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This paper considers the fundamental problem of self-stabilizing leader election (SSLE) in the model of population protocols. In this model, an unknown number of asynchronous, anonymous and nite state mobile agents interact in pairs over a given communication graph. SSLE has been shown to be impossible in the original model. This impossibility can been circumvented by a modular technique augmenting the system with an oracle -an external module abstracting the added assumption about the system. Fischer and Jiang have proposed solutions to SSLE, for complete communication graphs and rings, using an oracle Ω?, called the eventual leader detector. In this work, we present a solution for arbitrary graphs, using a composition of two copies of Ω?. We also prove that the diculty comes from the requirement of self-stabilization, by giving a solution without oracle for arbitrary graphs, when an uniform initialization is allowed. Finally, we prove that there is no self-stabilizing implementation of Ω? using SSLE, in a sense we dene precisely.

Introduction

Leader election and consensus are among the most fundamental problems in distributed computing. Both have been formally proven not to admit any solution under some assumptions and especially under the presence of faults. Consensus is impossible in asynchronous message passing or shared memory systems, even with a single crash fault [START_REF] Fischer | Impossibility of consensus with one faulty process[END_REF]. Leader election is impossible each time the system is completely symmetrical, involving no identiers, or is required to be selfstabilizing [START_REF] Dijkstra | Self-stabilizing systems in spite of distributed control[END_REF], i.e., withstand state-corrupting transient failures (see, e.g., [START_REF] Boldi | Symmetry breaking in anonymous networks: Characterizations[END_REF][START_REF] Angluin | Self-stabilizing population protocols[END_REF]). To circumvent these impossibilities, a lot of studies have been performed for devising and dening the (minimum) supplementary information or assumptions needed to solve these problems. Such information generally should be available or possible to retrieve in real systems, allowing practical implementations.

Devising such necessary supplementary information in a modular way can be done using oracles. An oracle can be viewed as a black box, which, when asked ⋆ Contact author: LRI, Bât. 650, Université Paris-Sud 11, 91405 Orsay Cedex France.

tel: 33 (0)1 69 15 64 32 by the system, provides some type of information, hopefully useful to solve a given problem. A great number of studies, following Chandra and Toueg [START_REF] Chandra | Unreliable failure detectors for reliable distributed systems[END_REF], have been devoted to a specic type of oracles, named failure detectors, and allowing to solve consensus with crashes in asynchronous networks. Generally, failure detectors provide a quite precise type of information. It is a list of process identiers (estimated to have crashed). Obviously, the oracle that gives as few information as possible, that is the weakest oracle, is both of theoretical and practical interest. For instance, in their framework, Chandra et al. [START_REF] Chandra | The weakest failure detector for solving consensus[END_REF] exhibit the weakest failure detector necessary to solve consensus. This oracle is called the eventual leader elector and is denoted by Ω.

Fischer and Jiang [START_REF] Fischer | Self-stabilizing leader election in networks of nite-state anonymous agents[END_REF] introduced a dierent type of oracles, for solving the leader election problem in the model of tiny, asynchronously mobile and pairwise communicating agents called population protocols [START_REF] Angluin | Computation in networks of passively mobile nite-state sensors[END_REF]. In particular, this model was introduced in order to characterize what can be computed with only minimal assumptions in a network of mobile agents. The agents are assumed to be undistinguishable (no identiers and the same algorithm for all) and memory bounded (actually, constant memory). An agent cannot know with which agent it communicates, nor if the agent it communicates with presently is the same as the agent it communicated with just before. Moreover, no knowledge or an upper bound on the number of agents is available. Such characteristics, make the classical failure detectors, or any variant involving a list or the number of identiers, not applicable to population protocols. This is one of the reasons why Fischer and Jiang introduced a totally dierent type of oracle. Their oracle is able to detect the presence or the absence of (at least) one leader. It is denoted by Ω?, in reference to Ω, though it is quite dierent from a failure detector in the sense that it provides information taken from a global conguration of a system.

Fischer and Jiang studied the possibility to solve self-stabilizing leader election (SSLE) over specic communication graphs. They prove that Ω? helps to solve SSLE in complete graphs and on rings, while the same problem in complete graphs is proven impossible without oracles [START_REF] Angluin | Self-stabilizing population protocols[END_REF][START_REF] Cai | How to prove impossibility under global fairness: On space complexity of self-stabilizing leader election on a population protocol model[END_REF]. After the introduction of Ω?, other oracles for leader election in population protocols appeared in the literature, all based on some information related to global congurations. Michail et al. [START_REF] Michail | Terminating population protocols via some minimal global knowledge assumptions[END_REF] introduced the absence detector, an oracle that indicates which agent states are not present in a conguration, as well as a covering service which informs an agent that it has met (communicated with) all the other agents. Intuitively, both are much stronger than Ω?. In [START_REF] Beauquier | Oracles for selfstabilizing leader election in population protocols[END_REF], we solve SSLE in arbitrary graphs with Ω$, an oracle which distinguishes between the presence of zero, one or more leaders in a conguration (in the way that Ω? does for zero or at least one leader). Additional oracle W Ω? is introduced in [START_REF] Beauquier | Oracles for selfstabilizing leader election in population protocols[END_REF]. It is a weaker version of Ω? that can be used to solve SSLE over oriented or bounded degree trees.

Our Contribution

Comparing precisely and relating all these dierent oracles seemed necessary. That is why the rst contribution of this paper is to provide a formal framework for dealing with oracles related to SSLE and encompassing all the particular oracles described above. Although it may seem complicated at a rst glance, this framework is necessary for two reasons. First, it provides a unied formalism, taking into account both oracles that interact with a protocol (like Ω?), and problems, which are independent of any protocol. A second important feature of the framework is a formal denition of the implementation of an oracle by another oracle. This step goes through the denition of compositions (sequential, parallel, self ), which, e.g., allows to express that two copies of Ω?, are stronger than a single one, or that an oracle that provides information on a three value variable is stronger than an oracle that provides only information on two. Then, based on the notion of implementation, this framework allows to classify some class of leader election oracles under the form of a double hierarchy, which leads to a lattice.

We then show that one of the elements in the lattice, Ω?(2, 1) (a notation which we dene in the sequel and which represents two instances of Ω?, giving independently two dierent outputs), allows to solve SSLE over any connected communication graph (Sec. 6). The protocol is non trivial and, with its correctness proof, may be considered as the major contribution of this paper. On the contrary, we prove that if the property of self-stabilization is not mandatory, that is if some (uniform) initialization is allowed, leader election can be solved without oracle in any communication graph (Sec. 5). This result conrms the fact that the diculties for solving SSLE do come from the tolerance to (transient) failures, modeled by the framework of self-stabilization. In addition, to the best of our knowledge, this is the rst leader election population protocol over arbitrary graphs.

All the protocols proposed in the paper assume and require the original global fairness of population protocols. We show that, with only local fairness, leader election in arbitrary graphs is impossible even with (uniform) initialization (Sec. 4).

Finally we show that Ω? cannot be implemented using SSLE over the family of all graphs, even with multiple copies of SSLE (Sec. 7). This result is an illustration of what can be done in the proposed framework. It should be put in relation with a result in [START_REF] Beauquier | Oracles for selfstabilizing leader election in population protocols[END_REF], stating that, over rings, Ω? and SSLE are equivalent. The paper ends with some open problems (Sec. 8).

