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Abstract. In this contribution, we define a new molecular representa-
tion together with a similarity measure which allows to encode adjacency
relationships between cycles and their substituents.
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1 Introduction

Within chemoinformatics research field, molecules are generally encoded by their
molecular graphs. Such a molecular representation encodes molecules by a graph
G = (V, E, u,v) where the set of nodes V' encodes the set of atoms and the set
of edges F encodes the set of atomic bonds between atoms. The labeling func-
tion 4 : V — L, associates to each node a label encoding the chemical element
of the corresponding atom. The labeling function v : E — L. associates to
each edge the type of its corresponding atomic bond (single, double, triple or
aromatic). This representation is widely used in chemoinformatics and particu-
larly in QSAR/QSPR problems in conjunction with machine learning methods
through graph kernels [6, 5, 2]. Graph kernels can be understood as graph similar-
ity measures corresponding to scalar products between vectorial representations
of graphs. This last point allows to use them in conjunction with machine learn-
ing methods such as SVM. Similarity measures between molecules encoded by
graph kernels can be deduced from the similarity of bags of patterns extracted
from molecular graphs. These patterns may be defined as linear patterns (trails,
paths and random walks) or non linear patterns such as tree structures which al-
lows to encode more structural information. However, these similarity measures
do not take into account the cyclic similarity of molecular graphs.

In order to take into account molecular cycles, the optimal assignment ker-
nel is based on a reduced representation obtained by collapsing some structural
elements such as cycles into one single node [1]. However this kernel is not defi-
nite positive [8] which restricts its application within machine learning methods.
Another approach aims to extract the set of simple cycles of molecular graphs
and defines cyclic similarity from the number of common simple cycles. This
approach, called cyclic pattern kernel [4], is combined with a tree pattern kernel
in order to define a complete similarity measure between graphs. In order to
reduce the complexity and to encode a more relevant set of cycles, this kernel
has been improved by enumerating the set of relevant cycles [10] instead of the
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set of simple cycles. However, despite the fact that this kernel encodes cyclic
similarity, it does not encode adjacency relationships between cycles. Therefore,
cyclic information is only partially encoded by the cyclic pattern kernel.

In this contribution, we propose a new molecular representation which al-
lows to encode adjacency relationships between molecular cycles. We also define
a kernel based on this representation in order to resolve some QSAR/QSPR
problems.

2 Relevant cycle hypergraph

We first encode adjacency relationships between cycles by the relevant cycle
graph first introduced by Vismara and developed by [3] G¢ = (Cr, Ecx , ticr s Ve )
where each vertex ¢ € Cr corresponds to a relevant cycle. An edge e = (¢1,¢2) €
Ee,, iff cycles ¢; and cy share at least one vertex of the molecular graph. The
labeling function pcy, (¢) is defined as a canonical code of the cyclic sequence of
vertex and edge labels defining c. In the same way, the label function v¢, (e) of
an edge e = (¢, ') is defined as a canonical code of the path shared by ¢ and
c’. This first step allows to encode cycles as single nodes and adjacency rela-
tionships between two relevant cycles. In order to define a complete molecular
representation, we have to include acyclic parts to the relevant cycle graph.

In order to encode adjacency relationships between relevant cycles and acyclic
parts, we propose to simply add acyclic parts to the relevant cycle graph by
connecting an acyclic part to a cycle if it exists an edge connects the acyclic
part and an atom of this cycle. However, a graph representation can not handle
special cases where an acyclic part is connected to an atom included within two
distinct cycles, such as atom O and cycles C; and Cs in figure 1(a). On the other
hand, hypergraphs allows to encode adjacency relationships between more than
two nodes. Therefore, we propose to encode a molecule by the relevant cycle
hypergraph Hrc(G) = (Vre, Erc, pires Vre) (figure 1(c)) in order to encode
special cases as depicted in figure 1(a). The set of nodes Vg¢ is defined as the
union of relevant cycles and atoms which are not included within any cycle.
The set of hyperedges Erc consists of a set of edges E% encoding adjacency
relationships between relevant cycles, acyclic atoms or between one relevant cycle
and one acyclic atom. Special cases involving more than two nodes are encoded
by the set of hyperedges eh = (Su, Sy) € E%C C ERrc where s,, resp. s,, encodes
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(a) G. (b) Ge. (¢) Hre(G). (d) Gror(G).

