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Abstract

The adaptation of Crouzeix - Raviart finite element in the context of multi-
scale finite element method (MSFEM) is studied and implemented on diffusion
and advection-diffusion problems in perforated media. It is known that the ap-
proximation of boundary condition on coarse element edges when computing
the multiscale basis functions critically influences the eventual accuracy of any
MsFEM approaches. The weakly enforced continuity of Crouzeix - Raviart
function space across element edges leads to a natural boundary condition for
the multiscale basis functions which relaxes the sensitivity of our method to
complex patterns of perforations. Another ingredient to our method is the
application of bubble functions which is shown to be instrumental in maintain-
ing high accuracy amid dense perforations. Additionally, the application of
penalization method makes it possible to avoid complex unstructured domain
and allows extensive use of simpler Cartesian meshes.
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1 Introduction

Many important problems in modern engineering context have multiple-scale so-
lutions e.g., transport in truly heterogeneous media like composite materials or in
perforated media, or turbulence in high Reynolds number flows are some of the ex-
amples. Complete numerical analysis of these problems are difficult simply because
they exhaust computational resources. In recent years, the world sees the advent of
computational architectures such as parallel and GPU programming; both are shown
to be advantageous to tackle resource demanding problems. Nevertheless, the size
of the discrete problems remains big. In some engineering contexts, it is sometimes
sufficient to predict macroscopic properties of multiscale systems. Hence it is de-
sirable to develop an efficient computational algorithm to solve multiscale problems
without being confined to solving fine scale solutions. Several methods sprung from
this purpose namely, Generalized finite element methods (Babuska et al., 2003),
wavelet-based numerical homogenization method (Dorobantu and Engquist), [1998)),
variational multiscale method (Nolen et al., |2008)),various methods derived from
homogenization theory (Bourgeat, 1984)), equation-free computations (Kevrekidis
et al., 2003)), heterogeneous multiscale method (Weinan and Engquist, 2003) and
many others. In the context of diffusion in perforated media, some studies have been
done both theoretically and numerically in (Cioranescu et al.,|2006)),(Cioranescu and
Murat, 1997)),(Henning and Ohlberger, 2009),(Hornung, 1997)), and (Lions, |1980).
For the case of advection-diffusion a method derived from heterogeneous multiscale
method addressing oscillatory coefficients is studied in (Deng et al., 2009).

In this paper, we present the development of a dedicated solver for solving multi-
scale problems in perforated media most efficiently. We confine ourselves in dealing
with only stationary diffusion and advection-diffusion problems as means to pave
the way toward solving more complicated problems like Stokes. We begin by adapt-
ing the concept of multiscale finite element method (MsFEM) originally reported in
(Hou and Wu, |1997). The MsFEM method relies on the expansion of the solution
on special basis functions which are pre-calculated by means of local simulations
on a fine mesh and which model the microstructure of the problem. By contrast
to sub-grid modeling methodologies, the multiscale basis functions are calculated
from the actual geometry of the domain and do not depend on an (often arbitrary)
analytical model of the microstructure. A study on the application of MsFEM in
porous media has been done in (Efendiev and Hou, 2007), and although it could
have bold significance in geo- or biosciences, they can be applied also in different
contexts, e.g., pollutant dispersion in urban area (Carballal Perdiz, 2011) or on sim-
ilar problems which are extremely dependent on the geometry of perforations but
their full account leads to very time consuming simulations. Textbook materials on
the basics of MSFEM can be found in (Efendiev and Hou, [2009)).

It is understood that when constructing the multiscale basis function, the treat-
ments of boundary condition on coarse elements greatly influence the accuracy of
the method of interest. For example, in the original work of Hou and Wu, the over-