Related Work

Self-stabilization was introduced by Dijkstra [START_REF] Dijkstra | Self-stabilizing systems in spite of distributed control[END_REF]. A self-stabilizing protocol does not depend on initialization of process states and converges towards a correct behavior from arbitrary starting congurations. Self-stabilization is intended to deal with transient failures, that hit a system punctually, corrupting memory and channel contents. It also deals with dynamic networks, where the topology changes during an execution.

Being an important primitive in distributed computing, leader election has been extensively studied. Below, we mention only the most relevant literature.

Since the introduction of population protocols by Angluin et al. in [START_REF] Angluin | Computation in networks of passively mobile nite-state sensors[END_REF], several studies have been devoted to self-stabilizing leader election in this model. Angluin et al. [START_REF] Angluin | Self-stabilizing population protocols[END_REF] present a non-uniform SSLE algorithm for rings in the population protocol model. They also show in the same paper that there does not exist a SSLE protocol for general connected networks.

Fischer and Jiang [START_REF] Fischer | Self-stabilizing leader election in networks of nite-state anonymous agents[END_REF] propose the eventual leader detector Ω? and, using it, present uniform SSLE protocols for complete graphs and rings. The rst protocol works under either a local or global fairness condition, whereas the second requires global fairness. It is also shown that with only local fairness, uniform self-stabilizing leader election in rings is impossible, even with the help of Ω?. Canepa and Potop-Butucaru [START_REF] Canepa | Self-stabilizing tiny interaction protocols[END_REF] propose deterministic and probabilistic protocols in arbitrary graphs, assuming Ω? and dierent types of local fairness conditions.

Cai et al. [START_REF] Cai | How to prove impossibility under global fairness: On space complexity of self-stabilizing leader election on a population protocol model[END_REF] show that, in complete communication graphs, n agent-states are necessary and sucient to solve SSLE, where n is the population size. This result involves that an oracle is necessary for solving SSLE in population protocols. For the enhanced model of mediated population protocols -M P P (allowing an extra memory on every agent pair) [START_REF] Michail | Mediated population protocols[END_REF], the work of Mizogushi et al. [START_REF] Mizoguchi | On space complexity of selfstabilizing leader election in mediated population protocol[END_REF] shows that (2/3)n agent states and a single bit memory on every agent pair are sucient to solve SSLE. They also show that there is no M P P that solves SSLE with any constant agent-states and any constant size memory on each agent-pair, for general n.

Michail et al. [START_REF] Michail | Terminating population protocols via some minimal global knowledge assumptions[END_REF] introduce the absence detector, an oracle for population protocols that indicates which agent states are not present in a conguration, as well as a covering service which informs an agent that it has met (communicated with) all the other agents. Intuitively, both are much stronger than Ω?.

Finally, in [START_REF] Beauquier | Oracles for selfstabilizing leader election in population protocols[END_REF] we dene Ω$ and W Ω?, two oracles respectively stronger and weaker than Ω?, and prove that SSLE can be solved with Ω$ over weakly connected communication graphs, with W Ω? over oriented trees and with Ω? over weakly connected communication graphs of bounded degree.

Model and Denitions

Population Protocol

We use the same denitions as in [START_REF] Fischer | Self-stabilizing leader election in networks of nite-state anonymous agents[END_REF] with some slight modications. A network is represented by a directed graph G = (V, E) with n vertices and no multiedges nor self-loops. Each vertex represents a nite-state sensing device called an agent, and an edge (u, v) ∈ E indicates the possibility of a communication between two distinct nodes u and v in which u plays the role of the initiator and v of the responder. The orientation of an edge corresponds to this asymmetry in roles. In this paper, we consider weakly connected networks. A population protocol A(D, Q, Init, X, Y, O, δ) consists of a family of graphs D (the domain of the protocol), a nite state space Q, a function Init that associates every graph G(V, E) in D with a set Init(G) of initial congurations (see below) on G , a nite input alphabet X, a nite output alphabet Y , an output function O : Q → Y and a transition function δ : (Q × X) 2 → P(Q 2 ) that maps any tuple (q 1 , x 1 , q 2 , x 2 ) to a non-empty (nite) subset δ(q 1 , x 1 , q 2 , x 2 ) in Q 2 . A (transition) rule of the protocol is a tuple (q 1 , x 1 , q 2 , x 2 , q ′ 1 , q ′ 2 ) such that

(q ′ 1 , q ′
2 ) ∈ δ(q 1 , x 1 , q 2 , x 2 ) and is denoted by (q 1 , x 1 )(q 2 , x 2 ) → (q ′ 1 , q ′

2 ). The population protocol A is deterministic if the set δ(q 1 , x 1 , q 2 , x 2 ) always has exactly one element.

Given a graph G(V, E) in D and a set Z, an assignment with values in Z is a function from V to Z. A conguration C is an assignment with values in the state space Q. An input assignment (resp. output assignment) is an assignment with values in the input alphabet X (resp. output alphabet Y ). Each conguration C induces an output assignment O • C where O is the output function of the protocol. A trace T with values in Z on the graph G(V, E) is an innite sequence of assignments with values in Z, i.e., T = α 0 α 1 . . . where α i : V → Z. An input trace (resp. output trace) is a trace with values in the input alphabet X (resp. the output alphabet Y ). The trace α 0 α 1 . . . is constant if α 0 = α 1 = . . . , and it is uniform constant if it is constant and for every u, v ∈ V , α(u) = α(v).

Given a graph G(V, E) in D, an action is a pair σ = (e, r) where r is a rule

(q 1 , x 1 )(q 2 , x 2 ) → (q ′ 1 , q ′
2 ) and e = (u, v) an edge of G. Let C, C ′ be congurations and α be an input assignment. We say that σ is enabled in

(C, α) if C(u) = q 1 , C(v) = q 2 and α(u) = x 1 , α(v) = x 2 . We say that (C, α) goes to C ′ via σ in one step, denoted (C, α) σ -→ C ′ , if σ is enabled in (C, α), C ′ (u) = q ′ 1 , C ′ (v) = q ′ 2 and C ′ (w) = C(w) for all w ∈ V -{u, v}.
In other words, C ′ is the conguration that results from C by applying the transition rule r to the node pair e. We also denote by

(C, α) → C ′ when (C, α) σ -→ C ′ for some action σ. Given an input trace T in = α 0 α 1 . . . , we write C * -→ C ′ if there is a sequence of congurations C 0 C 1 . . . C k such that C = C 0 , C ′ = C k and (C i , α i ) → C i+1 for all 0 ≤ i < k,
in which case we say that C ′ is reachable from C given the input trace T in .

Given a graph G in D, a virtual execution E is an innite sequence of congurations, input assignments and actions E = (C 0 , α 0 , σ 0 )(C 1 , α 1 , σ 1 ) . . . such that C 0 ∈ Init(G) and for each i, (C i , α i ) σi -→ C i+1 . Such a virtual execution induces an output trace denoted by O(E) dened as (O • C 0 )(O • C 1 ) . . . where O is the output function of the protocol. We denote by SE the (innite) sux of E such that each couple (C, α) (C being a conguration, and α an input assignment) in SE appears innitely often in SE. This sux is well-dened because the number of couples (C, α) that occurs nitely often in E is bounded.

