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CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13, France

(2). Laboratoire Physico-Chimie Curie, Institut Curie, Université Marie et Pierre Curie,
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The understanding of morphogenesis in living organisms has been renewed by tremendous progress
in experimental techniques that provide access to cell-scale, quantitative information both on the
shapes of cells within tissues and on the genes being expressed. This information suggests that our
understanding of the respective contributions of gene expression and mechanics, and of their crucial
entanglement, will soon leap forward. Biomechanics increasingly benefits from models, which assist
the design and interpretation of experiments, point out the main ingredients and assumptions,
and can ultimately lead to predictions. The newly accessible local information thus urges for a
reflection on how to select suitable classes of mechanical models. We review both mechanical
ingredients suggested by the current knowledge of tissue behaviour, and modelling methods that
can help generate a constitutive equation. We also recall the mathematical framework developped
for continuum materials and how to transform a constitutive equation into a system of partial
differential equations amenable to numerical resolution. The present article thus groups together
mechanical elements and theoretical methods that are ready to enhance the significance of the data
extracted from recent or future high throughput biomechanical experiments.

PACS numbers: 87.19.R- Mechanical and electrical properties of tissues and organs 87.19.lx Development
and growth 83.10.Gr Constitutive relations 83.60.La Viscoplasticity; yield stress

I. INTRODUCTION

A. Motivations

Models based on either analytical equations or numer-
ical simulations play several roles in biomechanics. They
assist experiments to integrate and manipulate quanti-
tative data, and extract measurements of relevant pa-
rameters (either directly, of through fits of models to
data). They also help in proposing and designing new
experiments, test the effect of parameters, simulate sev-
eral realisations of a stochastic phenomenon, or simulate
experiments which cannot be implemented in practice.
They enable to illustrate an experiment, favor its inter-
pretation and understanding. They point out the main
ingredients and assumptions, test the sensitivity of an
experiment to a parameter or to errors, and determine
which assumptions are sufficient to describe an experi-
mental result. Finally, models can help determining a
causal relationship between two facts, and also lead to
predictions.

The pioneering work of XIXth century biologists and
physicists initiated the mechanical modelling of animal
tissues, now an important field of study. Two themes
have dominated the recent literature: (i) modelling the

mechanics of some specific adult tissues like bones or
muscles, for which deformations and stresses are obvi-
ously part of the biological function [1]; and (ii) unrav-
eling the role of forces in the generation of forms during
embryonic development [2, 3]. During the last decades,
both the physics and the biology sides of the problem
have been completely transformed, especially by progress
in imaging.

On the physics side, new materials with complex struc-
tures (namely complex fluids) have been thoroughly stud-
ied, especially in the last twenty years, with a strong em-
phasis on the difficult problem of the feedback between
the microscopic structure and the mechanical response
[4]. The development of new tools to image the changes in
the cell arrangement under well-controlled global stresses
or deformations has provided a wealth of data. Mod-
elling has played a crucial part v ia the determination of
so-called constitutive equations. A constitutive equation
characterises the local properties of a material within the
framework of continuum mechanics. It relates dynamical
quantities, such as the stress carried by the material, with
the kinematical quantities, e.g. the deformation (also
called “strain”) or the deformation rate.

On the biology side, analogous questions now arise re-
garding the interplay of cell scale behaviour and tissue
scale mechanical properties.
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A first question is how a collective behaviour not ob-
viously apparent at the cell scale emerges at the tissue
scale. Analyses of images and movies lead to the con-
clusion that epithelia or whole embryos behave like vis-
cous liquids on long time scales [5]. The physical origin
and the value of the (effective) viscosity should be traced
back to the cell dynamics: it can in principle incorporate
contributions from ingredients such as cell divisions and
apoptoses [6] or cell contour fluctuations [7], but also
from orientational order, cell contractility, cell motility
or cell rheological properties. All these local and some-
times changing ingredients become progressively accessi-
ble to experimental measurements. Biomechanical mod-
els can investigate the bottom-up relationship between
local cell-scale structure and tissue-scale mechanical be-
haviour, unraveling the signature of the cellular structure
in the continuum mechanics descriptions.

Conversely, a second question is how the mechanical
state of the tissue may have an influence on the cell divi-
sion rate [8, 9], or on the orientation of the cells undergo-
ing division [10]. In addition, the mechanical state of the
tissue can generate cell polarity and hence an anisotropy
of the local cell packing, which may affect the mutual
influence between the local mechanics (forces and defor-
mations) and the cell behaviour. Biomechanical models
contribute to disentangle these complex feedback loops
and address such top-down relationships.

