual density of a pending job j assigned to machine i at time t is
δij(t) = wij/qij(t). The density of a job j on machine i is δij(rj). We distinguish
two different models: the non-clairvoyant model in which at the arrival of job
j, only the weights wij ’s becomes known to the scheduler; and the clairvoyant

model in which all parameter of jobs j are available at its release time. Note that
when only a single machine is considered, for simplicity the notations remain the
same except that the machine index (usually i) will be dropped.

3 Non-clairvoyant Scheduling

The problem. In this section, we study the non-clairvoyant online scheduling
problem with the objective of minimizing the total flow-time on a single machine.
Let xj(t) be the variable that represents the processing rate of the machine on
job j at time t for every job j. Let Cj be a variable representing the completion
time of j. The relaxation could be formulated as the following mathematical
program. We notice again that in our approach the programs do not need to be
convex.

min
∑

j

Cj − rj
pj

∫ Cj

rj

xj(t)dt

subject to

∫ Cj

rj

xj(t)dt = pj ∀j

n∑

j=1

xj(t) ≤ 1 ∀t

xj(t) ≥ 0 ∀j, t

xj(t) = 0 ∀j, ∀t /∈ [rj , Cj]

Observe that the last constraints are redundant but they are kept in order to
make the relaxation clear. The dual of that program is maxλ,γ,µ minx,C L(x,C, λ,
γ, µ) where L is the Lagrangian

∑

j

∫ Cj

rj

Cj − rj
pj

xj(t)dt+
∑

j

λj

(
pj −

∫ Cj

rj

xj(t)dt

)

+

∫ ∞

0

(
1−

∑

j

xj(t)

)
γ(t)dt−

∑

j

∫ ∞

0

xj(t)µj(t)dt

=
∑

j

λjpj −
∑

j

∫ ∞

0

xj(t) ·

(
λj + γ(t)−

Cj − rj
pj

)
dt

+

∫ ∞

0

γ(t)dt−
∑

j

∫ ∞

0

xj(t)µj(t)dt

Remark that the weak duality holds also for functions instead of variables.
In the setting, one could see the dual maxλ,γ,µ minx,C L(x,C, λ, γ, µ) as an
optimization problem over functions xj(t) and others (calculus of variations);
or as an optimization over variables (x, t) and others (by a transformation
xj(t) 7→ (xj , t)).

3.1 EQUI

Algorithm EQUI. The processor shares its resource equally to the pending jobs.

Let q1 ≤ . . . ≤ qn be remaining processing times of pending jobs at some time
t. Assume that no new job is released after t, then the remaining time before
completion for the first job is nq1, that for the second job is nq1+(n−1)(q2−q1).
By recurrence, the remaining time before completion for job j is q1+ . . .+qj−1+
(n− j)qj for 1 ≤ j ≤ n.

Suppose that at time t, a new job arrives with processing time q such that
qk ≤ q < qk+1 for some index k. Then the flow time of the new job, assuming
that no new job is released after t, is q1 + . . . + qk−1 + (n + 1 − k)q. Moreover,
due to the arrival of the new job, the completion time of job k′ is increased by
qk′ for k′ ≤ k; and by q for k′ > k. Hence, the marginal increase of the total flow
time due to the arrival of the new job is bounded by twice the flow time of that
job.

Dual variables. Choose γ(t) = 0, µj(t) = 0 for every j, t and λj = λE
j such that

λE
j pj equals the flow time of j (due to the algorithm) assuming that no new job

arrives after rj . By the observation on the flow time of jobs in EQUI, we have
that

∑
j λ

E
j pj ≤ FE ≤ 2

∑
j λ

E
j pj where FE is the total flow-time due to EQUI.

Lemma 2. It holds that 1
pj

(
λE
j pj − (t− rj)

)
≤ NE(t) for t ≥ rj where NE(t)

is the number of pending jobs at time t by algorithm EQUI.