sampling method was introduced to provide the best approximation of the boundary
condition of the multiscale basis functions which is also of high importance when
dealing with non-periodic perforations. Oversampling here means that the local
problem in the course element are solved on a domain larger than the element itself,
but only the interior information is communicated to the coarse scale equation. This
reduces the effect of wrong boundary conditions and bad sampling sizes. The ways
in which the sampled domain is extended lead to various oversampling methods,
see (Efendiev and Hou, 2009), (Chu et al. [2008)), (Henning and Peterseim)| [2012)),
(Efendiev et al., 2013). The non-conforming nature of Crouzeix-Raviart element, see
(Crouzeix and Raviart), [1973), is shown to provide great ’flexibility’ especially when
non-periodically perforated media is considered. In the construction of Crouzeix-
Raviart multiscale basis functions, the conformity between coarse elements are not
enforced in a strong sense, but rather in a weak sense i.e., the method requires
merely the average of the ”jump” of the function to vanish at coarse element edges.
When very dense perforations are introduced, which often makes it virtually im-
possible to avoid intersections between coarse element edges and perforations, the
benefit of using Crouzeix-Raviart MsFEM is significant for it allows the multiscale
basis functions to have natural boundary conditions on element edges making it in-
sensitive to complex patterns of perforations. Moreover, the integrated application
of penalization method enables one to carry the simulations onto simple Cartesian
meshes. Note that some methods derived from homogenization theory may pro-
vide robust and accurate results provided that the underlying multiscale structure
or subgrid effects satisfies the necessary constraints which is not the case for prob-
lems with non-periodic perforations. In this paper several computational results
with non-periodic perforations are given to highlight the feasibility of our method
in such circumstances. Another important ingredient to our method is the mul-
tiscale finite element space enrichment with bubble functions. Again, when very
dense perforations are considered, it is both crucial and difficult to capture correct
approximations between perforations for which the application of bubble functions
is offered as the remedy. We illustrate these problems in our paper to highlight
the contribution of bubble function in improving the accuracy of our MsFEM. Our
work continues the application of Crouzeix-Raviart MsFEM done on prototypical
elliptic problems (Le Bris et al.| 2013a)) and on diffusion problems with homogeneous
boundary condition (Le Bris et al., 2013b)). Improvements are done to the earlier
work by introducing bubble functions and to the latter by extending the application
to advection-diffusion problems with non-homogeneous boundary conditions.

The paper is organized as the following. In chapter |2l we begun with the formu-
lation of the problem and the construction of our MsFEM. Here we explain the con-
struction of Crouzeix-Raviart MsFEM functions space with bubble functions and the
multiscale basis functions. In chapter [3|the application of non-homogeneous bound-
ary conditions is explained. In chapter 4| we describe the application of penalization
method. Demonstrations of our MSFEM in terms of computational simulations and
its analysis can be found in chapter 5| followed by some concluding remarks.



2 Crouzeix-Raviart MsFEM with bubble functions
enrichment

We consider an advection-diffusion problem laid in a bounded domain 2 € R?
within which a set B, of perforations is included. From here on we assume that the
ambient dimension is d = 2. The perforated domain with voids left by perforations
is denoted ¢ = Q\ B, where € denotes the minimum width of perforations. The
advection-diffusion problem is then to find u : 2° — R which is the solution to

V- (AVu)+a@-Vu=f in QF (1)
u=0 on 0B*NJIN°
u=g on JQNAIN°

where f : Q — R is a given function, ¢ is a function fixed on boundary 0f2 and
w is a given velocity field. In this paper, we consider only the Dirichlet boundary
condition on 0B, namely ujppe = 0 thereby assuming that the perforation is opaque.
Other kinds of boundary conditions on 0B, are subject to a completely new endeav-
our. Recent works on Crouzeix-Raviart MsFEM focusing on diffusion problems with
homogeneous boundary condition g = 0 has been done in (Le Bris et al., 2013b)).

When linear boundary condition for MsFEM basis function is considered, it is
difficult to approximate correct coarse node solutions when one or more perfora-
tions coincide with any of the coarse element’s boundaries. The approximation of
the MsFEM basis function will be distorted and the whole solution will be affected.
This problem often and can be relaxed by using oversampling methods. However, in
practice, this brings an inherent inconvenience since the size and position of perfo-
rations are most of the times unpredictable which requires some problem dependent
parameters to be introduced. Moreover, the computational cost also increases due
to enlarged sampled domain.