To address this type of questions, a natural strategy is
first to reconstruct the mechanics from the structural de-
scription, then to investigate the feedback between well-
identified mechanical variables and the expression of spe-
cific genes. In particular, this interplay between genes
and mechanics is expected to be the key to the spon-
taneous construction of the adult form in a developing
tissue without an organising center. Such problem in its
full complexity will probably require a “systems biology”
approach. Large scale mapping of expression for at least
tens of genes, coupled to a correct mechanical modelling
on an extended range of scales in time and space will
be necessary, which in turn supposes experimental se-
tups able to produce the relevant genetic and mechanical
data.

B. State of the art

Recent developments in in vivo microscopy now give
access to the same richness of structural information for
living tissues as for complex fluids. The biology of cells
and tissues is now investigated in detail in terms of pro-
tein distribution and gene expression, especially during
development [11]. It is possible to image the full geome-
try of an embryonic tissue at cellular resolution [12, 13],
while simultaneously visualising the expression of various
genes of interest [14–16]. Mechanical fields such as the
deformation, deformation rate or plastic deformation rate
are increasingly accessible to direct measurement. Sev-
eral fields can be measured quantitatively at least up to

an unknown prefactor. This is the case for (i) some pro-
tein distributions, via quantitative fluorescence [17]; (ii)
elastic forces and stresses, either by laser ablation of cell
junctions [18] and tissue domains [19], or through image-
based force inference methods based on images [20–23];
(iii) even viscous stress fields, indirectly estimated [16].
Preliminary experiments include absolute measurements
of forces based on micro-manipulation, in situ incorpo-
ration of deformable force sensors, or fluorescence reso-
nance energy transfer (FRET).

In vitro assemblies of cohesive cells are useful exper-
imental systems. Within a reconstructed cell assembly,
each individual cell retains its normal physiological be-
haviour: it can grow, divide, die, migrate, etc. In the
absence of any regulatory physiological context, cells dis-
play small or negligible variation of gene expression. Re-
constructed systems thus allow to separate the mechan-
ical behaviour of a tissue from its feedback to and from
genetics. Further, in absence of any coordinated varia-
tion of the genetic identity of constituent cells, spatial
homogeneity may be achieved. Simple, well-controlled
boundary conditions can be implemented by a careful
choice of the geometry, either in two or three dimensions.

In two dimensions, confluent monolayers are usually
grown on a substrate used both as a source of external
friction and as a mechanical sensor to measure local forces
[24–26]. 2D monolayers make easier experiments, simula-
tions, theory and their mutual comparisons [27–30]. 2D
images are easier to obtain and can be analysed in de-
tail; data are more easily manipulated, both formally and
computationally.

In three dimensions, multi-cellular spheroids in a well-
controlled, in vitro setting [7, 8, 31] are a good model
system to mimic the mechanical properties of tumors,
and of homogeneous parts of whole organs, either adult
or during development. They are also useful for rheolog-
ical studies [32, 33], especially since they are free from
contact with a solid substrate. Although the full recon-
struction of the geometry of multi-cellular spheroids at
cellular resolution remains challenging, progress is fast
[34].

C. Outline of the paper

A tissue can be seen as an amorphous cellular material
that is active, in the sense that it is out of equilibrium
thanks to its reservoir of chemical energy; a consequence
of this activity being its ability to autonomously gener-
ate forces, as well as motion. We compare three main
formalisms used to construct constitutive equations in-
differently in 2D or 3D for such active materials: (i)
rheological diagrams; (ii) linear out-of-equilibrium ther-
modynamics, also called “hydrodynamics”; and (iii) the
dissipation function formalism, for so-called “generalised
standard materials”. We would like here to guide the
choice of models according to the tissue under consid-
eration, the experimental set-up, the scientific question
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raised and the search for simplicity. We propose a frame-
work for the analysis of experimental data (movies) with
a fully tensorial treatment of spatially heterogeneous tis-
sues. Although the simplest applications concern in vitro
experiments, often performed with epithelial cells, the
same approach applies to a wide spectrum of living tis-
sues.

This article is organised as follows. Section II makes
explicit our assumptions and arguments to choose a for-
malism. Section III reviews mechanical ingredients suit-
able for the theoretical description of a wide range of
living tissues, both in vitro and in vivo, with worked out
examples. Section IV summarizes and opens perspec-
tives.

II. CHOICES AND METHODS

In this Section, we explain our choices and our as-
sumptions. Section II A compares discrete and contin-
uum approaches. Section II B compares rheological dia-
grams, hydrodynamics, and the dissipation function for-
malisms. Section II C explains why an Eulerian descrip-
tion is appropriate for developing tissues. Section II D
suggests how to incorporate space dependence in consti-
tutive equations to write partial differential equations.