We now dene fair executions. We rst recall two fairness conditions used with population protocols [START_REF] Fischer | Self-stabilizing leader election in networks of nite-state anonymous agents[END_REF]:

(Local Fairness) a virtual execution (C 0 , α 0 , σ 0 )(C 1 , α 1 , σ 1 ) . . . is locally fair when, for every action σ, if σ is enabled in (C i , α i ) for innitely many i, then

(C j , α j ) σ -→ C j+1 for innitely many j. (Global Fairness) a virtual execution (C 0 , α 0 , σ 0 )(C 1 , α 1 , σ 1 ) . . . is globally fair when, for every C, C ′ , α such that (C, α) → C ′ , if (C, α) = (C i , α i ) for innitely many i, then C ′ = C j for innitely many j.
In this paper, unless stated otherwise, an execution is a virtual execution that is globally fair. Finally we consider two types of population protocols. A population protocol is uniformly initialized if there exists a state q 0 such that every initial conguration is an assignment with values in {q 0 }. In a non-initialized population protocol, the set of initial congurations is the set of all possible congurations.

Run, Behaviour, Oracle and Implementation

The denitions of runs, behaviours and oracles that we give below, are dierent from those in [START_REF] Angluin | Self-stabilizing population protocols[END_REF][START_REF] Fischer | Self-stabilizing leader election in networks of nite-state anonymous agents[END_REF] and are required to obtain a proper framework for dening oracles and establishing relations between them. For instance, in this framework, the oracles are self-implementable, in contrast with the traditional failure detectors' frameworks [START_REF] Charron-Bost | In search of lost time[END_REF].

A schedule on a network G(V, E) is a sequence of edges S = e 1 e 2 . . . , i.e., e i ∈ E for all i. The schedule S associated with an execution E is the sequence S of edges that appear in the sequence of actions in E; we also say that E is an execution with schedule S.

The following notion of compatibility of a trace with a schedule involves that the changes in a trace are only caused by the interactions. A trace T = α 0 α 1 . . . on G is said to be compatible with the schedule S = (u 0 , v 0 )(u 1 , v 1 ) . . . on G if, for every i, for every w ∈ V -{u i , v i }, α i (w) = α i+1 (w). That is, two consecutive assignments can dier only in the assignment values of the two agents in the corresponding edge in the schedule. Note that, by denition, the output trace induced by an execution with schedule S of a population protocol on G, is compatible with S.

(Run). A run R(X, Y ) with an input alphabet X and output alphabet Y on a network G(V, E) is a triple (T in , T out , S), where T in is a trace with alphabet X on G, T out is a trace with alphabet Y on G and S is a schedule on G such that T in and T out are both compatible with S. The trace T in (resp. T out ) is referred to as the input trace (resp. output trace) of the run.

(Behaviour). A behaviour B is given by a family D of graphs (the domain of B), an input alphabet X, an output alphabet Y and a function that maps any graph G in D to a set B(G) of runs with input alphabet X and output alphabet Y . Given a population protocol A with domain D, input alphabet X and output alphabet Y , we dene the behaviour Beh(A) associated with the protocol A as follows. The domain is D, the input alphabet is X, the output alphabet is Y , and, for any graph G in D, for any run (T in , T out , S) on G, (T in , T out , S) ∈ Beh(A)(G) if and only if there exists an execution of A on G with the input trace T in , the output trace T out and the schedule S.

In the following paragraph, we dene the notion of composition of behaviours. Informally, a serial composition uses the output of one behaviour as the input of another behaviour. A parallel composition consists in two behaviours being used independently. Finally, a self composition uses (a part of ) the output of a behaviour as the input to the same behaviour, producing a sort of feedback. In [START_REF] Fischer | Self-stabilizing leader election in networks of nite-state anonymous agents[END_REF], the self composition is implicitly used, when the oracle Ω? produces a new input to a protocol based on the output of the same protocol.

Formally, consider two behaviours B 1 , B 2 with (respectively

) domains D 1 , D 2 such that D 1 ∩ D 2 = ∅, input alphabets X 1 , X 2 , and output alphabets Y 1 , Y 2 . We denote by T X a trace with values in X. The parallel composition B = B 1 ⊗ B 2 is the behaviour with domain D 1 ∩ D 2 , alphabets X 1 × X 2 , Y 1 × Y 2 such that, for every G ∈ F, B(G) is the set of runs ((T X1 , T X2 ), (T Y1 , T Y2 ), S) with (T X1 , T Y1 , S) ∈ B 1 (G) and (T X2 , T Y2 , S) ∈ B 2 (G). If Y 1 = X 2 = U , the serial composition B = B 2 •B 1 is the behaviour with domain D 1 ∩D 2 and alphabets X 1 , Y 2 dened as follows. For every G ∈ F, B(G) is the set of runs (T X1 , T Y2 , S) such that there exists a trace T U satisfying (T X1 , T U , S) ∈ B 1 and (T U , T Y2 , S) ∈ B 2 . If X 1 = U × V and Y 1 = U × W , the self composition B = Self U (B 1 ) on U is the behaviour with domain D 1 , alphabets V, W , where, for every G ∈ F, B(G) is the set of runs ((T in U , T in V ), (T out U , T out W ), S) ∈ B such that T in U = T out U .
Given a family H of behaviours, a behaviour B is a composition of behaviours from H if it is a combination of serial, parallel and self composition of behaviours in H.

(Implementation, Comparison). A behaviour B 2 is an implementation of a behaviour B 1 over a family F of graphs when F ⊂ D 1 ∩ D 2 , and for every graph

G ∈ F, B 2 (G) ⊂ B 1 (G).
Consider a family H of behaviours and a family F of graphs. We say that a behaviour B 1 is weaker than a behaviour B 2 over (F, H), denoted by B 1 B 2 mod (F, H), when there exists a composition B involving the behaviour B 2 and behaviours from H that implements B 1 over F. In other words, if we can compose behaviours from H with one copy of B 2 to implement B 1 , then B 1 is said to be weaker than B 2 . This is analogous to the denition in [START_REF] Chandra | Unreliable failure detectors for reliable distributed systems[END_REF] A problem and an oracle are dened as behaviours. A population protocol A is a solution to a problem P (resp. an implementation of an oracle Θ) using a behaviour B over a family F of graphs if there exists a composition involving the behaviours Beh(A) and B that implements the behaviour P (resp. Θ) over F. Note that with these denitions, if there exists a population protocol in some family H of protocols that solves the problem P 1 using the problem P 2 over a family F, then P 1 is weaker than P 2 over (F, H * ), where H * is the family of the behaviours associated with the protocols in H.

Given a behaviour B, we dene the stabilizing behaviour B s associated with B as follows. It has the same domain D, the same input and output alphabets as B, and for any graph G in D, the set of runs B s (G) comprises the runs having a sux 1 belonging to B(G). Given a problem P (resp. an oracle Θ), a population protocol A is a self-stabilizing solution to P (resp. self-stabilizing implementation of Θ) if it is non-initialized and it is a solution to the stabilizing problem P s associated with P (resp. an implementation of the stabilizing oracle Θ s associated with Θ).

Remark 1. The results in the paper concern the family F all of all (weakly connected) graphs. Note however that in Sec. 5 and 6, we present protocols that 1 A run can be seen as a sequence of triples (αs, βs, es) s∈N where αs (resp. βs) is an input (resp. output) assignment and es is an edge. solve the leader election problem in the family of all strongly connected graphs. The extension of these protocols to the family of all weakly connected graphs is detailed in Appendix A. Roughly speaking, given a weakly connected graph G, one can simulate an execution over the symmetric closure G ′ of G, which is strongly connected. This can be done by performing, at each interaction, a non-deterministic choice to select which agent plays the role of the initiator and which agent plays the role of the responder. Then, it can be shown that such a non-deterministic execution on G is an execution on G ′ . It is possible to get a deterministic version of this simulation using the transformer in [START_REF] Angluin | Self-stabilizing population protocols[END_REF].

