
HAL Id: hal-00867377
https://hal.science/hal-00867377

Submitted on 29 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On-Line Fault Diagnosis of Dynamic Systems via Robust
Parameter Identification

Gérard Bloch, Mustapha Ouladsine, Philippe Thomas

To cite this version:
Gérard Bloch, Mustapha Ouladsine, Philippe Thomas. On-Line Fault Diagnosis of Dynamic Sys-
tems via Robust Parameter Identification. Control Engineering Practice, 1995, 3 (12), pp.1709-1717.
�10.1016/0967-0661(95)00183-U�. �hal-00867377�

https://hal.science/hal-00867377
https://hal.archives-ouvertes.fr


On-Line Fault Diagnosis of Dynamic Systems via Robust Parameter Identification

Gérard Blocha, Mustapha Ouladsinea, Philippe Thomasa

aCentre de Recherche en Automatique de Nancy, CNRS URA D821 ESSTIN, Rue Jean Lamour, 54500 Vandoeuvre, France

Abstract

A procedure simultaneously achieving the detection of faults, their isolation and their identification is presented. The systems
considered are MISO systems represented by ARX models, the parameters of which are estimated on-line by a robust procedure.
A priori knowledge of the faults which can occur is used. The faults modeled here are outliers, biases or drifts, and can act upon
output, inputs or even noise. The magnitude of a fault is estimated on a moving window from the prediction error sequence by least
squares. Statistical tests of the significance of the estimated parameters corresponding to the different faults are performed. An
application on the strip drive in the furnace of an annealing line is finally presented.
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1. Introduction

Numerous and various factors motivate the integration of
fault detection and isolation (FDI) methods in the supervision
systems of industrial plants: the growing complexity of these
plants and their control systems, the development of the ”just in
time” production, which calls for increasing operational avail-
ability, total quality policies, importance attached to the risks,
etc. This growing demand for fault tolerance can be achieved
by improving the individual reliability of the different pieces
of equipment, and by developing systematic preventive mainte-
nance strategies. Another complementary way is system state
monitoring in real time. Although restricted in the past to do-
mains with a high risk level, such as aeronautics and astronau-
tics, or nuclear power plants, the diagnostic function tends to be
present in all production fields.
Generally speaking, diagnosis can be viewed as a complex se-
quential procedure involving three steps: detection of the op-
erating modes, qualification of these modes (identification and
localization of the cause), and decision. Although several clas-
sifications can be applied, the diagnostic methods can be pre-
sented in three classes exploiting respectively physical redun-
dancy (the use of repeated identical components), functional
(analytical) models, or heuristic knowledge expressed, for ex-
ample, in the form of rules, trees or qualitative models. This
paper is concerned only with the second approach, namely the
model-based approach.
Fault detection and isolation (FDI) using analytical redundancy
methods are currently the subject of extensive research and nu-
merous surveys can be found. See for instance Willsky (1976),
Isermann (1984), Basseville (1988), Frank (1990), Patton and
Chen (1991). More recently, a review and a comparison of the
different FDI approaches has been made by Isermann (1994),
who proposes a framework for integrating analytical symptoms
(given from functional models) and heuristic symptoms. The
model-based approaches use either signal models leading to