A. A continuum rather than a discrete description

Models that describe tissue mechanical properties may
be broadly split into two main categories: discrete “cell-
based” simulations (Section II A 1) and continuum me-
chanics models (Section II A 2). We explain why we favor
here the latter (Section II A 3).

1. Discrete models

Direct cellular simulations build upon the (suppos-
edly known) geometry and rheology of individual cells
and membranes, and generate global tissue behaviour
through the computation of the large-scale dynamics of
assemblies of idealised cells [35–42]. Simulations enable
to directly test the collective effect of each cell-scale in-
gredient, and of their mutual feedbacks. Also, they work
well even for a small number of cells, where the length
scale of a single cell and that of the cell assembly are
comparable.

2. Continuum models

A continuum approach requires the existence of an in-
termediate length scale, larger than a typical cell size,
yet smaller than the tissue spatial extension, and beyond
which the relevant fields vary smoothly. The continuum

rheology is captured through a constitutive equation re-
lating the (tensorial) stresses and deformations [43–49].
This rheological model is incorporated into the usual
framework of continuum mechanics using fundamental
principles such as material and momentum conservation.
When it succeeds, a continuum approach yields a syn-
thetic grasp of the relevant mechanical variables on an
intermediate scale (i.e. averaged over many individual
cells), and helps dealing with large systems. It often in-
volves a smaller number of independent parameters than
a discrete approach, which helps comparing with exper-
imental observations. Note that continuum models have
also been applied to vegetal tissues, as in plant growth
[50].

In order to test and calibrate a continuum model, it
is generally necessary to extract continuum information
from other sources such as discrete simulations or ex-
periments on tissues with cell-scale resolution. Powerful
tools, described in Appendix A, have been developed in
recent years to process segmented experimental movies
in order to extract tensorial quantities such as the elastic
deformation rate and the plastic deformation rate.

3. Choosing continuum models

In the following, we choose to concentrate on contin-
uum models, drawing inspiration from both models of
(non-living) amorphous cellular materials such as liquid
foams [51] or emulsions [52], and from models of living
matter that incorporate ingredients such as cell division
[6] and orientational order [48, 49].

The continuum models describing amorphous cellular
materials can be tensorial and incorporate viscoelasto-
plastic (VEP) behaviour [47, 53–56]. In addition to the
viscous and elastic behaviour expected for a complex fluid
whose microstructure can store elastic deformation, one
incorporates the ingredient of plasticity capturing irre-
versible structural changes, more specifically here local
reorganisations of the individual cells due to relative mo-
tion and neighbour exchange, or even plasticity within
the cells. A VEP model assembling these ingredients,
with additional ones pertaining to living cells, could cap-
ture the different “short-time” phenomena described in
Section III and at the same time display a viscous liquid-
like behaviour on longer time scales.

B. Choice of the dissipation function formalism

In this Section, we discuss three general formalisms
used to construct constitutive equations (indifferently in
2 or 3D): rheological diagrams (Section II B 1), hydrody-
namics in its general sense (Section II B 2) and the dissi-
pation function method (Section II B 3).
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FIG. 1: An example of a rheological diagram: a dashpot with
viscosity η2 in parallel with a Maxwell element (spring with
stiffness k1 in series with a dashpot with viscosity η1).

1. Rheological diagram formalism

Let us consider the rheological diagram of Fig. 1:
it represents the well-known viscoelastic Oldroyd fluid
model. It consists in a dashpot with viscosity η2 and
deformation ε carrying the stress σ2 in parallel with a
Maxwell element carrying the stress σ1. This Maxwell el-
ement is itself made of a spring (stiffness k1, deformation
ε1) in series with a dashpot (viscosity η1, deformation
ε2). The elementary rheological equations read:

ε = ε1 + ε2 (1)

σ = σ1 + σ2 (2)

σ2 = η2 ε̇ (3)

σ1 = k1 ε1 (4)

σ1 = η1 ε̇2 (5)

Eliminating ε1, ε̇1, ε2 and ε̇2 between these equations
yields:

σ̇ +
k1
η1
σ =

η1 + η2
η1

k1 ε̇+ η2 ε̈ (6)

Such a straightforward method is useful when physical
knowledge or intuition of the mechanical system is suffi-
cient to determine the topology (nodes and links) of the
diagram. Note that the relationship between a rheolog-
ical diagram (such as that presented by Fig. 1) and a
constitutive equation (such as Eq. (6)) is not one-to-one:
see Appendix B for an example.