3 Specic Behaviours and Oracles The domain of the behaviour ELE is the family F all of all the graphs, the input alphabet is {⊥} (no input), the output alphabet is {0, 1} and, for any graph G ∈ F all , a run (⊥, T, S) belongs to ELE(G) if and only if T has a constant sux T ′ = ααα . . . and there exists a node λ such that α(λ) = 1 and α(u) = 0 for every u = λ. In other words, λ is the unique leader. Note that for all our protocols, there is an implicit output function that maps a state to 1 if it is a leader state, and to 0 otherwise.

In our settings, the (informal) problem of Self-Stabilizing Leader Election (SSLE) is reformulated as the problem of constructing a population protocol that is a self-stabilizing solution to the ELE problem (using some oracle, if necessary).

3.2

Oracles Ω?(k, d)

We rst dene, for each d ≥ 1, an oracle Ω? (1, d). Its input alphabet is {0, 1}, and its output alphabet is {0, . . . , d}. The domain of Ω? (1, d) is all the graphs. Given an assignment α, we denote by l(α) the number of vertices that are assigned the value 1 by α. Informally, if l(α) = c or l(α) ≥ c for all α in an (innite) execution sux, then the oracle will eventually permanently output values in {c} in the former case, and in {c, . . . , d} in the latter. When l(α) = 0 for all α in an (innite) execution sux, it is only required that the oracle permanently outputs 0 at one agent at least.

Given a graph G and a run (T in , T out , S) on G, (T in , T out , S) ∈ Ω?(1, d)(G) when the following conditions hold. If T in has a sux α 0 α 1 . . . such that ∀s, l(α s ) = 0, then T out has a sux in which at least one agent is permanently assigned the value 0. For every 1 ≤ r ≤ d -1, if T in has a sux α 0 α 1 . . . such that ∀s, l(α s ) = r, then T out has a sux equal to the uniform constant trace r. For every 0 ≤ r ≤ d, if T in has a sux α 0 α 1 . . . such that ∀s, l(α s ) ≥ r, then T out has a sux with values in {r, r + 1, . . . , d}. Otherwise, any T out (compatible with S) is valid.

For any k, d ≥ 1, we formally dene Ω?(k, d) = k Ω? (1, d). In other words, Ω?(k, d) is the parallel composition of k copies of Ω? (1, d). Thus, the input alphabet of Ω?(k, d) is {0, 1} k , and the output alphabet is {0, . . . , d} k .

Note that Ω?(1, 1) corresponds to the Fischer and Jiang's oracle Ω? in [START_REF] Fischer | Self-stabilizing leader election in networks of nite-state anonymous agents[END_REF], while Ω?(1, 2) corresponds to the oracle Ω$ in [START_REF] Beauquier | Oracles for selfstabilizing leader election in population protocols[END_REF], except that in the case of absence of a leader, it is only required that at least one agent reports the fact. It is easy to see that the oracles Ω?(k, d) form a lattice, i.e., if k ≤ k ′ and d ≤ d ′ , then Ω?(k, d) Ω?(k ′ , d ′ ) over any graph and behaviour families.

Impossibility of Leader Election under Local Fairness with Uniform Initialization

In this section, we show that the eventual leader election problem cannot be solved by any uniformly initialized population protocol under the local fairness assumption.

We rst recall the notion of graph covering [START_REF] Angluin | Local and global properties in networks of processors[END_REF][START_REF] Boldi | Symmetry breaking in anonymous networks: Characterizations[END_REF]. A bration (resp. opbration) between graphs G and B is a graph morphism φ : G → B such that for every node b in B, for every node y satisfying φ(y) = b, φ induces a bijection between the set of incoming (resp. outgoing) edges at y and the set of incoming (resp. outgoing) edges at b. A covering from G to B is a graph morphism from G to B that is both a bration and an opbration. The graph G is called the total graph, and B is the base graph. The ber over a node b in B is the set of nodes in G that are mapped to b via φ, which we denote by φ -1 (b). A ber is trivial if it is a singleton. A covering is a k-covering if every ber has k elements, i.e., ∀b, |φ -1 (b)| = k. For instance, there is a covering from a ring of size 2 • n to a ring of size n obtained by mapping two diametrically opposite nodes to the same node.

The following theorem is inspired by the impossibility result of leader election in the family of rings under local fairness [START_REF] Fischer | Self-stabilizing leader election in networks of nite-state anonymous agents[END_REF] and the ideas developed in [START_REF] Angluin | Local and global properties in networks of processors[END_REF][START_REF] Boldi | Symmetry breaking in anonymous networks: Characterizations[END_REF]. Note that the models considered in [START_REF] Angluin | Local and global properties in networks of processors[END_REF][START_REF] Boldi | Symmetry breaking in anonymous networks: Characterizations[END_REF] are dierent from the population protocols. Hence, the results do not directly apply to our case. Theorem 1. Let F be a family of graphs that contains graphs G and B such that there exists a k-covering φ : G → B with k ≥ 2. There is no uniformly initialized population protocol that solves the ELE problem over the family F under the local fairness assumption.

Proof (Sketch). Full details are presented in Appendix B. The result is proved by contradiction. Assume that such a protocol exists, and consider a locally fair execution E B on B with γ 0 γ 1 . . . being the corresponding sequence of congurations. Thanks to the property of covering, we can lift E B to get a locally fair execution E G on G containing congurations g s such that g s = γ s • φ for every s ∈ N. Hence, since φ is a k-covering, and since E B has a sux during which there is a unique leader, E G contains innitely many congurations with k ≥ 2 leaders; whence a contradiction.

⊓ ⊔ 5 Leader Election under Global Fairness with Uniform Initialization

We establish that, under global fairness, solving the leader election problem on arbitrary communication graphs is possible without oracle, when an uniform initialization is possible (Alg. 1). In other words, there exists a uniformly initialized population protocol that solves the ELE problem over the family of all graphs under the global fairness assumption. This result highlights the dierence between global and local fairness. It also shows that the necessity to use an oracle comes from the requirement of self-stabilization. As explained in Remark 1, our protocol considers strongly connected graphs. Each agent x can be leader or non-leader (implemented with a variable leader x ) and can hold a white or black token (implemented with a variable token x ). Initially, every agent is a leader and holds a black token (uniform initialization). The tokens move through the network by swapping between two agents during an interaction. When two black tokens meet, one of them turns white. When a white token interacts with a leader x, x becomes a non-leader and the token is destroyed. We consider an execution E of Alg. 1 and prove that there is eventually a unique leader. Recall that SE denotes the innite sux of E such that each couple (C, α) in SE occurs innitely often in SE (see Sec. 2.1). Given a conguration C, let b(C) be the number of black tokens, w(C) the number of white tokens and l(C) the number of leaders in C. In addition, for every agent x, we denote by C.leader x (resp. C.token x ) the value of the variable leader x (resp. token x ) in the conguration C. Proof (Sketch). Full details are presented in Appendix C, Lem. A. The initial conguration satises this relation. During an interaction, if no leader is turned into a non-leader, then the total number of tokens remains constant. When a leader is turned into a non-leader (by a white token), the corresponding token is also destroyed. Proof (Sketch). Full details are presented in Appendix C, Lem. B. The global fairness and the fact that two colliding black tokens yield one black token and one white token involves that eventually in E, there is always a unique black token.