spectral analysis (Neumann, 1991) and parameter estimation of
ARMA models, or process models leading to parameter esti-
mation (Gomm et al., 1993), state estimation or use of parity
equations. The performances of the parity space and parameter
estimation approaches for the detection of additive and mul-
tiplicative faults have been compared by Höfling and Pfeufer
(1994). Methods based on a state estimation using Kalman fil-
ters or observers rely on the use of accurate models, and on
numerous assumptions such as known model structure and pa-
rameters, known noise characteristics and known effects of the
faults on the model. Robustness issues on model uncertainties
are at present being studied (Patton, 1994).
Although several studies are based on the representation of sys-
tems by transfer functions (Mironovski, 1980), most of the time
the methods are based on a state representation of systems, and
assume that the nature of the possible faults is not previously
known. Therefore the different steps are clearly separated: de-
tection, isolation and, if possible, estimation of the magnitude
of the fault.
In contrast, a procedure is presented here which simultaneously
achieves the detection of faults, their localization and their iden-
tification. The main idea is to make intensive use of the knowl-
edge concerning the faults assumed to occur in the system. The
procedure can be related to the intervention analysis, provided
by Box and Tiao (1975) for time series modeling, and to further
works aiming at handling outliers in identification (Tsay, 1988)
(Kobi et al., 1993a,b). Chen and Patton (1994) emphasize too
the importance of modeling systems with sensor, actuator and
component faults in the fault detectability and isolability prob-
lems.
In order to detect, locate and identify the faults, the model of
the system being considered must be known. Nevertheless, the
case of unknown model parameters is in fact the most frequent.
Thus, the parameters of the model must be identified on-line, by
a recursive procedure insensitive to the events to be detected. A
robust identification algorithm, developed by Puthenpura and



Sinha (1990), is then used to provide the procedure for the de-
tection, localization and identification of the faults with the pa-
rameters of the model.
In the second part of this paper, systems are modeled by de-
composition into multi-input/single-output ARX models. Such
models can often be considered as a good compromise between
simplicity and power of description. As pointed out by Gomm
et al. (1993), they have the main advantage that they are ob-
tained by experimental, and not theoretical, analysis and are
therefore applicable to a wide range of processes. Models of
the different faults, taking into account their dynamics and their
application points (locations), are built and then reduced to a
unique form. The faults considered are outliers, biases or drifts
concerning both sensors or actuators of the monitored system.
These types of faults represent the majority of the faults which
can be encountered in practice, apart from specific problems re-
lated to particular systems.
In the third part, the procedure of fault detection, isolation and
estimation is presented. Different assumptions are considered.
With the first one, the type, location and occurrence time of the
fault and system model parameters are assumed to be known,
and the estimation of the fault magnitude is performed simply
by least squares. In the second method, only the time of the
fault occurrence and the system model parameters are known,
and statistical tests of the significance of the estimated parame-
ters corresponding to the different faults are performed. In the
third place, the time of the fault occurrence is also unknown,
and the previous estimations and tests are carried out on a mov-
ing window. Finally, the parameters of the model of the system
are assumed to be unknown and are identified on-line, allowing
the complete diagnostic procedure to be performed, which can
be implemented in real time.
The last section is devoted to an example dealing with the strip
drive in the furnace of an annealing line.

2. The models

The MIMO systems which can be decomposed into ny MISO
subsystems, where ny is the number of outputs, are consid-
ered. Each MISO subsystem is represented by an ARX model
in discrete-time t:

A(q) y(t) =

p∑
j=1

B j(q) u j(t − nd j) + ε(t), (1)

where A(q) = 1 + a1q−1 + · · · + anaq−na,
B j(q) = b j1 + b j2q−1 + · · · + b jnb j q

−nb j+1, j = 1, . . . , p, are
polynomials in the delay operator q−1, such as q−1y(t) = y(t−1),
of orders na and nb j, j = 1, . . . , p, respectively, y(t) is the
output of the system, u j(t), j = 1, . . . , p, are the p inputs of
the systems, nd j, j = 1, . . . , p, are the delays from inputs to
output and {ε(t)} is a sequence of independent and normally
distributed variables (white noise) with mean zero and variance
σ2

e when there is no fault. In model (1), it is assumed that all of
the zeros of the polynomials are outside the unit circle.

When various disturbances act on the inputs and the output,
they are unobservable, and the observed variables can be writ-
ten as:

Y(t) = y(t) + fy(t), (2)

U j(t) = u j(t) + fu j (t), j = 1, . . . , p, (3)

where fy(t) and fu j (t), j = 1, . . . , p, are parametric functions
representing exogenous deterministic disturbances, for instance
measurement errors, such as outliers or biases. Note that for the
inputs, fu j (t) can also represent, apart from the sign, a distur-
bance of the actuator. The real input u j(t) of the system is then
linked to the measured input U j(t) by:

u j(t) = U j(t) − fu j (t).