2. Hydrodynamic formalism

When non-mechanical variables are present, the rheo-
logical diagram formalism (Section II B 1) is not sufficient
to establish the constitutive equation. Another formal-
ism is necessary to include couplings between mechani-

FIG. 2: Cell rearrangement. Cells 2 and 3 are initially in con-
tact (left). Cells deform (center) and can reach a configuration
with a new topology where cells 1 and 4 are now in contact

(right). See Eq. (20) for notations D, ė and Dp, which re-
fer to the continuum description: upon coarse-graining at the
tissue scale, the discontinuities at the cell scale are wiped out.

cal and non-mechanical variables. A possible formalism
is linear out-of-equilibrium thermodynamics, also called
“hydrodynamics” [57] although its range of application
is much larger than the mechanics of simple fluids.

Broadly speaking, hydrodynamics may be defined as
the description of condensed states of matter on slow time
scales and at large length scales. Macroscopic behaviour
is characterized by the dynamics of a small number of
slow fields (so-called “hydrodynamic fields”), related to
conservation laws and broken symmetries [57]. On time
scales long compared to the fast relaxation times of mi-
croscopic variables, the assumption of local thermody-
namic equilibrium leads to the definition of a thermody-
namic potential as a function of all relevant (long-lived)
thermodynamic variables and their conjugate quantities.
Standard manipulations lead to the expression of the en-
tropy creation rate as a bilinear functional of generalized
fluxes and forces. In the vicinity of equilibrium, general-
ized fluxes are expressed as linear combinations of gen-
eralized forces, where cross-coefficients are equal due to
Onsager symmetry theorem [58].

The hydrodynamic formalism is physically intuitive.
It is flexible and can accommodate a broad spectrum of
physical quantities, as long as deviations from equilib-
rium can be linearised. The approach is quite general
since it relies on thermodynamic principles and on the
invariance properties of the system. Constitutive equa-
tions may thus be written within the domain of linear re-
sponse as linear relationships between generalized fluxes
and forces. This approach has been highly successful,
leading for instance to the derivation of the hydrodynam-
ics of nematic liquid crystals (with the nematic director
field as an additional, non-conserved hydrodynamic vari-
able) [59, 60], or, more recently, of soft active matter
(where a chemical field typically couples to an orienta-
tional order parameter to model, e.g. cytoskeletal me-
chanics) [61].
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3. Dissipation function formalism

Not all materials are linear. In tissues, plastic events
such as cell rearrangements [14], see Fig. 2, have thresh-
olds which break down the linearity, and hydrodynamics
becomes inadequate (Section II B 2). Deriving constitu-
tive equations requires a more general formalism.

In the dissipation function formalism, the state of the
system is described by the total deformation ε and by
m ≥ 0 additional, independent, internal variables εk,
with 1 ≤ k ≤ m. These variables may be scalar, polar,
axial or tensorial (see Appendix C). So-called “general-
ized standard materials” are defined by the existence of
the free energy function E and the dissipation function
D [62–64], which are convex functions of their respective
arguments:

E = E (ε, ε1, . . . , εm) (7)

D = D (ε̇, ε̇1, . . . , ε̇m) (8)

Here ε̇ denotes the total rate of deformation and ε̇k =
(∂t + ~v · ∇)εk the Lagrangian time derivative of εk.

The dissipation function D is not the rate of entropy
production: it is an integral of the movement (like a
stream function in two-dimensional fluid mechanics, or
a vector potential in electro-magnetism), defined up to
an additive constant. It must be continuous and convex,
but does not need to be differentiable. The convexity
warrants that the model satisfies the second principle of
thermodynamics [62, 65]. Numerically, it allows to use a
variational approach, which makes it very useful for the
resolution of the dynamical equations [66, 67]. Consti-
tutive and evolution equations are obtained through the
following rules:

σ =
∂D
∂ε̇

+
∂E
∂ε

(9)

0 =
∂D
∂ε̇k

+
∂E
∂εk

, 1 ≤ k ≤ m (10)

where σ denotes the stress.

The dissipation function formalism is suitable for non-
linear terms. For a given variable εk, quadratic terms
ε2k in the energy function or ε̇2k in the dissipation func-
tion are harmonic, i.e. they yield a linear term εk or ε̇k
in the derived dynamical equations, exactly like in the
hydrodynamics formalism (Section II B 2). Terms of the
form |εk|n or |ε̇k|n, with n ≥ 1 (n integer or real) yield
non-linear terms |εk|n−2εk or |ε̇k|n−2ε̇k in the dynami-
cal equations. Interestingly, the dissipation function can
even treat the particular case n = 1 which corresponds
to terms like |εk| or |ε̇k|. This yields terms of the form
εk/|εk| or ε̇k/|ε̇k| in the derived equations: these are non-
linear terms which dominate over the linear ones. This
lowest-order case is particularly important when we want
to include plasticity (see Section III A for an example),
whose treatment thus becomes straightforward [62, 64].
As a result, the dissipation function formalism has been

successfully applied to viscoelastoplastic flows in [68, 69].
For purely mechanical systems made of springs, dash-

pots and sliders, the dissipation function formalism is by
construction equivalent to directly writing the dynami-
cal equations from the rheological model. For instance,
the system discussed in Section II B 1 can be described
within the formalism of Eqs. (7-10) with m = 1:

E (ε, ε1) =
1

2
k1ε

2
1 (11)

D (ε̇, ε̇1) =
1

2
η1 (ε̇− ε̇1)

2
+

1

2
η2ε̇

2 (12)

σ = η1 (ε̇− ε̇1) + η2ε̇ (13)

0 = k1ε1 + η1 (ε̇1 − ε̇) (14)

Eliminating ε1 and ε̇1 between Eqs. (13) and (14) indeed
yields Eq. (6).

For systems with non-mechanical ingredients, the dis-
sipation function formalism allows to systematically ex-
plore possible couplings (see Section III D for examples).
The coupling coefficients arise as cross partial derivatives,
with the advantage that they derive from a smaller num-
ber of free parameters than in the hydrodynamics formal-
ism. A second advantage is that they automatically obey
the Onsager symmetry [58]. In view of these advantages,
and since it allows to treat plasticity, we recommend to
adopt the dissipation formalism for living tissues.

C. An Eulerian rather than a Lagrangian approach

We now compare the Lagrangian and Eulerian points
of view, and explain why we choose the latter.

1. Main variable associated with each approach

For materials that retain information about their ini-
tial state, it is natural (and common) to use a deforma-
tion variable (usually ε) that compares the current local
material state to the initial state of the same material
region. This is called the Lagrangian description and is
usually preferred for elastic solids.

By contrast, in materials that have no or little memory
of past configurations, such as viscous or viscoelastic flu-
ids, it is common practice to use only the current velocity
field ~v(~x, t) as the main variable, with no reference to any
initial state. This is called the Eulerian description, used
for instance when writing the Navier-Stokes equations.

2. Link between Lagrangian and Eulerian approaches

The deformation ε of the Lagrangian approach and
the velocity field ~v(~x, t) of the Eulerian point of view are
tightly connected. Indeed, the Lagrangian time deriva-
tive of the deformation is equal to (the symmetric part
of) the velocity gradient. This quantity is also called
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deformation rate and can be expressed in one and more
spatial dimensions respectively as:

ε̇ =

(
∂

∂t
+ v

∂

∂x

)
ε =

∂v

∂x
(15)

ε̇ =

(
∂

∂t
+ ~v · ∇

)
ε =

∇~v +∇~vT

2
= D (16)

where we have introduced the notation D for the defor-
mation rate tensor.

3. Choosing the Eulerian point of view

In materials such as developing tissues, the plastic flow,
that results in particular from cell rearrangements or di-
visions, progressively erases the memory of the initial
material configuration (this is similar to the role played
by bubbles or droplets rearrangements in liquid foams
or emulsions, respectively). Therefore, once the sample
has been deformed substantially, the total deformation
ε with respect to the initial state loses its physical rele-
vance. Moreover, it is no longer a useful variable for the
numerical resolution of evolution equations.

By contrast, the Eulerian point of view is relevant not
only for common fluids, but also in the case of cellular
materials, as discussed in detail in Ref. [53]. Fortunately,
the current material state and evolution can be quanti-
fied without any reference to earlier configurations using
tools for image and film analysis (Appendix A). This en-
ables to analyse experiments within the Eulerian point
of view. Therefore, we recommend to adopt the Eulerian
viewpoint for developing tissues.

Moreover, these tools provide access to the elastic de-
formation e, defined as the deformation which can be
recovered upon release of the stress (through local abla-
tion for example [18, 19], see Appendix D for a precise
definition). The elastic deformation e is the only part
of the total deformation ε that remains relevant in the
Eulerian context.

4. Notations for dissipation function formalism

To use the Eulerian point of view requires to express
the constitutive equations only in terms of physically
meaningful variables. We should thus only keep the elas-
tic deformation e equal to, say, ε1. All other deformation
variables ε or εk should not play any role, and only their

deformation rates D and Dk = ε̇k should be included in
the final equation.

Yet in the dissipation function formalism, constitutive
equations (Eqs. (9,10)) are explicitely expressed in terms
of the deformation variables εk. How can this be com-
patible with the Eulerian point of view?