⊓ ⊔

Theorem 2. In every execution E of Alg. 1, there exists exactly one agent λ such that for every conguration C in SE, C.leader λ = 1 and for every agent

µ = λ, C.leader µ = 0.
Proof (Sketch). Full details are presented in Appendix C, Th. B. By the previous lemmas, for every conguration C in SE, l(C) = w(C) + 1. If a conguration C in SE has l ≥ 2 leaders, then C also has l -1 white tokens. Thus there is a sequence of steps during which each white token is moved to turn one leader into a non-leader, then reaching a conguration C ′ with one leader. By global fairness, C ′ occurs in SE. The conguration C ′ has exactly one leader, one black token and no white token, thus every subsequent conguration has the same unique leader. In this section, we exhibit a self-stabilizing solution to ELE using Ω?(2, 1), i.e., two copies of the Fischer and Jiang's oracle, over the family F all of all graphs under the global fairness assumption. Alg. 2 below, referred to as the protocol A, is a self-stabilizing solution2 to ELE using Ω?(2, 1) over F all . In this protocol, each agent can be a leader or not, and a leader can be either black or white. An agent can also hold a token, and a token can be either black or white. We denote by Ω? l , resp. Ω? t , the copy of the oracle Ω? used to detect the absence of leaders, resp. tokens. As explained in Remark 1, we only consider strongly connected graphs.

Whenever the oracle Ω? l , resp. Ω? t , outputs 0, a black leader, resp. a black token, is created. The tokens keep moving through the network by swapping between two agents during an interaction. When a black token interacts with a white leader, the leader becomes a non-leader. When a white token interacts with a black leader, the leader becomes white. When a token interacts with a leader having the same color, then both the token and the leader turn into the opposite color. Given an input assignment α for the Alg. 2, we denote by α.Ω? l x (resp.

α.Ω? t

x ) the value assigned by α to the (read-only) variable Ω? l x (resp. Ω? t x ). Similarly, given a conguration C, for every agent x, we denote by C.leader x (resp. C.token x ) the value of the variable leader x (resp. token x ) in the conguration C.

Given a conguration C, let t(C) (resp. l(C)) be the total number of tokens (resp. leaders) in C. In C, if an agent x is a leader and an agent y holds a token (x and y not necessarily neighbours), we say that the leader at x and the token at y are synchronized if they have the same color. Then, we say that the conguration C contains a synchronized pair of leader and token. We consider an execution E of Alg. 2 and its innite sux SE (each couple (C, α) in SE occurs innitely often in SE).

Lemma 3. For every (C, α) in SE, there is a unique token in C and α assigns 1 to every variable Ω? t x , i.e. t(C) = 1 and ∀x, α.Ω? t x = 1.

Proof (Sketch). Full details are presented in Appendix D, Lem. C. The oracle Ω? t ensures that eventually there is at least one token. Since the number of tokens decreases only when two tokens merge, there is eventually always at least one token; whence eventually Ω? t always outputs 1 everywhere. Finally, by global fairness, all the tokens eventually merge, and from that point there is exactly one (circulating) token 3 .

⊓ ⊔

Lemma 4. Consider a conguration C that contains a synchronized pair of leader and token such that l(C) ≥ t(C) = 1. Consider an input assignment α that assigns 1 to every variable Ω? t x , i.e., for all x, α.Ω? t x = 1. Then for any conguration C ′ such that (C, α) → C ′ , C ′ contains a synchronized pair of leader and token and l(C ′ ) ≥ t(C ′ ) = 1.

Proof. Full details are presented in Appendix D, Lem. D. The assumption on α ensures that no token is created during the step (C, α) → C ′ . If the unique token meets a leader with which it is synchronized, the leader remains a leader, and both ip their colors. Hence, C ′ still contains a unique token and some leader synchronized with this token.

⊓ ⊔

Lemma 5. There exists a conguration C in SE that contains a synchronized pair of leader and token such that l(C) ≥ t(C) = 1.

Proof (Sketch). Full details are presented in Appendix D, Lem. E. We already know that every conguration in SE has a unique token. By contradiction, assume that no conguration in SE satises the condition. This means that in every conguration C in SE, every leader (if any) has a color opposite to the color of the unique token. Thanks to Ω? l , there is a conguration C in SE that has at least one leader, thus l(C) ≥ t(C) = 1. If the token is white, all the leaders are black, and it is possible to move the token to whiten one of the leaders. The resulting conguration C ′ contains a synchronized pair of leader and token, and l(C ′ ) ≥ t(C ′ ) = 1. By global fairness, C ′ occurs in SE. On the other hand, if the token is black, it is possible to turn all the white leaders into non-leaders and keep a black token. By global fairness, the resulting conguration C ′ occurs in SE. Since C ′ has no leader, thanks to the oracle Ω? l , a black leader is created at some point in SE. Hence, the corresponding conguration C ′′ has a synchronized pair of leader and token, and l(C ′′ ) ≥ t(C ′′ ) = 1.

⊓ ⊔ Lemma 6. For every (C, α) in SE, C contains a synchronized pair of leader and token, l(C) ≥ t(C) = 1 and for every agent x, α.Ω? l x = α.Ω? t x = 1.

Proof (Sketch). Full details are presented in Appendix D, Lem. F. The result follows from Lemmas 3, 4, 5 and the denition of Ω? l .

⊓ ⊔ Theorem 3. Alg. 2 is a self-stabilizing solution to ELE using Ω?(2, 1). Precisely, in any execution, there exists exactly one agent λ such that for every conguration C in SE, C.leader λ = ⊥ and for every agent µ = λ, C.leader µ = ⊥.

Proof (Sketch). Full details are presented in Appendix D, Th. C. Thanks to Lem. 6, no leader is ever created during SE. In addition, in every conguration in SE, there is a leader synchronized with the token. On one hand, if the token is white, it can whiten all the black leaders, interact with one white leader, become black and turn all the white leaders into non-leaders. On the other hand, if the token is black, it can interact with a black leader (the leader with which it is synchronized) and become white; the next steps are the same as before. In both cases, the resulting conguration has exactly one leader. By global fairness, this conguration occurs in SE. Since no leader is created, there is actually a unique and permanent leader in SE.

⊓ ⊔

7 Impossibility of Self-Stabilizing Implementation of Ω? using ELE under Global Fairness

We show that there is no self-stabilizing implementation of Ω? (i.e. Ω?(1, 1)) using ELE, even if we are allowed to use many copies of ELE, under the global fairness assumption.

Theorem 4. There is no non-initialized population protocol A such that, for some k ≥ 1, the composition B = (ELE ⊗ • • • ⊗ ELE) • Beh(A), using k copies of ELE, implements the behaviour Ω? over the family of all graphs under the global fairness assumption.

Proof (Sketch). Full details are presented in Appendix E, Th. D. The result is proved by contradiction. Assume that such a protocol A exists. We consider a complete graph G of size n ≥ k+1. We consider a run of the composition B on G, with a constant input trace αα . . . that assigns permanently 1 to a unique agent µ. In the corresponding execution E of A, at some point in SE, the output of the dierent ELE oracles have stabilized, and all the agents permanently output the value 1. However, by looking at the subgraph obtained by excluding µ, thanks to the assumption on A and the global fairness, there is a conguration in SE in which all the agents but µ output 0; whence a contradiction. Although an abundant literature has been devoted to leader election in the population protocol model, some problems remain open. One of the most challenging is maybe to decide whether or not an oracle is necessary for self-stabilizing solutions to ELE over rings. Angluin et al. [START_REF] Angluin | Self-stabilizing population protocols[END_REF], who raised rst the issue, present non-uniform solutions (solutions depending on the size of the ring), but the question of an uniform solution has been open for several years. In [START_REF] Fischer | Self-stabilizing leader election in networks of nite-state anonymous agents[END_REF], Fischer and Jiang tackle this issue, provided that the oracle Ω? is available.