A change in the system itself can to some extent be repre-
sented by a change of the noise ε(t), expressed as:

E(t) = ε(t) + fe(t), (4)

The function fe(t) can be deterministic, or stochastic as pre-
sented by Tsay (1988), leading to tests of variance change.
Only the deterministic case is considered here.
The disturbed system can be represented by the diagram in Fig-
ure 1. Whatever its point of application (location) may be, on

Figure 1: The system and its disturbances

the output, on the inputs or on the equation noise, it is assumed
that the disturbance function (respectively fy(t), fu j (t) and fe(t)),
noted simply f (t), can be written as:

f (t) = ω
ΩD(q)
∆D(q)

ξd
t = ω PD(q) ξd

t , (5)

where ξd
t is an indicator variable signifying the occurrence of a

disturbance at the time point d (ξd
t = 1 if t = d, ξd

t = 0 if t , d).
ΩD(q) and ∆D(q) are polynomials representing the dynamics of
the disturbance and ω is a constant denoting its initial impact.
The main disturbance shapes which can be met in practice are
the following. If PD(q) = 1, f (t) represents an outlier of mag-
nitude ω, at time d. If PD(q) = 1

1−q−1 , f (t) represents a level
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change of magnitude ω, at time d, and renders a bias of the
corresponding sensor of magnitude ω. If PD(q) = 1

(1−q−1)2 , f (t)
represents a drift of slope ω from instant d.
Using equation (1), the prediction error e(t) can be calculated
from the measurements assumed without faults as:

e(t) = A(q) y(t) −
p∑

j=1

B j(q) u j(t − nd j). (6)

A variable z(t) can also be built from the actual measurements:

z(t) = A(q) y(t) −
p∑

j=1

B j(q) U j(t − nd j). (7)

If a fault occurs on y(t) only, using (2), the previous equation
becomes:

z(t) = A(q) y(t) −
p∑

j=1

B j(q) u j(t − nd j) + A(q) fy(t).

If a fault occurs on uk(t) only, z(t) now becomes, using (3):

z(t) = A(q) y(t) −
p∑

j=1

B j(q) u j(t − nd j) + Bk(q) fuk (t).

Moreover if a change occurs on the noise ε(t), one obtains by
(4) simply:

z(t) = A(q) Y(t) −
p∑

j=1

B j(q) u j(t − nd j) + fe(t).

The three preceding versions of equation (7) can be reduced to
a unique form and combined with (6):

z(t) = e(t) + F(t), (8a)

where
F(t) = PL(q) f (t) = PL(q) PD(q) ξd

t ω, (8b)

and where PL(q) = A(q), PL(q) = −Bk(q) or PL(q) = 1 if a fault
or a change occurs on the output y(t), on the kth input uk(t) or
on the noise ε(t), respectively.

3. The detection-isolation-estimation procedure

For a better understanding, the complete procedure will be
presented in several steps, where more and more characteris-
tics of the disturbance must be determined and fewer and fewer
hypotheses are used.

3.1. Estimation of the magnitude of the disturbance

Firstly, the disturbance magnitude ω is estimated using the
following hypothesis.

Assumption 1. Fault occurrence instant d, fault type, fault lo-
cation, structure and parameters of the model are known.

For n time points, the previous equation (8) can be expressed
as:

Z = H ω + E,

where

Z = [z(1) . . . z(d−1) z(d) . . . z(n)]T ,

H = [ 0 . . . 0 h(d) . . . h(n)]T ,

E = [e(1) . . . e(d−1) e(d) . . . e(n)]T ,

and H is the response to an impulse occurring at time d of the
transfer function PL(q)PD(q), where PL(q) and PD(q) are poly-
nomials corresponding respectively to the location and the type
of fault.
With these notations, the magnitude of the disturbance is simply
given by least-squares estimation:

ω̂ = (HT H)−1HT Z.