Proof. Observe that if some request arrives between time rj and t, the left-hand
side remains unchanged while the right hand-side is non-decreasing. Therefore,
it is sufficient to prove the inequality assuming that no job is released after rj .
Consider t ≤ CE

j (since otherwise the inequality trivially holds since the left-
hand side is negative). Rename jobs in non-decreasing order of the remaining
processing times at rj , i.e., q1(rj) ≤ . . . ≤ qn(rj). Note that pj = qj(rj). Suppose
that k is the pending job with smallest index at time t, i.e., jobs 1, . . . , k − 1
have been completed. We have that

1

pj

(
λE
j pj − (t− rj)

)
=

1

pj

(
qk(t) + . . .+ qj−1(t) + (n− j)qj(t)

)
≤ NE(t)

where the last inequality follows since qk(t) ≤ . . . ≤ qj−1(t) ≤ qj(t) ≤ pj . ⊓⊔

Theorem 1 ([14]). Algorithm EQUI is 1
1/2−ǫ -speed,

1
ǫ -competitive for the prob-

lem of minimizing total flow time.

Proof. As the adversary has only the speed (1/2− ǫ), the processing rate of ad-
versary

∑
j xj(t) ≤ 1/2−ǫ for all t. By the choice of dual variables corresponding

to EQUI, we have

min
x,C

L ≥
FE

2
−

∫ ∞

0

∑

j

xj(t)N
E(t) ≥

FE

2
−

(
1

2
− ǫ

)∫ ∞

0

NE(t) = ǫFE

where the first inequality is due to Lemma 2; the second inequality follows by∑
j xj(t) ≤ 1/2− ǫ. Hence, the competitive ratio of EQUI is at most 1/ǫ. ⊓⊔

3.2 LAPSβ.

Inspecting the analysis of EQUI, one realizes that in order to get a scalable
algorithm, the machine should share its power only to a small fraction of pending
jobs instead of all such jobs. This observation naturally leads to algorithm LAPS

introduced in [15].

Algorithm LAPSβ Let 0 < β ≤ 1. The processor shares its resource equally to the
βNL(t) jobs with the latest arrival times where NL(t) is the number of pending
jobs at time t.

Note that in the definition of the algorithm, βNL(t) is not necessarily an
integer. However, that algorithm is equivalent to the following procedure. First,
choose the ⌈βNL(t)⌉ most recent jobs. Then among such jobs, the machine
shares its power to the ⌊βNL(t)⌋ most recent ones proportional to 1 and to the
last job proportional to (βNL(t)−⌊βNL(t)⌋). For the ease and simplicity of the
exposition, we consider the version described in the definition.

Theorem 2 ([15]). Algorithm LAPSǫ is
1

1−2ǫ -speed,
2
ǫ2 -competitive for the prob-

lem of minimizing total flow time.

4 Weighted Flowtime plus Energy

The problem. In this section, we study the online scheduling with the objective of
minimizing the total weighted flow-time plus energy. The energy power function
is given by sα where s is the speed of the machine and α ≥ 1 is a constant.
In Section 4.1, we consider non-clairvoyant algorithms on a single machine and
Section 4.2, we consider algorithms on unrelated machines.

4.1 Non-clairvoyant Scheduling on Single Machine

Algorithm. At time t, the machine maintains a speed s(t) = βW (t)1/α where
W (t) is the total weight of pending jobs and β is a constant to be defined later.
At any time, the machine shares its resource to pending jobs proportional to
their weights.

Theorem 3. The algorithm is 2α-competitive for β = 2.

4.2 Clairvoyant Scheduling on Unrelated Machines

Scheduling policy. At any time t, every machine i sets its speed si(t) = βWi(t)
1/α

where Wi(t) is the total (integral) weight of pending jobs assigned to machine
i; and β > 0 is a constant to be chosen later. At any time, every machine i
processes the highest residual density job among the pending ones assigned to i.

Assignment policy. At the arrival of a job j, assign j to machine i that minimizes
the marginal increase (due to the scheduling policy) of the total weighted flow-
time.

Theorem 4. The algorithm is 8(1+ α
lnα)-competitive for β = 1

α−1 (α−1+ln(α−

1))
α−1
α .

5 Arbitrary Cost Functions of Flow-time

The problem. In this section, we study the online scheduling on unrelated ma-
chines to minimize a general objective

∑
i,j wijf(Fj) where f is a function with

certain properties (described below). At the arrival time of a job, the scheduler
has to immediately assign it to a machine. Jobs will be entirely processed on
their machines and the migration of jobs across machines is not allowed. (In
practice, it is not desirable to migrate jobs from a machine to others.)