Fig. 1. Different encodings of a same molecule.
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a set of subgraphs corresponding to the set of cycles including u, resp. v, or the
atom itself if u, resp. v, is an acyclic part and e = (u,v) € E. Labeling functions
urce and vgo correspond to labeling functions of nodes and edges either on
molecular graph or relevant cycle graph.

The relevant cycle hypergraph encodes all atoms and edges included in a
molecular graph since all cyclic and acyclic parts are encoded into our new molec-
ular representation. However, similarity measures generally used in conjunction
with machine learning methods are defined on graphs, not hypergraphs. In order
to define a similarity measure between relevant cycle hypergraphs, we propose
to adapt the treelet kernel [2] to the comparison of relevant cycle hypergraphs.
Treelet kernel is a graph kernel based on a bags of patterns defined as all labeled
sub trees having six nodes or less. In order to apply treelet kernel on hypergraph
representation, we propose to define the bag of treelets 7oy as the union of
two sets of treelets. The first subset 77 is composed of all sub trees having six
nodes or less extracted from relevant the cycle hypergraph where hyperedges
Eﬁc have been removed. This set of treelets encodes adjacency relationships be-
tween acyclic parts, cycles and between a cycle and an acyclic part. The second
subset 7> is defined as the set of sub trees having six nodes or less extracted
from a transformation Grcpr of the relevant cycle hypergraph defined by the
contraction of sets s, € E% into a single node (figure 1(d)). Since sets of nodes
incident to any hyperedge have been contracted into one single node, hyper-
edges now correspond to edges and Grcg corresponds to a graph. In order to
avoid redundancy, 72 is restricted to the set of treelets containing at least one
former hyperedge. Therefore, 72 encodes adjacency relationships corresponding
to special cases where two or more relevant cycles are connected to an acyclic
part. The set of treelets 7oy = 71 U T3 is then defined as the bag of patterns
used to compute treelet kernel. Therefore, this kernel allows to encode adjacency
relationships between cycles and between cycles and their substituents.

3 Experiments and Conclusion

Table 1 shows the number of correctly classified molecules obtained by our con-
tribution on the classification problem addressed by the PTC dataset [7]. These
experiments shows the relevancy of encoding adjacency relationships between
relevant cycles and their substituents. First, we can note that our new molecular
representation together with a weighting step, which allows to only keep relevant
sub trees [3], obtains the best results on two datasets over four. In addition, we
can note that finer the cyclic information is encoded, better are the results (lines
2 to 4). Finally, best results are obtained by combining our relevant cycle hyper-
graph kernel, which encodes cyclic similarity, with a treelet kernel which only
encodes acyclic similarity. The trade off between acyclic and cyclic contributions
has to be tuned according to each chemoinformatics problem.

In conclusion, our contribution defines a new molecular representation, the
relevant cycle hypergraph, which allows to encode adjacency relationships be-
tween cycles and their substituents. Thanks to the adaptation of a graph kernel
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Table 1. Classification accuracy on PTC dataset.

# correct predictions

Method MM FM MR FR
(1) Treelet kernel (TK) [2] 208 205 209 212
(2) Cyclic pattern kernel [4] 209 207 202 228
(3) TK on relevant cycle graph (TC) [3] 211 210 203 232
(4) TK on relevant cycle hypergraph (TCH) 217 224 207 233
(5) TK with weighting step 217 224 223 250
(6) TC with weighting step 216 213 212 237
(7) TCH with weighting step 225 229 215 239
(8) TK + ATCH 225 230 224 252

to relevant cycle hypergraph comparisons, this molecular representation allows
to obtain a better accuracy on QSAR/QSPR datasets. In order to encode finer
cyclic information, future works will aim to encode the relative positioning of
cycle substituents.
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