3.2. Estimation of the type, location and magnitude of the dis-
turbance

Secondly, the type, location and magnitude of the disturbance
are estimated using the following hypothesis.

Assumption 2. The fault occurrence instant d, and the struc-
ture and parameters of the model are known.

In this case, N vectors Hi, i = 1, . . . ,N, can be built, each one
representing a particular disturbance. Therefore N = nL nD,
where nL is the number of possible application points (nL =

p + 2) and nD is the number of possible shapes of the fault. The
magnitude ωi corresponding to each type of disturbance can be
estimated by:

ω̂i = (HT
i Hi)

−1HT
i Z, i = 1, . . . ,N.

The localisation and determination of the disturbance dynamics
can be achieved by classical tests related to the linear model.
The following variable can, for example, be calculated:

ti =
ω̂i

σ̂i
, i = 1, . . . ,N,

which, without fault, i.e. under the hypothesis of nullity of the
fault magnitude ωi, follows a Student distribution with n − 1
degrees of freedom, with the classical hypotheses of normality
for vector E. σ̂i is the standard deviation of the coefficient ω̂i

given by:

σ̂2
i =

(Z − Hi ω̂i)T (Z − Hi ω̂i)
n − 1

(HT
i Hi)

−1.

Without faults, for each possible fault, i.e. for i = 1, . . . ,N:

|ti| < t1−α/2,

where t1−α/2 is the value of a Student variable with n−1 degrees
of freedom corresponding to a distribution function equal to 1−
α/2, with α the risk, i.e. the probability of a type I error, fixed
a priori. The index iM = arg maxi(|ti| | |ti| ≥ t1−α/2) provides
both the location and the type of the fault. The corresponding
coefficient ω̂iM gives its magnitude.
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3.3. Estimation of the type, location, magnitude and occur-
rence time of the disturbance

Thirdly, the type, location, magnitude and occurrence time of
the disturbance are estimated using the following hypothesis.

Assumption 3. The structure and the parameters of the model
are known.

For on-line operation, the determination of the occurrence time
can be made by processing on a moving window. At each time
point t, i.e. on each moving window of n = 2m + 1 points, a
vector Z(t) = [z(t−m) . . . z(t−1) z(t) z(t+1) . . . z(t+m)]T is formed,
and fault magnitudes ω̂i(t), i = 1, . . . ,N, are calculated from
vectors Z(t) and Hi = [0 . . . 0 h(d =m+1) h(m+2) . . . h(2m+1)]T

corresponding to the different faults:

ω̂i(t) = (HT
i Hi)

−1HT
i Z(t), i = 1, . . . ,N.

Then σ̂2
i (t) and ti(t), i = 1, . . . ,N, are calculated by:

σ̂2
i (t) =

(
Z(t) − Hi ω̂i(t)

)T (
Z(t) − Hi ω̂i(t)

)
n − 1

(HT
i Hi)

−1,

ti(t) =
ω̂i(t)
σ̂i(t)

.

Moreover, the maximum of |ti(t)|, i = 1, . . . ,N, is calculated and
compared to a threshold, allowing the detection at time t. Final
localisation and identification are achieved by considering the
ti(t), i = 1, . . . ,N, for the next 2m + 1 points after the detection
point tD. The indexes iM and tM for which max

i=1,...,N, t=tD,...,tD+2m

|ti(t)|

is reached give the location and the type of the fault (for iM) and
its occurrence time (for tM). Its magnitude is given by ω̂iM (tM).

3.4. Complete procedure

Finally, the type, location, magnitude, occurrence time of the
disturbance and the parameters of the model are estimated on
line.

Assumption 4. The structure of the model is known.

The previous procedure uses the model of the system. If
the parameters of model (1) are unknown, they can be es-
timated recursively. However, the disturbance which acts
upon the measured variables must not influence the param-
eter identification and so a robust procedure must be carried out.