Properties f(0) = f ′(0) = 0 and for any ǫ > 0 arbitrarily small,

(P1) there exists a function K1(ǫ) such that f(z1+z2) ≤
1

1−ǫf(z1)+K1(ǫ)f(z2)
∀z1, z2 ≥ 0;

(P2) f ′(z) is non-decreasing. By this property, we can deduce that

k∑

ℓ=1

aℓf
′(Aℓ−1) ≤ f(Ak) ≤

k∑

i=ℓ

aℓf
′(Aℓ)

where Aℓ = a1 + . . .+ aℓ and aℓ ≥ 0 for every 1 ≤ ℓ ≤ k.
(P3) there exists a functionK2(ǫ) such that f ′(z1+z2) ≤

1
1−ǫf

′(z1)+K2(ǫ)f
′(z2)

∀z1, z2 ≥ 0;
(P4) there exists a function K3(ǫ) such that f ′(z + z

K3(ǫ)
) ≤ 1

1−ǫf
′(z) ∀z ≥ 0;

(P5) there exists a function K4 ≥ 1 such that zf ′(z) ≤ K4f(z) ∀z ≥ 0.

Scheduling policy. At time t, every machine i schedules the highest residual
density job among the ones assigned to i.

Assignment policy. For a job j, recall that qij(t) is the remaining processing
time of j on machine i. Let Qj(t) be the remaining time of job j from t to
its completion time by the algorithm. Let Ui(t) be the set of jobs assigned to
machine i and are still pending at t. At the arrival time rj , job j is assigned to

the machine i that minimize λ̃ij , which is defined as

δijf

(∑

u∈Ui(rj)

δu(rj)≥δij

qu(rj) + pij

)
+

∑

u∈Ui(rj)

δu(rj)<δij

wiu

pij

(
f(Qu(rj) + pij)− f(Qu(rj))

)

where δij is the density of job j on machine i, i.e., δij = δij(rj). Note that λ̃ijpij
is the marginal increase of the objective function if job j is assigned to machine
i.

Theorem 5. The algorithm is 1
1−3ǫ -speed and

2K(ǫ)
ǫ -competitive where K(ǫ) =

max{K1(ǫ), 3K2(ǫ)K3(ǫ)K4}.

Corollary 1. The algorithm is 1
1−3ǫ -speed O(k

ǫ1+1/k)-competitive for the objec-

tive of weighted ℓk-norm of flow-time.

6 Conclusion and Further Directions

In the paper, we have proved competitive algorithms in the resource augmen-
tation/speed scaling models for different online scheduling problems using an
unified approach. The approach is simple yet powerful in designing and analyz-
ing algorithms. It seems to be a right tool to study problems in the resource
augmentation/speed scaling models. Besides the extensions mentioned in previ-
ous sections, a future direction is to study online scheduling problems with the
objectives of different nature, for example throughput-related objective. More-
over, different constraints might be incorporated, for example the bounded-speed
model [4,25] or the capacitated machine model [16].

An interesting future direction is to investigate different online problems
with resource augmentation using the approach. Moreover, the min max game
between algorithms and adversaries may give insights not only for designing
algorithms but also for constructing counter-examples.

Acknowledgment. We would like to thank Kirk Pruhs and anonymous reviewers
for pointing out related references and useful comments.

References

1. S. Anand, Naveen Garg, and Amit Kumar. Resource augmentation for weighted
flow-time explained by dual fitting. In Proc. 23rd ACM-SIAM Symposium on

Discrete Algorithms, pages 1228–1241, 2012.

2. Yossi Azar, Leah Epstein, Yossi Richter, and Gerhard J. Woeginger. All-norm
approximation algorithms. J. Algorithms, 52(2):120–133, 2004.

3. Nikhil Bansal and Ho-Leung Chan. Weighted flow time does not admit o(1)-
competitive algorithms. In Proc. 20th ACM-SIAM Symposium on Discrete Algo-

rithms, pages 1238–1244, 2009.

4. Nikhil Bansal, Ho-Leung Chan, Tak Wah Lam, and Lap-Kei Lee. Scheduling for
speed bounded processors. In Proc. 35th Colloquium on Automata, Languages and

Programming, pages 409–420, 2008.

5. Nikhil Bansal, Ho-Leung Chan, and Kirk Pruhs. Speed scaling with an arbitrary
power function. In Proc. 20th ACM-SIAM Symposium on Discrete Algorithms,
pages 693–701, 2009.