In fact, in the case of a fluid material, it is always
possible to eliminate all irrelevant deformation variables

from Eqs. (9,10). An example has been provided in Sec-
tion II B 3: Eqs. (13,14) still contain ε1, which is the elas-
tic deformation of the spring on Fig. 1, but they do not
contain ε. Note that they can be combined into Eq. (6),
which is furthermore free of ε1. Similarly, for each exam-
ple discussed in Section III below, we initially use defor-
mation variables εk to construct the energy and dissipa-
tion functions. We then formally replace the deformation
rate variables ε̇k with more intuitive notations, such as

g for the growth rate or Dp for the plastic deformation
rate. Eventually, equations are combined to naturally
eliminate all εk variables, except the elastic deformation
e = ε1 of the material and possibly other deformation
variables that are relevant in the Eulerian framework.

D. System of partial differential equations

A tissue may be spatially heterogeneous: its material
properties, its history, its interaction with its environ-
ment may depend on the position ~x. For instance the tis-
sue may comprise different cell types or it may be placed
on a spatially modulated substrate. The parameters and
variables which describe the tissue are fields that may
vary spatially. For simplicity we here assume that they
are continuous and differentiable. The evolution of the
entire system is then expressed as a set of partial differ-
ential equations (PDE), consisting in conservations laws
and constitutive equations.

To make this article self-contained, we show in this Sec-
tion how constitutive relations, such as derived using the
dissipation function formalism, can be embedded in the
rigorous framework of continuum mechanics in order to
obtain a closed system of evolution equations. In contin-
uum mechanics, one usually starts from the conservation
equations of mass, momentum and angular momentum.
The mass conservation equation reads:

∂ρ

∂t
+∇ · (ρ~v) = s (17)

where ρ is the mass density (or mass per unit area in
2D); and s represents material sources or sinks which, in
the context of a tissue, can be cell division and apoptosis,
respectively. In general, the conservation of momentum
reads:

ρ~a(~x, t) = ∇ · σ(~x, t) + ~f(~x, t) (18)

which relates the acceleration ~a = ∂~v
∂t + (~v · ∇)~v to the

internal stress tensor σ and the external forces ~f . For in-

stance, the external force ~f may contain a friction com-

ponent ~f = −ζ~v [19]. Note that, in a tissue, the inertial
term ρ~a is generally negligible when compared to the
stress term ∇ · σ. The validity of this approximation has
to be checked in specific examples by estimating the value
of the relevant dimensionless number, e.g. the Reynolds
number for a purely viscous material, or the elastic num-
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ber for a purely elastic solid.

Finally, the conservation of angular momentum implies
that the stress tensor is symmetric [57]: σij = σji.

We obtain a set of m + 4 evolution equations
(9,10,16,17,18). There are m + 4 unknown fields: σ,
(εk)1≤k≤m, ε̇, ρ and ~v. This system of partial differen-
tial equations is closed by suitable initial and boundary
conditions. Its solution can be estimated by numerical
resolution: see e.g. [54, 66, 67, 70, 71] for such numerical
methods in the context of liquid foam flows.

In the case of large deformations, the Eulerian frame-
work for time derivatives of tensorial quantities requires
the use of objective derivatives [62, 72–74]. As shown
in [53] and summarized in Appendix D, this leads to
consider the upper-convected derivative, defined for any

tensor Q by:

∂Q

∂t
+ (~v · ∇)Q−∇~vQ−Q∇~vT (19)

This is the only objective derivative that ensures that
the dynamical equations respect the principle of covari-
ance [75].

III. INGREDIENTS FOR TISSUE MODELLING

A (non-exhaustive) list of ingredients for tissue mod-
elling includes viscosity, elasticity, plasticity, growth,
chemical concentration fields, orientational order param-
eters, and their feedbacks. In this Section, we present
worked out examples showing that each of these ingre-
dients is easily taken into account within the dissipation
function formalism, where the choice of a rheology and of
a coupling scheme remains as simple as possible; it can be
made more complex, along the same lines, if required, for
a given tissue. In most cases, the energy and dissipation
functions are written in reference to a given rheological
model. Note that other tissue-specific ingredients, such
as (possibly active) boundary conditions [76], do not con-
tribute to constitutive equations themselves.

A. Plasticity

Recent experiments performed on cell aggregates and
cell monolayers have shown that these tissues can have a
yield stress [29, 33] and display a plastic behavior [7, 77].
The origin of this plasticity includes cell rearrangements
[78, 79] (also known as : intercalation, neighbour swap-
ping, or T1 process [14, 51]), which also play an impor-
tant role during development, as in e.g. convergence-
extension [11].