Robust identification. An algorithm, developed by Puthenpura
and Sinha (1990), is used in the sequel. This scheme is a
weighted least-squares algorithm with particular weights, and
is very similar to the robust Kalman filter obtained by Masre-
liez and Martin (1977).
The identification algorithm is based on the modelling of out-
liers of Huber (1964), and considers a system represented by
the following regression model:

y(t) = ϕT (t) θ + ε(t), (9)

where y(t) is the system output, ϕ(t) is the regression vector, θ
is the true parameter vector and where the equation noise ε(t)
can be expressed as:

ε(t) ∼ (1 − µ)N(0, σ2
1) + µN(0, σ2

2), (10)

whereN(0, σ2) represents a normal distribution with mean zero
and variance σ2. µ is the probability that large errors occur
(0 ≤ µ ≤ 1). Note that σ2

2 > σ
2
1 and that N(0, σ2

1) describes the
basic regular distribution of the noise andN(0, σ2

2) the effect of
large errors.
For the identification of the parameter vector θ, model (9) be-
comes:

y(t) = ϕT (t) θ̂ + e(t),

where e(t) is the prediction error. The probability µ being un-
known, the model (10) is replaced by:

ε(t) ∼ [1 − δ(t)]N(0, σ2
1) + δ(t)N(0, σ2

2), (11)

where δ(t) = 0 for |e(t)| ≤ M and δ(t) = 1 for |e(t)| > M, and
M is a preassigned bound which can be taken as 3σ1 (Aström,
1980). So the parameter vector θ is recursively estimated by:

θ̂(t) = θ̂(t−1) +
P(t−1)ϕ(t)e(t)

[(1−δ(t))σ2
1(t) + δ(t)σ2

2(t)] + ϕT (t)P(t−1)ϕ(t)
,

(12a)
where

P(t) = P(t−1) −
P(t−1)ϕ(t)ϕ(t)T P(t−1)

[(1−δ(t))σ2
1(t) + δ(t)σ2

2(t)] + ϕT (t)P(t−1)ϕ(t)
.

(12b)
Note that the variances σ2

1(t) and σ2
2(t) are updated by:

σ2
1(t) = σ2

1(t−1) +
1

t−τ
(e2(t)−σ2

1(t−1)), for |e(t)|≤3σ1(t−1),

σ2
1(t) = σ2

1(t−1) , otherwise,
(13)

σ2
2(t) = σ2

2(t−1) +
1
τ

(e2(t)−σ2
2(t−1)), for |e(t)|>3σ1(t−1),

σ2
2(t) = σ2

2(t−1) , otherwise,

with τ = 0 for t = 1, and τ = τ+ 1 whenever |e(t)| > 3σ1(t − 1).
σ2(0) can be chosen as σ2(0) = 3σ1(0).

Algorithm architecture. Model (1) is expressed in the form (9),
where the vector θ is constituted of the parameters of the poly-
nomials A(q), B j(q), j = 1, . . . , p. θ̂(t) is estimated by the
robust recursive procedure (eq. 12 and 13). So the vectors
Hi(t) = [0 . . . 0 hi(m + 1) hi(m + 2) . . . hi(2m + 1)]T (t) are cal-
culated for i = 1, . . . ,N = nLnD, where nL and nD are respec-
tively the numbers of possible application points and shapes
of the faults. Each vector Hi(t) corresponds to the response
to an impulse occurring at time m + 1 of the transfer function
P̂L, j(q)PD,k(q), j = 1, . . . , nL, k = 1, . . . , nD. Note that P̂L, j(q) is
obtained from the parameter set θ̂(t) estimated at time t.
Then, for each moving window of n = 2m + 1 points, the vector

4



Z(t) = [z(t − m) . . . z(t − 1) z(t) z(t + 1) . . . z(t + m)]T is formed
and the following quantities are calculated for i = 1, . . . ,N:

ω̂i(t) =
(
HT

i (t) Hi(t)
)−1

HT
i (t) Z(t), (14)