6. Nikhil Bansal and Kirk Pruhs. Server scheduling in the weighted ℓp norm. In Proc.

6th Latin American Symposium on Theoretical Informatics, pages 434–443, 2004.

7. Nikhil Bansal and Kirk Pruhs. The geometry of scheduling. In Proc. 51th Sympo-

sium on Foundations of Computer Science, pages 407–414, 2010.

8. Nikhil Bansal and Kirk Pruhs. Weighted geometric set multi-cover via quasi-
uniform sampling. In Proc. 20th European Symposium on Algorithms, pages 145–
156, 2012.

9. Niv Buchbinder and Joseph Naor. The design of competitive online algorithms via
a primal-dual approach. Foundations and Trends in Theoretical Computer Science,
3(2-3):93–263, 2009.

10. Jivitej S. Chadha, Naveen Garg, Amit Kumar, and V. N. Muralidhara. A com-
petitive algorithm for minimizing weighted flow time on unrelatedmachines with
speed augmentation. In Proc. 41st ACM Symposium on Theory of Computing,
pages 679–684, 2009.

11. Ho-Leung Chan, Jeff Edmonds, Tak Wah Lam, Lap-Kei Lee, Alberto Marchetti-
Spaccamela, and Kirk Pruhs. Nonclairvoyant speed scaling for flow and energy.
Algorithmica, 61(3):507–517, 2011.

12. Sze-Hang Chan, Tak Wah Lam, Lap-Kei Lee, Hing-Fung Ting, and Pan Zhang.
Non-clairvoyant scheduling for weighted flow time and energy on speed bounded
processors. Chicago J. Theor. Comput. Sci., 2011, 2011.

13. Chandra Chekuri, Sanjeev Khanna, and An Zhu. Algorithms for minimizing
weighted flow time. In Proc. 33rd ACM Symposium on Theory of Computing,
pages 84–93, 2001.

14. Jeff Edmonds. Scheduling in the dark. Theor. Comput. Sci., 235(1):109–141, 2000.
15. Jeff Edmonds and Kirk Pruhs. Scalably scheduling processes with arbitrary

speedup curves. ACM Transactions on Algorithms, 8(3):28, 2012.
16. Kyle Fox and Madhukar Korupolu. Weighted flowtime on capacitated machines. In

Proc. 24th ACM-SIAM Symposium on Discrete Algorithms, pages 129–143, 2013.
17. Naveen Garg and Amit Kumar. Minimizing average flow-time : Upper and lower

bounds. In Proc. 48th Symposium on Foundations of Computer Science, pages
603–613, 2007.

18. Anupam Gupta, Ravishankar Krishnaswamy, and Kirk Pruhs. Online primal-dual
for non-linear optimization with applications to speed scaling. In Proc. 10th Work-

shop on Approximation and Online Algorithms, pages 173–186, 2012.
19. Sungjin Im. Online Scheduling Algorithms for Average Flow Time and its Variants.

PhD thesis, University of Illinois at Urbana-Champaign, 2012.
20. Sungjin Im, Benjamin Moseley, and Kirk Pruhs. A tutorial on amortized local

competitiveness in online scheduling. SIGACT News, 42(2):83–97, 2011.
21. Sungjin Im, Benjamin Moseley, and Kirk Pruhs. Online scheduling with general

cost functions. In Proc. 23rd ACM-SIAM Symposium on Discrete Algorithms,
pages 1254–1265, 2012.

22. Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance. J.

ACM, 47(4):617–643, 2000.
23. Peter Kling and Peter Pietrzyk. Profitable scheduling on multiple speed-scalable

processors. In Proc. 25th Symposium on Parallelism in Algorithms and Architec-

tures, 2013.
24. V. S. Anil Kumar, Madhav V. Marathe, Srinivasan Parthasarathy, and Aravind

Srinivasan. A unified approach to scheduling on unrelated parallel machines. J.

ACM, 56(5), 2009.
25. Tak Wah Lam, Lap-Kei Lee, Isaac Kar-Keung To, and Prudence W. H. Wong.

Online speed scaling based on active job count to minimize flow plus energy. Al-

gorithmica, 65(3):605–633, 2013.
26. Rajeev Motwani, Steven Phillips, and Eric Torng. Non-clairvoyant scheduling.

Theor. Comput. Sci., 130(1):17–47, 1994.

	Lagrangian Duality in Online Scheduling with Resource Augmentation and Speed Scaling
	Nguyen Kim Thang