The Crouzeix-Raviart basis functions are non-conforming throughout the compu-
tational domain. The continuity of the functions are enforced weakly i.e., it requires
no fixed values across the boundaries but rather vanishing ”jump” averages on each
edge. In order to explain the MsFEM space in the vein of Crouzeix-Raviart’s finite
element, we define a mesh Ty in €2 which are discrete polygons with each diameter
at most H and made up by ny coarse elements and n. coarse element edges. De-
note ey the set of all edges e of Ty which includes edges on the domain boundary
09). Tt is assumed that the mesh does not include any hanging nodes and each edge
is shared by two elements except those on 9 which belongs only to one element.
Ty is assumed a regular mesh. By regular mesh, we mean for any mesh element
T € Ty, there exists a smooth one-to-one mapping M : T — T where T C R? is
the element of reference, and that | VM ||p«< DH, || VM™ ||,«< DH~" with D
being universal constant independent of 7. We introduce the functional space for



Crouzeix-Raviart type MsFEM with bubble function enrichment

Vi = {ueL*Q)|ure H(T)forallT € Ty,
—V - (AVu) + @ - Vu = constant in TN Q° for all T € Ty,

u=0ondB,, n-Vu= constant on e N Q2 for all e € ey,

/e[[u]] —Oforalle € e 2)

where [[u]] denotes the jump of u over an edge. The MsFEM approximation to Eq.
(1)) is the solution of uy € Vi to

ag(ug,vy) = fomg for all vg € Vi (3)
Qe

where

ag(u,v) = Z ( Vu- Vv +/ (W - Vu)v> . (4)
Tery \JTNos Qe
The basis for Vi contains functions associated to edges e and mesh elements 7N (2
B.) N Q¢. The former has the notation ®, and the latter ®5. The edges composing
T* are denoted I'¥ withi =1,--- , Np whereas k = 1,--- ,ny. The Crouzeix-Raviart
multiscale basis functions ®.* are then the unique solution in H'(T*) to

~V - [AVO S|+ w- VL =0 in T* (5)
/@ef =, for i=1,---,Nr (6)
ks

n-AV®.F =\ on % i=1,---, Nr. (7)

Whereas the bubble functions ®5* can be obtained by solving for each element T*

—V - (AVOEF) + - V" =1, in T*
dp" =0, on oT* (8)

such that the approximated solution uy is described as
ny Ne
uH(xay) = Zuzq)ez(x?y) +Zuk®3k(x>y) (9)
i=1 k=1

In this paper, although the general formulation is focused on advection-diffusion
problem, various tests on diffusion-only cases are presented for showing the contri-
butions of bubble functions and Crouzeix-Raviart multiscale basis functions. The
MsFEM formulation for diffusion cases is largely similar to the advection-diffusion

'OneeceygndQ, [[lu]] =/ u.
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Figure 1: (a) 8 x 8 coarse elements without bubble functions, (b) 8 x 8 coarse
elements with bubble functions compared with (c) Reference solution with 1024 x
1024 elements.
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Figure 2: (a) Standard MsFEM basis function with (b) A bubble function in a coarse
element.

counterpart. Regarding the advection-diffusion problems, one could consider an-
other approach for selecting the space for the basis functions namely by following
the Petrov-Galerkin formulation which could be useful for problems with very high
Péclet numbers, nevertheless this is not the emphasis of this paper. Rigorous stud-
ies on Crouzeix-Raviart MsFEM’s numerical analysis and error estimates for highly
oscillatory elliptic problems and for diffusion problems in perforated media can be
found in (Le Bris et al.| [2013al) and (Le Bris et al., [2013D)

3 Boundary condition

We propose to approximate the non-homogeneous dirichlet boundary condition in

Eq. by,

uyg = / g, foralle € ey ondf2 (10)
eNonN eno
Equation (10f) is therefore equivalent with
1
Uend) = 77 g- (11)
el Jenon

With this, the construction of Crouzeix-Raviart basis functions associated both on
edges at domain boundary or within the domain can be carried out in a similar
fashion. This approach is a modification with respect to the earlier works in (Le Bris
et al 2013a)),(Le Bris et al., 2013b) where the boundary condition were strongly
incorporated in the definition of Vg. Our approach therefore gives more flexibility
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Figure 3: Relative error of standard MsFEM with and without bubble functions
with respect to reference solution, ¢ = 0.021875.
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Figure 4: Coarse mesh-perforations-nonintersecting case solved on 8 x 8 coarse el-
ements with: (a) Crouzeix-Raviart MsFEM with bubble functions (b) Standard
MsFEM with bubble functions compared with (¢) Q1 FEM solution as reference
with 1024 x 1024 elements.
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with bubble functions compared with (¢) Q1 FEM solution as reference with 1024 x
1024 elements.