The general framework we proposed allows to express several natural questions. We list some of them here.

In Sec. 3.2, we generalize Fischer and Jiang's oracle and present a lattice of oracles {Ω?(k, d)} k,d≥1 such that Ω? coincides with Ω?(1, 1). Analyzing the relations among oracles, which are strong enough to solve leader election, is an interesting way to assess the hardness of this problem. For instance, in a previous work [START_REF] Beauquier | Oracles for selfstabilizing leader election in population protocols[END_REF], the authors complement Fischer and Jiang's approach by showing that ELE is equivalent to Ω? over rings, for non-initialized protocols' behaviours, i.e., each problem is as hard as the other. It seems that the same technique as in [START_REF] Beauquier | Oracles for selfstabilizing leader election in population protocols[END_REF] would show that all the oracles Ω?(k, d) are equivalent to ELE over rings, for non-initialized protocols' behaviours.

In addition, in this paper, we address the issue of comparing ELE with the oracles Ω?(k, d) over the family F all of all graphs, for the family, denoted by P P N I , of non-inialized protocols' behaviours. In Sec. 6, we show that ELE Ω?(2, 1), and in Sec. 7, we show that Ω? ELE. Since Ω? Ω?(2, 1), we have the strict relation ELE ≺ Ω?(2, 1). In addition, it has been shown in [START_REF] Beauquier | Oracles for selfstabilizing leader election in population protocols[END_REF] that Ω?(1, 1) is sucient to solve ELE over the family BDeg(d) of d-bounded degree graphs (for any d), i.e. ELE Ω?(1, 1) mod (BDeg(d), P P N I ). It is an open problem to determine whether there exists a self-stabilizing implementation of ELE using Ω?(1, 1) over F all and if the relations

Ω?(k, d) Ω?(k ′ , d ′ ) mod (F all , P P N I ) (k ≤ k ′ and d ≤ d ′ ) are strict when k < k ′ or d < d ′ .
mapped to (a, b); then let s i = ((x i , y i ), (p, q) → (p ′ , q ′ )) be an action (on G). If there were indices i = j such that y i = y j = y, then y would have two incoming edges that are both mapped to the edge (a, b); whence a contradiction with the fact that φ is a bration. Hence, the y i 's are pairwise distinct (as well as the x i 's by denition).

We denote by u 0 the conguration on G such that u 0 (φ -1 (c)) = {γ(c)} for every c in B. The action s 1 is enabled in u 0 since (u 0 (x 1 ), u 0 (y 1 )) = (γ(a), γ(b)) = (p, q). Thus the conguration u 1 such that u 0 s1 -→ u 1 is well-dened, and we have (u 1 (x 0 ), u 1 (y 0 )) = (p ′ , q ′ ). The action s 2 is enabled in u 1 since x 1 = x 2 , y 1 = y 2 and (thus) (u 1 (x 1 ), u 1 (y 1 )) = (u 0 (x 1 ), u 0 (y 1 )) = (p, q). Hence, the conguration u 2 such that u 1 s2 -→ u 2 is well dened. We can iterate the construction until i = k.

In the last conguration we have

(u k (x i ), u k (y i )) = (p ′ , q ′ ) for every 1 ≤ i ≤ k. Actually, u k (φ -1 (b)) = {γ ′ (b)} for every agent b in B.
In other words, we have simulated the step γ → γ ′ in B by a sequence of steps u 0 * -→ u k in G. (Locally Fair Lift). Consider a locally fair execution E B = γ 0 γ 1 . . . of A on the graph B; we have ∀b, γ 0 (b) = q. Thanks to the simulation above, we can build a virtual execution E G = g 0 . . . g 1 . . . g 2 . . . of A on G such that for every t ∈ N, for every node b ∈ B, g t (φ -1 (b)) = {γ t (b)}. Note that g 0 maps every node in G to q, so E G is uniformly initialized.

We show that E G is locally fair. Assume that an action s = ((x, y), (p, q) → (p ′ , q ′ )) is enabled innitely often in E G . The construction of E G involves that s is enabled in g i for innitely many i. But, since (g i (x), g i (y)) = (p, q) = (γ i (φ(x)), γ i (φ(y))), the action σ = ((φ(x), φ(y)), (p, q) → (p ′ , q ′ )) is enabled innitely many times in E B . Hence, by local fairness, there are innitely many i such that γ i σ -→ γ i+1 . Then, for innitely many i, the construction of the sequence g i * -→ g i+1 involves that the action s is triggered during it. Whence E G is locally fair.

(Contradiction). If A solves the leader election problem, there exists some i 0 ∈ N such that for every i ≥ i 0 , the conguration γ i on B outputs a unique leader at λ. By construction, for every l ∈ φ -1 (λ), g i (l) = γ i (λ). This involves that g i outputs a leader at k agents (since |φ -1 (λ)| = k) for innitely many i. This contradicts the fact that any locally fair execution of A solves leader election on G.

Note that imposing only that φ is a bration (or an opbration) is not enough to lift a locally fair execution on the base graph to a locally fair execution on the total graph.

⊓ ⊔

C Leader Election with Uniform Initialization under Global Fairness

We consider an execution E and prove that there eventually is a unique leader.

Recall that SE denotes the innite sux of E such that each couple (C, α) in SE occurs innitely often in SE (see Sec. Proof. First note that, since no black token is ever created in Alg. Proof. We show by contradiction that for every C in SE, w(C) = 0. Assume that there exists a C such that w

(C) ≥ 1. Since b(C) = 1, l(C) = w(C) + b(C) = w(C) + 1 ≥ 1.
By global fairness, there is a conguration in SE where a white token and a leader are in two neighbouring nodes. From this conguration, there is a reachable conguration C ′ resulting from the interaction of these two neighbours such that l(C ′ ) < l(C). The global fairness ensures that C ′ is in SE. Since C is also in SE, there must be a sequence of steps C ′ * -→ C. During this sequence, a leader must be created. This is impossible since no leader is ever created. Then, w(C) = 0 for every C in SE. This implies that l(C) = w(C) + b(C) = 0 + 1 = 1 for every C in SE. Since the variables leader x 's are never swapped, there exists an agent λ such that for every conguration C in SE, C.leader λ = 1 and for every agent µ = λ, C.leader µ = 0. ⊓ ⊔ D Self-Stabilizing Leader Election using Ω?(2, 1) under Global Fairness Given an input assignment α for the Alg. 2, we denote by α.Ω? l x (resp. α.Ω? t x ) the value assigned by α to the (read-only) variable Ω? l x (resp. Ω? t x ). Similarly, given a conguration C, for every agent x, we denote by C.leader x (resp. C.token x ) the value of the variable leader x (resp. token x ) in conguration C.