1. Rearrangements and plastic deformation rate

At the cell scale, and independently of its biological
origin and regulation, a cell rearrangement (Fig. 2) is
mathematically speaking a topological process, by which
the rest state of a group of neighbour cells changes dis-
continuously. The associated mechanical description is
decomposed into two steps. Before the rearrangement,
the cells deform visco-elastically. After the rearrange-
ment, they reach a new configuration, where two of the
cells become closer while the two other cells move apart.
The net result is an irreversible change in the rest state
of the tissue, with convergence along one axis and ex-
tension along the perpendicular one. It is thus best de-
scribed as a tensor with positive and negative eigenvalues

[53, 80], called the plastic deformation rate Dp in the con-
tinuum limit (see also Appendix A). Semi-quantitatively,

this tensor is related to the total deformation rate D and
the elastic deformation rate ė:

D ≈ ė + Dp (20)

More precisely, using the transport of tensor e by the
velocity field provided by Eq. (D7), as shown in Ap-
pendix D, we obtain:

ė = D +∇~v e + e∇~vT −Dp (21)

where the fields ~v, e, D and Dp depend on (~x, t).

The plastic deformation rate Dp relaxes the tissue
elastic deformation while usually leaving the volume un-
changed. As seen in Appendix D 4, the volume conserva-
tion condition is:

Tr

[(
I + 2e

)−1
Dp

]
= 0 (22)

2. Example

Although plasticity is intrinsically tensorial, scalar
models of rearrangements provide one dimensional analo-
gies which help understand their effect on the mechan-
ics of foams [81]. Inspired by Ref. [56], we now treat
explicitly a 1D example that combines the (intracellu-
lar) rheology of the cell, considered here for simplicity
as a viscoelastic solid, and the (intercellular) rheology of
the tissue, considered here as viscoplastic (Fig. 3). Let
us model the individual cells by a Voigt element with a
dashpot representing the cytosplasm viscosity ηcyto, and
a spring representing the cellular cortex elasticity Kcortex.
It means that the cell cytoplasm behaves like a viscous
fluid on short timescales but that the cell cortex can only
be elastically deformed. Hence the cell as a whole (cyto-
plasm plus cortex) behaves like a viscoelastic solid. When
the stress exerted on the tissue exceeds the yield stress
σY , the links between cells start to break and the cells
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FIG. 3: Rheological diagram for a viscoelastoplastic model.
The intracellular rheology is viscoelastic, the intercellular one
is viscoplastic.

rearrange; the tissue flows like a liquid with a viscosity
ηY much larger than ηcyto.

The existence of a yield stress σY results from the fact
that cells, considered as visco-elastic solids, need to un-
dergo a finite deformation before triggering a rearrange-
ment. This is similar to the behaviour of amorphous
materials like foams, an important difference being that
tissues generate active forces. If the tissue presents a
high level of active forces, generated by cell divisions and
apoptoses [6] and more generally by molecular motors,
the cells undergo several rearrangements which can in
practice have the effect of lowering the yield stress σY
[7].

According to Fig. 3, we have ε = εintra + εinter. Here,
ε̇inter and ε̇intra respectively correspond to the 1D pro-

jections of the plastic deformation rate Dp and of the

deformation rate ė.

The energy and dissipation functions of the indepen-
dent variables ε and εinter can be written as:

E(ε, εinter) =
1

2
Kcortex(ε− εinter)2 (23)

D(ε̇, ε̇inter) =
1

2
ηcyto(ε̇− ε̇inter)2 +

1

2
ηY (ε̇inter)

2

+σY |ε̇inter| (24)

where ε̇inter = 0 when |σ| < σY . From Eqs. (9,10) we
obtain

σ =
∂D
∂ε̇

+
∂E
∂ε

= Kcortex(ε− εinter) + ηcyto(ε̇− ε̇inter) (25)

0 =
∂D

∂ε̇inter
+

∂E
∂εinter

= ηcyto(ε̇inter − ε̇) + ηY (ε̇inter)

+Kcortex(εinter − ε) + σY
ε̇inter
|ε̇inter|

(26)

In a creep experiment, a stress σ is maintained con-

FIG. 4: Creep curves. A constant stress σ is applied from
time t = 0 to Tstop = 20τ (vertical dashed line), where τ =
ηcyto/Kcortex is the viscoelastic time. The deformation ε is
plotted during a transient increase, then a decrease. From
bottom to top, σ/σY = 0.6 (blue), 0.95 (yellow), 1.5 (green),
2.5 (red), 3.5 (black), where σY is the yield stress.

stant until a time Tstop. The relaxation then starts and
the deformation decreases. Fig. 4 represents creep curves,
i.e. the total deformation ε solution of Eqs. (25-26) in
a creep experiment. The individual cells are deformed
as viscoelastic solids. If the magnitude of the applied
stress σ is lower than the yield stress σY , the deforma-
tion ε reaches a plateau, and when σ is brought back to
zero the deformation ε relaxes back to zero over a time
τ = ηcyto/Kcortex: this viscoelastic time τ is the natural
timescale of the material. If σ is larger than the yield
stress σY , plasticity occurs, the adhesions between cells
break and the cells rearrange. After a typical time τ , cell
shapes reach their maximal deformation, so that after-
wards the tissue flows only due to cell rearrangements:
the deformation ε steadily increases. When σ is brought
back to zero the cell shapes relax to equilibrium within
a time τ but the total deformation ε does not relax back
to zero.