10



12.826 0.950

11.669 0.800

10.513 0.651
9.357 0.501
8.200 0.351
7.044 0.202
5.888 0.052
4731 -0.098
3.575 -0.247
2.419 -0.397
1.262 -0.547
0.106

-1.050

Figure 6: (a) Crouzeix-Raviart MsFEM basis function, (b) Nodal based MsFEM
basis function without oversampling.
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Figure 7: Coarse mesh-perforations-intersecting advection-diffusion case on 8 x 8
coarse elements solved with: (a) Crouzeix-Raviart MsFEM with bubble functions
(b) Standard MsFEM with bubble functions and (¢) Q1 FEM solution as reference
with 1024 x 1024 elements, all with A = 0.03.
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Figure 8: Non-periodic perforations: (left) Case a, (right) Case b

when implementing non zero g. It will be demonstrated in the later sections how the
application of this approach on our MsFEM gives conveniently converging results
toward the correct solution.

4 Application of penalization method

Solving Eq. in ¢ as it is often requires complex and ad-hoc grid generation
methods. For highly non-periodic perforations, complicated unstructured mesh is
likely what engineers would resort to. In order to confine our computations in a
simple uniform Cartesian domain, we incorporate the penalization method to solve
Eq. . Henceforth, we solve instead the following

~V - (AVu) + 0 -Vu+o’u=fF in Q (12)
u=g on Of)
in which
1 : € 1 : € : €
3 7 nB 5_ ) 33 nB 3 J 0 inB
A_{A in O "’_{ 0 inQ ’f_{f in (13)

Here h is the width of a fine scale element used to capture highly oscillatory basis
functions. We introduce the penalization coefficient o which forces the solution to
vanish rapidly inside the perforations. Other variants of penalization methods are
studied in (Angot et al., [1999).
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Figure 9: Advection-diffusion on non-periodically perforated domain (case a) (a)8 x
8, (b)16 x 16, (¢)32 x 32, (d)64 x 64, (e)128 x 128, (f) Reference solution, Q1-Q1
FEM on 1024 x 1024 elements
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Figure 10: Advection-diffusion on non-periodically perforated domain (case b) (a)8x
8, (b)16 x 16, (¢)32 x 32, (d)64 x 64, (e)128 x 128, (f) Reference solution, Q1-Q1
FEM on 1024 x 1024 elements
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Figure 11: Domain with non-periodic perforations

5 Numerical results

5.1 Application of Bubble Functions

In this paper, we first give numerical examples that would exhibit a case with very
dense presence of perforations throughout the domain, so as to highlight the contri-
bution of bubble function enrichment to the basis function set. In the first example,
we applied bubble enrichment to a standard linearly boundary-conditioned, nodal
based MsFEM without oversampling. We set aside the application of Crouzeix-
Raviart in order to illustrate only the contribution of bubble functions on classical
MSFEM. Taken as the computational domain is Q = [0,1]*> with 32 x 32 rect-
angular perforations spread uniformly throughout the domain each with width of
e = 0.021875. Dirichlet boundary conditions ujso = 0 are applied in the compu-
tational domain and the source term f = sin(27x)sin(27ry) is taken. Taken as
reference is the solution by standard Q1 FEM on 1024 x 1024 elements.

In Figs. [Ifa) we observe the solution of standard nodal-based MsFEM on 8 x 8
coarse elements with linear boundary condition without bubble function enrichment.
In Figs. [1] (b), we observe the result of the same method but with bubble function
enrichment. When these two results are compared to the reference solution in Figs.
(c), we notice that the one without bubble function enrichment fails to exhibit
the correct solution at the interiors of coarse mesh whereas the solution with bubble
function enrichment exhibits more consistency with that of the reference. In Fig.
2l we plot the standard MsFEM basis function alongside a bubble function used
in this test. It clearly illustrates that with the presence of perforations this dense,
the contribution of a standard MsFEM basis function inside the coarse element
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Reference solution, Q1-Q1 FEM on 1024 x 1024 elements



is insignificant. The bubble function applied in the coarse element is shown to
contribute greatly to the approximation of the solution.

In Fig. we plot the relative L2 errors with respect to the size of coarse
element H of the standard MsFEM with or without bubble function. We notice
that the one with bubble function enrichment gives a decreasing relative error when
H increases away from e. This is of course not the behaviour exhibited by the more
standard MsFEM. However, we notice that both methods shows increasing error the
moment H is reduced to be lower that e. This is due to the fact that at this region,
the edges of coarse mesh start to coincide with the perforations causing incorrect
solution at the interior of the MsFEM basis function. Oversampling methods had
been implemented to overcome this problem (Carballal Perdiz, 2011)) to some degree.
The contributions of Crouzeix-Raviart MsFEM as an alternative remedy to this kind
of problems is reported in the next examples.