Given a conguration C, let t(C) and l(C) be the total number of tokens and leaders respectively in the conguration C. In C, if an agent x is a leader and agent y holds a token (x and y not necessarily neighbours), we say that the leader at x and the token at y are synchronized if they have the same color. We say that the conguration C contains a synchronized pair of leader and token if there exist a leader at some agent and a token at another agent that are synchronized. We consider an execution E of Alg. Proof. Assume rst that for every (C, α) in SE, t(C) = 0. Then by the denition of Ω? t , for every (C, α) in SE, α.Ω? t x = 0 for every agent x. By line 8, a token is created at some point during SE; whence a contradiction. Hence, there exists (C ′ , α ′ ) in SE such that t(C ′ ) ≥ 1. Since the only way to reduce the number of tokens is by mergin two existing tokens (line 13), for every conguration C such that (C ′ , α ′ ) → C, t(C) ≥ 1. Hence, for every couple (C, α) in SE, t(C) ≥ 1. The denition of Ω? t involves that for every (C, α) in SE, α.Ω? t x = 1 for every agent x. This disables the creation of token during SE. Thus, the number of tokens cannot increase during SE. Actually, since each couple (C, α) occurs innitely often in SE, the number of tokens during SE is constant, say t 0 . The previous argument shows that t 0 ≥ 1. Assume that t 0 ≥ 2. Then, by global fairness, there is a conguration in SE in which two tokens are located at two neighbouring nodes. From this conguration, there is a reachable conguration C ′ resulting from the interaction of these two neighbours, such that t(C ′ ) ≤ t 0 -1. The global fairness ensures that C ′ is in SE; whence a contradiction. Hence, t 0 = 1, i.e., there is a unique token during SE.

⊓ ⊔

Lemma D Consider a conguration C that contains a synchronized pair of leader and token, and such that l(C) ≥ t(C) = 1. Consider also an input assignment α that assigns 1 to every variable Ω? t x , i.e., for all x, α.Ω? t x = 1. Then for any conguration C ′ such that (C, α) → C ′ , C ′ contains a synchronized pair of leader and token and l(C ′ ) ≥ t(C ′ ) = 1.

Proof. In Alg. 2, if line 7 is executed, then the number of leader increases. Line 8 is not executed since α.Ω? t x = 1 for every x. If line 9 is executed, then l(C ′ ) = l(C) -1 and t(C ′ ) = t(C) = 1. Since C contains a synchronized pair of leader and token and since the unique token is black in C, there must be a black leader in C (not involved in the interaction). Thus l(C) ≥ 2, l(C ′ ) ≥ t(C ′ ) = 1 and C ′ also contains a synchronized pair of leader and token.

If line 10 is executed, then l(C ′ ) = l(C) and t(C ′ ) = t(C) = 1, whence l(C ′ ) ≥ t(C ′ ) = 1. Since C contains a synchronized pair of leader and token and since the unique token is white in C, there must be a white leader in C (not involved in the interaction). Hence, C ′ also contains a synchronized pair of leader and token.

If line 11 is executed, then

l(C ′ ) = l(C) and t(C ′ ) = t(C) = 1, whence l(C ′ ) ≥ t(C ′ ) = 1.
The interaction involves a synchronized pair of leader and token, and since both the leader and the token ip their color, C ′ also contains the same synchronized pair of leader and token. The same argument applies for line 12.

Finally, line 13 cannot be executed since t(C) = 1, and line 14 just swap the token values. Therefore, in all cases, C ′ contains a synchronized pair of leader and token and l(C ′ ) ≥ t(C ′ ) = 1.

⊓ ⊔

Lemma E There exists a conguration C occurring in SE that contains a synchronized pair of leader and token, and such that l(C) ≥ t(C) = 1.

Proof. We prove the result by contradiction. By Lem. C, we already know that every conguration in SE contains a unique token. Hence, assume that, for every conguration C in SE, any leader in C (if any) does not have the same color as the (unique) token in C. Note that, if every conguration C in SE has no leader, then the denition of Ω? l , the global fairness and the rules of the protocol involve that a (black) leader is created at some point in SE; whence a contradiction. Hence, there exists a conguration C in SE which has at least one leader, l(C) ≥ t(C) = 1.

By our hypothesis, every leader in C has the same color, opposite to the color of the token. Consider the case where the token is white. Thus all the leaders in C are black. Whatever the sequence of input assignment is, it is possible to reach from C a conguration C ′ with one white leader and one white token, simply by moving the white token towards one of the black leaders, and apply the rule of the protocol that turns this leader white. The conguration C ′ has a synchronized pair of leader and token, and l(C ′ ) ≥ t(C ′ ) = 1. By the global fairness, C ′ must belong to SE; whence a contradiction.

Consider the case where where the token is black. Thus all the leaders in C are white. By moving the token, it is possible to turn all the leaders into non-leaders. Hence, there exists a conguration C ′ occurring in SE with no leaders and one black token. Now since C occurs in SE, it occurs innitely many times in SE, and there is a sequence of steps (C ′ , α ′ ) . . . (C, α) in SE. During this sequence, a leader is created. Before this creation, the unique token stays black since it interacts with no leader. The rules of the protocol involve that the rst created leader is black. Hence, there exists a conguration C ′′ in SE which contains a synchronized pair of leader and token, and such that l(C ′′ ) ≥ t(C ′′ ) = 1; whence a contradiction.

⊓ ⊔

Lemma F For every (C, α) in SE, C contains a synchronized pair of leader and token, l(C) ≥ t(C) = 1 and for every agent x, α.Ω? l x = α.Ω? t x = 1.

Proof. By Lem. C, we already know that for every (C, α) in SE, t(C) = 1 and for every agent x, α.Ω? t x = 1. Also by Lem. E, we know that there exists a (C, α) in SE, such that C contains a synchronized pair of leader and token, and l(C) ≥ t(C) = 1. These two results, and Lem. D ensure that every (C, α) in SE contains a synchronized pair of leader and token, and l(C) ≥ t(C) = 1. Then, the denition of Ω? l involves that every input assignment α occurring in SE is such that for all x, α.Ω? l x = 1.

⊓ ⊔ Theorem C Alg. 2 is a self-stabilizing solution to ELE using Ω?(2, 1). Precisely, there exists an agent λ such that for every conguration C in SE, C.leader λ = ⊥ and for every agent µ = C.leader µ = ⊥.

Proof. By Lem. F, we know that during SE, the leader detector Ω? l outputs 1 everywhere. Hence, no leader is ever created during SE. This involves that the number of leaders (greater than or equal to 1) cannot increase during SE.

Actually, since each (C, α) in SE occurs innitely often in SE, the number of leaders is constant during SE. We denote by c this constant; we already know that c ≥ 1.

Assume that c ≥ 2. Consider a conguration C occurring in SE. We know that C contains a synchronized pair of leader and token and that l(C) = c ≥ 2, t(C) = 1. We now describe scenarios that produce a conguration C ′ out of C, such that C ′ contains a unique leader (synchronized with the unique token).

Case (a). The unique token in C is black. There must be a black leader since C contains a synchronized pair of leader and token. By global fairness, it is possible to move the token near this leader, and to turn them both white. Then we come down to case (b).

Case (b). The unique token in C is white. By moving the token to meet every black leaders, we can turn all the black leaders white. Then by global fairness, we can assume that there are no black leaders in C. Still by global fairness, the following sequence of moves is possible. First, the white token meets a white leader and they both turn black. Then the black token successively meets the white leaders and turn them into non-leaders. The resulting conguration has a unique (black) leader (and a unique black token). The global fairness ensures that this conguration occurs in SE; whence a contradiction with the fact that the number of leaders is c ≥ 2.

Therefore, c = 1, i.e., there is a unique leader in every conguration during SE. Since every conguration in SE contains a synchronized pair of leader and token, in each conguration, the unique leader must be synchronized with the unique token. Since a leader cannot be turned into a non-leader by a token with which it is synchronized, the unique leader is the same for every conguration in SE. Precisely, there exists an agent λ such that for every conguration C in SE, C.leader λ = ⊥ and for every agent µ = λ, C.leader µ = ⊥. ⊓ ⊔

3 . 1 Eventual

 31 Leader Election Behaviour ELE

Lemma 1 .