σ̂2
i (t) =

(
Z(t)−Hi(t) ω̂i(t)

)T (
Z(t)−Hi(t) ω̂i(t)

)
n − 1

(
HT

i (t) Hi(t)
)−1

,

(15)

ti(t) =
ω̂i(t)
σ̂i(t)

. (16)

The maximum of |ti(t)|, i = 1, . . . ,N, is calculated and com-
pared to a threshold, allowing detection at time t. Note that the
measurements until time t + m have been used to form Z(t), in-
troducing a detection delay of m points. The final isolation and
identification are achieved by considering the ti(t), i = 1, . . . ,N,
for the next n = 2m + 1 points after the detection point tD. The
indexes iM and tM for which max

i=1,...,N, t=tD,...,tD+2m

|ti(t)| is reached

give the location and type of the fault (for iM) and its occur-
rence time (for tM). Its magnitude is given by ω̂iM (tM).
The proposed method can be summarised as in Figure 2.

Figure 2: Complete procedure

4. Application to the diagnosis of an annealing line

The proposed method is applied to the monitoring of the strip
drive in an n-roller system of a continuous annealing line. Oth-
ers authors have previously dealt with the web tension mod-
elling problem (Ouladsine et al., 1994).

The furnace composes the main device of the line. It gives the
web a thermal cycle; each stage of the cycle corresponds to a
metal transformation. The process consists of nine heating and
cooling zones. It is separated from the entry section and the
exit section by two looping towers. Because of these two loop-
ing towers, the operations performed on the strip in the entry
section and the exit section can occur without disturbing the
continuous flow of material in the centre. Figure 3 presents the

Figure 3: Continuous annealing line

strip drive in the furnace of the continuous annealing line where
Ti and ∆ fi are the web tension and the speed set point of drive
motors respectively.
In order to identify the model of the tension behaviour in the
furnace, a decomposition into smaller subsystems has been cho-
sen (Parant et al., 1989). In this case, each subsystem corre-
sponds to one output Ti. This approach presents experimental
and numerical advantages: only the inputs of the subsystem un-
der study have to be stimulated and the number of parameters
to be estimated is not too large (Ouladsine et al., 1994).
Consider the subsystem of output T2 (Figure 4). The corre-
sponding model is chosen as a parametric discrete-time 4-input
ARX model:

A(q)T2(t) = B1(q)T1(t)+ B2(q)T3(t)+ B3(q)∆ f1(t)+ B4(q)∆ f2(t)

with:

A(q) = 1 + a1q−1 + a2q−2,

B1(q) = b10 + b11q−1 + b12q−2,

B2(q) = b20 + b21q−1,

B3(q) = b31q−1 + b32q−2,

B4(q) = b41q−1 + b42q−2.

The model structure is obtained from an experimental study.
To identify the system parameters, the input signals must sat-

Figure 4: The subsystem of output T2
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isfy certain conditions. A minimal requirement is that all the
system modes have to be persistently stimulated by the input
signals over the measured period. To satisfy this condition, a
Pseudo Random Binary Signal (PRBS) is used. In practice, a
PRBS is a series of positive and negative steps around the mean
value. The duration of the successive steps is chosen according
to the spectrum band which corresponds to real dynamics of the
system (Parant et al., 1989).
The measured inputs and output are considered without fault.
Two experiments are carried out. In the first, a disturbance
is added to the measured output at time point 350. Figure 5

Figure 5: Measured and estimated system output

shows the disturbed measured output and the output estimated
by the model with the parameters calculated by the robust on-
line identification procedure. The disturbance function fy(t)
represents a level change of magnitude ω = 2, and renders a
bias of the sensor for T2.
Figure 6 shows the evolution of some parameters estimated by
the robust recursive identification procedure with the disturbed
measurements (eq. 12 and 13). Notice that the estimated pa-
rameters are weakly influenced by the bias on output, beginning
at time point 350. The final values of the parameters are:

a1 = 0.9461, a2 =−0.5540,
b10 = 0.8621, b11 =−0.7189, b12=0.2314,
b20 = 0.3749, b21 =−0.1535,
b31 =−0.0120, b32 =−0.0264,
b41 = 0.0110, b42 = 0.0229.