5.2 Application of Crouzeix-Raviart MsFEM

In this section, we test the Crouzeix-Raviart MsFEM with bubble functions and
compare it with the standard linearly-boundary-conditioned MsFEM also with bub-
ble functions. The test is designed to analyse the sensitivity of the methods subject
to placement of perforations. The computational domain remains the same with
that of the previous section. The size of each perforation is now set as ¢ = 0.025.

The methods underwent two tests: In the first test, the arrangement of the
perforations is made such that none of the coarse mesh edges coincides with the
them. We call this test the non-intersecting case. In the second test, the allocation
of these perforations is shifted both in z and y direction until all coarse element
edges coincide with perforations. We call this test the intersecting case. In this
example, we tried to illustrate a possible worst case scenario where each and every
element edges coincide with perforations at three different locations. In both cases,
we implemented 8 x 8 coarse elements each consists of 128 x 128 fine elements. The
reference solution is calculated using standard Q1 FEM on 1024 x 1024 elements.

First, in Figs. [, the results of these two methods for non-intersecting case are
compared with the reference solution. The results shows quantitatively good ac-
curacies displayed by both methods. The Crouzeix-Raviart MsFEM with bubble
functions records 0.11407 L2 relative error whereas the standard MsFEM with bub-
ble function records 0.11738. However, in the second test, where all coarse element
edges coincide with perforations, one can see in Figs. 5 that the standard MsFEM
despite being enriched with bubble functions returns undesirable results. On the
other hand, the result of Crouzeix-Raviart MsFEM with bubble functions is in good
agreement with the reference recording an L2 error of 0.04269 compared to 0.5018
recorded by the standard MsFEM.

To get a better understanding on why the two methods exhibit such different
accuracies, we plot the basis functions of the Crouzeix-Raviart and the standard
MsFEM in Figs. [f[a) and (b). Here one can see that the Crouzeix-Raviart ba-
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sis function cope very well with perforations on the cell edges and provide natural
boundary conditions around them without violating the applied constraints. By
contrast, the basis function of the standard MsFEM with linear boundary condition
fails to give a correct approximation in the penalized region. Again we note that sev-
eral methods including oversampling methods have been introduced as remedies to
this kinds of problem on standard MsFEM. Nevertheless, Crouzeix-Raviart MsFEM
also has the benefit of not increasing the size of the sampled domain for constructing
the MsFEM basis functions. Moreover, the exhibited natural boundary condition
gives a good deal of flexibility in tackling delicate cases for it is prohibitively difficult
to avoid intersections between perforations and coarse element boundaries especially
when simple Cartesian mesh is implemented. In the later examples, the applicability
of our method on non-periodic pattern of perforations is demonstrated. For the case
of diffusion with homogeneous Dirichlet boundary condition, one can refer to the
previous works in (Le Bris et al.| [2013b) where detailed comparison of performances
between Crouzeix-Raviart MsFEM and other types of MsFEM including those with
oversampling methods can be found. In this paper, more detailed study on the con-
vergence behaviour of our method will be emphasized more on advection-diffusion
case.

5.3 Advection-diffusion Problems on Perforated Domain

In this section we test our method on advection-diffusion problems on perforated
domain with homogeneous boundary conditions. We implement Crouzeix-Raviart
MsFEM with bubble function enrichment simply in the context of standard Galerkin
approximation without any stabilizations. We reuse the computational set up done
in[5.2] but with different source terms. The vector field @ = (2y(1 —2?), —2z(1—y?))
set in a domain 2 = [—1,1]%. @ determines a recirculating flow with streamlines
{(x,9)|(1 — 2*)(1 — y?) = constant}. The source term f(z,y) is defined as follows

1 if{-1<2<1,07<y<1}
flz,y) = 1 if{-1<z<1,-1<y<-0.7} , (14)
0 elsewhere.