 1 In each conguration C in every execution E of Alg. 1, b(C) + w(C) = l(C) and b(C) ≥ 1.

Lemma 2 .

 2 For every conguration C in SE, b(C) = 1.
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  2). Given a conguration C, let b(C) be the number of black tokens, w(C) the number of white tokens and l(C) the number of leaders in C. In addition, for every agent x, we denote by C.leader x (resp. C.token x ) the value of the variable leader x (resp. token x ) in congurationC. Lemma A In each conguration C in an execution E of Alg. 1, b(C) + w(C) = l(C) and b(C) ≥ 1.Proof. In the initial conguration, b(C) = l(C) = n the number of agents, and w(C) = 0. We show that for any conguration C satisfying the property, any conguration C ′ such that C → C ′ , C ′ satises the property. In the algorithm, the swapping of tokens (line 11) does not modify the number of tokens nor the number of leaders. If line 7 is executed, thenb(C ′ ) = b(C) -1 ≥ 1 (the condition in the if statement implies b(C) ≥ 2), w(C ′ ) = w(C)+1 and l(C ′ ) = l(C); whence b(C ′ ) + w(C ′ ) = l(C ′ ). If lines 9 and 10 are executed, then b(C ′ ) = b(C) ≥ 1, w(C ′ ) = w(C) -1 and l(C ′ ) = l(C) -1; whence b(C ′ ) + w(C ′ ) = l(C ′ ).Hence, in all cases, C ′ also satises the property. ⊓ ⊔ Lemma B For every conguration C in SE, b(C) = 1.

  of an oracle being weaker than another one.The two behaviours are equivalent if B 1 B

2 mod (F, H) and B 2 B 1 mod (F, H). We denote this case by B 1 ≃ B 2 mod (F, H). When F and H are clear from the context, we write B 1 B 2 and B 1 ≃ B 2 .

  1, if C → C ′ , then b(C) ≥ b(C ′ ).Hence, the number of black tokens cannot increase during SE. Assume that there is a conguration C in SE such that b(C) = t ≥ 2. By global fairness, there is a conguration in SE where two black tokens are in two neighboring nodes. From this conguration, there is a reachable conguration C ′ resulting from the interaction of these two neighbors.In C ′ , b(C ′ ) ≤ t-1 < b(C).The global fairness ensures that C ′ is in SE. By the rst remark, C cannot occur in SE after the rst occurrence of C ′ . This is a contradiction with the denition of SE.Theorem B In any execution E of Alg. 1, there exists an agent λ such that for every conguration C in SE, C.leader λ = 1 and for every agent µ = λ, C.leader µ = 0.

	⊓ ⊔

  2. Recall that SE denotes the innite sux of E such that each couple (C, α) in SE occurs innitely often in SE (see Sec. 2).Lemma C For every (C, α) occurring in SE, there is a unique token in C and

α assigns 1 to every Ω? t

x variable, i.e. t(C) = 1 and ∀x, α.Ω? t x = 1.

More formally, the behaviour Self (Ω?(2, 1) • Beh(A)) implements the behaviour ELE (see Sec. 2).

Appendix

A From Strongly Connected to Weakly Connected Graphs

In Sec. 5 and 6, we present protocols that solve the leader election problem in the family of all strongly connected graphs. We now show how to extend these results to the family F all of weakly connected graphs. Consider a population protocol A. First, we dene the non-deterministic protocol A N D with the same state space and input alphabet as A, and the following transition rules. The rule (p, x)(q, y)

In other words, there is a non-deterministic choice that selects which agent is the initiator, and which is the responder, in a rule of A. Given a weakly connected graph G, the symmetric closure G sym of G is necessarily a strongly connected graph.

then there is a sequence 4 of actions σ ′ i , i ∈ N, such that the sequence

solves ELE on G using the oracle Θ. It is then possible to transform A N D into a deterministic protocol that implements ELE using Θ over G. It can be done, for instance, by using the general deterministic transformer in [START_REF] Angluin | Self-stabilizing population protocols[END_REF], since in terms of [START_REF] Angluin | Self-stabilizing population protocols[END_REF], A N D implements an elastic behaviour.

B Impossibility of Leader Election under Local Fairness with Uniform Initialization

Theorem A Let F be a family of graphs that contains graphs G and B such that there exists a k-covering φ : G → B with k ≥ 2. There is no uniformly initialized population protocol that solves the ELE problem over the family F under the local fairness assumption.

Proof. We prove the result by contradiction. Assume that there exists a protocol A that solves the leader election problem with uniform initialization (all agents are initially in the same state q) under local fairness. We rst show how to simulate a step of A on B with a specic sequence of steps on G. Then we show how to lift any locally fair execution on B to a locally fair execution on G, and nally we prove the contradiction. (Simulation). Consider congurations γ, γ ′ on B and an action σ = ((a, b), (p, q) → (p ′ , q ′ )) enabled in γ such that γ σ -→ γ ′ . Since φ is an opbration, we know that for each node x i in φ -1 (a) (1 ≤ i ≤ k), there is a unique edge (x i , y i ) that is 4 If σi = (ui, vi, (q, y)(p, x) → (q ′ , p ′ )) with (p, x)(q, y) → (p ′ , q ′ ) a rule of A, then dene σ ′ i = (vi, ui, (p, x)(q, y) → (p ′ , q ′ )). If (q, y)(p, x) → (q ′ , p ′ ) is a rule of A, then dene σ ′ i = σi.

E Impossibility of Self-Stabilizing Implementation of Ω? using ELE under Global Fairness

Theorem D There is no non-initialized population protocol A such that for some k ≥ 1, the composition B = (ELE ⊗ • • • ⊗ ELE) • Beh(A) with k copies of ELE implements the behaviour Ω? over the family of all graphs under the global fairness assumption.

Proof. We prove the result by contradiction. Assume that protocol A exists and consider a complete graph G of size n ≥ k + 1. Let (T in , T out , S) be a run of the behaviour B on G. By denition, there exist traces T 1 , . . . , T k such that (⊥, T i , S) is a run of the i-th copy of ELE on G, and an execution E of A on G with an input trace IT = (T 1 , . . . , T k , T in ) and a schedule S that induces the output trace T out .

By the denition of ELE, each T i eventually permanently assigns 1 to a unique agent λ i and 0 to every other; we denote by β i this assignment. Note that the λ i 's are not necessarily distinct. We choose the trace T in to be the constant trace αα . . . where α assigns 1 to some agent µ ∈ {λ 1 , . . . , λ k } and 0 to every other. By the assumption on A, the output trace T out has a sux equal to the uniform constant trace 1. Thus, for every couple (C, β) in SE, β = (β 1 , . . . , β k , α) and the output associated with C assigns 1 to every agent. Now, consider such a couple (C, β) in SE. If we restrict (C, β) to the network G c , obtained from G by eliminating the node µ, we obtain a conguration and input assignment (C c , β c ). The agents λ i are still the unique agents to be assigned the value 1 by β c i respectively, and α c assigns 0 to every agents in G c . Since the protocol must be self-stabilizing, there is a sequence of steps, involving all the agents but µ and having the input assignment β c at each step. This leads to a conguration C ′c that outputs 0 on every agent in G c . This involves that there is a sequence of steps (C, β)(C 1 , β)(C 2 , β) . . . (C ′ , β) such that C ′ outputs 1 on agent µ and 0 on every other agent. The global fairness ensures that C ′ occurs in SE; whence a contradiction.

⊓ ⊔