Figure 6: Parameters during recursive identification

Consequently, the disturbance acts on the prediction error se-
quence z(t) calculated from the measurements, as shown in Fig-
ure 7.
It is supposed that nD = 3 shapes (impulse, step and drift) and

Figure 7: Residual z(t)

nL = 5 application points (inputs T1, T3, ∆ f1, ∆ f2 and output
T2) of a fault can be met (N = nDnL = 15 types of fault).
The previously described procedure is then carried out with a
moving window of n = 2m + 1 = 21 points. Figure 8 shows
the maximum, for each moving window, of the N variable |ti(t)|
values (eq. 16).

Notice that a threshold strictly chosen as t1−α/2 ≈ 2 with the

Figure 8: Maximum of |ti(t)| versus time

classic α = 0.05 and in this case n−1 = 20 degrees of freedom,
can lead to many false alarms because the slightest disturbance
in the residual can be explained by one of the different shapes
Hi(t). Thus the threshold must be tuned to a higher value to pro-
vide the classical compromise between false alarms and misses.
To illustrate the procedure, Figure 9 focuses on the closeness of
the disturbance occurring at time 350. The 15 variables |ti(t)|,
for t = 340, . . . , 360, are shown. Detection takes place at time
point 347, and the location and type determination of the fault
are achieved exactly at time point 350. The level change type
and the location on T2 are found. The corresponding estimation
(eq. 14) of this level change is ω̂ = 2.04 (ω = 2).

Figure 10 shows the values of Z(t) for the moving window
centred at t = 350, and the shapes Hi(t) corresponding to an
outlier (impulse response) and to a bias (step response) on the
output. Figure 10 highlights the basic principle of the proce-
dure: to fit shapes on a moving window which characterise the
different faults (type and location) on the transient period of the
residual.

6



Figure 9: |ti(t)|, i = 1, . . . , 15, versus time

Figure 10: Residual and 2 shapes Hi(t)

In the second experiment, a disturbance (a level change equal
to 2) is added at time point 300 to the second input T3. Figure 11
shows the resulting prediction error sequence z(t), calculated as
previously. This figure shows that the disturbance is not easily
detectable.
Figure 12 presents the maximum, for each moving window, of

Figure 11: Residual z(t)

the N variable |ti(t)| values (eq. 16). Notice that the proposed
procedure has achieved the complete diagnosis of this distur-
bance and has given an estimation of the disturbance amplitude
ω̂ = 2.06.
It would be interesting to compare the efficiency of other di-
agnostic methods applied to the system and the types of faults
previously presented.

5. Conclusion

The proposed method appears attractive due to its simplicity
and its unified character. The case of MIMO systems which can

Figure 12: Maximum of |ti(t)| versus time

be broken up into several MISO systems leads to the implemen-
tation of as many complete diagnostic procedures as there are
MIMO system outputs.
The robustness of the detection can be improved by using adap-
tive thresholds which are varied according to the level of the
different ti variables on training periods without faults.
On the other hand, the proposed method is based on the dis-
criminating character of the different shapes. Therefore if some
polynomials of the model are close to each other, the isolation
of the fault will be problematic.
When MIMO systems are considered, in the case of a fault on
input, some redundancy occurs for the detection and isolation
concerning the inputs involved in several subsystems. There-
fore, the isolation power increases when some polynomials are
close to each other in one particular subsystem.
It can be noted that because of the presence of the robust re-
cursive parameter identification, the proposed method frees it-
self from slow non-stationarities of the system, which can be
monitored from the estimated parameters. Extensions of the
proposed method can be considered concerning, for example,
the stochastic case, which leads to a state-space formulation. A
robust Kalman filter can then be used.
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