Homogeneous boundary condition g = 0 and diffusion parameter A = 0.03 are ap-
plied. In Figs. [7| the result of both standard linearly boundary conditioned MsFEM
and that of Crouzeix-Raviart MsFEM, both with bubble functions enrichments on
8 X 8 coarse elements, are given alongside the reference solution calculated with
Q1 FEM on 1024 x 1024 elements. Recording a L2 relative error of 0.2287 is the
result of Crouzeix-Raviart MsFEM with bubble functions and 0.624 recorded by
the linearly boundary conditioned MsFEM with bubble functions. Clearly these
results are expected given that no oversampling methods were applied. While the
application of such methods is possible and could in principle improve the accura-
cies, this paper aims to show the possibility of using a simpler method embodied
in Crouzeix-Raviart MsFEM which accommodates complex patterns of perforations
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without having to resort to some perforation-dependent parameters nor to enlarge
the sampled domain.

5.4 Non-periodically perforated domain

In this section, we test the applicability of our method on domain with non-periodic
perforations. We consider two kinds of patterns of perforation as can be seen in
figures [§f The Crouzeix-Raviart MSFEM with bubble function enrichment is im-
plemented on Q = [—1,1]* domain. The first case (case a) includes 400 perfora-
tions each with width of e = 0.025 whereas on the second case (case b) we in-
clude 3600 perforations each with width of ¢ = 0.005. We reuse the vector field
W = (2y(1 — 2?), —2x(1 — y?)) which determines streamlines {(z,y)|(1 — 22)(1 — 3?)
= constant}. The source term is also applied. On both of these cases, we
utilize a diffusion coefficient of A = 0.03. The result of the convergence tests done
on these two cases is given on table . In figures @D the contours of u solved on
8x8,16x16,32x32,64x64, and 128 x 128 elements are given alongside the reference
solution on 1024 x 1024 solved using standard Q1-Q1 FEM. Although on 124 x 124
elements, the method already returns quite an identical result in comparison to the
reference, the result solved on 32 x 32 elements is often deemed sufficient for many
engineering purposes. This converging characteristic is also exhibited when solving
case b, as evident from figures . Here the L2 relative deviations of the two cases
are proportional to the values of H/e as expected.

5.5 Application of non-homogeneous boundary condition

Here we test the applicability of our method on solving advection-diffusion problems
with non-homogeneous boundary condition. Again we set a computational domain
on Q = [—1, 1) where the vector field @ = (2y(1 — 2?), —2x(1 — y?)) is set and no
source term is included. Discontinuities in parts of the boundaries are introduced.
At the top edge the value at the boundary is set as ugo = 1 and ugg = 0 everywhere
else. Randomly placed 100 perforations are considered each with width of ¢ = 0.04
as shown in figure (11]). In figures the contours of u solved on 8 x 8,16 x 16, 32 X
32,64 x 64, and 128 x 128 elements are given alongside the reference solution on
1024 x 1024 solved using standard Q1-Q1 FEM. In table [2| it is shown that the
method returns grid converging results toward the reference solution as exhibited in
previous tests with homogeneous boundary conditions.

6 Concluding remarks

In this paper, the feasibility of Crouzeix-Raviart MsFEM with bubble function en-
richments for solving diffusion and advection-diffusion problems in perforated media
through means of penalization methods have been demonstrated without much ma-
jor constraints. The resulting method allows us to address multiscale problems with
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H/e L2

Config. H case a caseb casea caseb
8 x 8 0.25 10 50 0.273  0.346
16 x 16 0.125 5 25 0.265  0.337

32 x 32 0.0625 2.5 12.5 0.140  0.321
64 x 64 0.03125  1.25 6.25 0.098  0.284
128 x 128 0.015625 0.625 3.125 0.031  0.148

Table 1: Deviation from reference solution for case a (¢ = 0.025) and case b (¢ =

0.005)

Config. H H/e L2

8 x 8 0.25 6.25 0.487
16 x 16 0.125 3.125 0.206
32 x 32 0.0625 1.5625 0.073
64 x 64 0.03125  0.78125  0.027
128 x 128 0.015625 0.390625 0.013

Table 2: Deviation from reference solution (with non-homogeneous B.C. and € =
0.04)

inconvenient patterns of perforations and still obtain accurate solutions between
perforations. Although in the given examples, the diffusion coefficient A are taken
as constants, Crouzeix-Raviart MsFEM has been shown to be able to solve highly
oscillatory problems (Le Bris et al.; 2013a)). Crouzeix-Raviart MsFEM with bubble
function enrichment has shown good performance in comparison with more con-
ventional MsFEMs especially in as far as insensitivity to size and placements of
perforations is concerned. We also include the cases for non-periodic perforations
where the robustness of our method is tested in more realistic circumstances.
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