B. Growth

A tissue can grow by a combination of two processes :
each cell rest size may increae; or the cell number may in-
crease by cell division. We illustrate the latter case with
a 1D example where we assume that after a full cell cycle
the rest lengths `0 of the daughter cells are eventually
identical to that of the mother cell. Cell divisions can
affect the tissue mechanics if the duration of an experi-
ment is of the order of, or larger than, the inverse of the
division rate (typically one day for epithelial cells [82]).

At cell scale, and independently of its biological origin
and regulation, a cell division is mathematically speak-
ing a topological process, by which the rest state of a
cell is discontinuously replaced by the rest state of two



9

FIG. 5: Schematic one dimensional representation of a divid-
ing cell. A cell changes its size ` by stretching (from top to
center). It then divides, yielding two daughter cells of the
same total size `1 + `2 (from center to bottom). Each cell has
the same rest length `0, so that the division changes the rest
length from `0 to 2`0. Notations ė, D, g refer to the contin-
uum description: upon coarse-graining at the tissue scale, the
discontinuities at the cell scale are wiped out. Stretching is
characterised by the deformation rate D which increases the
elastic deformation (ė = D > 0) and division by the growth
rate g which relieves it (ė = −g < 0).

cells (Fig. 5). The net result is an irreversible change in
the rest state of the tissue, with an increase in the sum
of the cell rest sizes, and thus a decrease in the tissue
deformation. The associated mechanical description is
decomposed into two steps: the cell elastic deformation
e is not only increased by stretching but also decreased
by tissue growth, see Fig. 5. Note that after the division,
the daughter cells can in turn change size and/or divide
again.

We now study a tissue where cells, described as elastic,
divide and/or die. For simplicity, we first study a linear
regime in 1D at the cell scale using a discrete approach
(Section III B 1), then a continuum description (Section
III B 2), and finally incorporate the tensorial nature of
growth with the corresponding objective derivatives into
PDEs (Section III B 3).

1. Discrete approach

Let us consider a 1D tissue of length L, made of N
cells of length ` (Fig. 6) and rest length `0:

L = N` (27)

The evolutions of these three quantities are related
through:

dL

dt
= `

dN

dt
+N

d`

dt
(28)

FIG. 6: Notations for the discrete approach of growth (Section
III B 1). A one dimensional tissue of length L is made of N
cells of length `.

which we rewrite as:

d`

dt
=

dL/dt

N
− dN/dt

N

L

N
(29)

We now determine the l.h.s. of Eq. (29) by estimating
both terms of its r.h.s. The evolution equation of N is:

dN

dt
= g N (30)

where the growth rate g is the balance between division
rate kd and apoptosis rate ka (see Appendix E for their
operational definitions):

g = kd − ka (31)

Meanwhile, the time derivative of L is the difference in
velocities between both ends:

dL

dt
= v(L)− v(0) = DL (32)

where D is the Eulerian elongation rate (Eq. 16):

D ≡ v(L)− v(0)

L
(33)

Combining Eqs. (29), (30) and (32) yields the time evo-
lution of `:

d`

dt
= (D − g) ` (34)

The cell elongation rate is the difference between the tis-
sue elongation rate and the growth rate.

2. Continuum mechanics approach

We now link the discrete formulation (Section III B 1)
to a continuum one. We use the cell elongation ` − `0
to define the elastically stored part of the deformation
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(defined in Section II C). Within a linear approximation
valid for small deformations:

e ≡ `− `0
`0

(35)

Assuming that `0 is constant, and combining Eqs. (34)
with (35), we get:

ė = (D − g)
`

`0
= (1 + e)(D − g)

' D − g (36)

still in the limit of small elastic deformations. Eq. (35)
admits several possible generalisations at large deforma-
tions, each of which in turn yields a slightly different
version of Eq. (36).

The elastic modulus of a domain of tissue is:

G ≡ K `0 (37)

where K is the spring constant of one cell and `0 is its
rest length:

σ = K (`− `0) (38)

Combining Eqs. (35) and (37) yields the continuum elas-
ticity equation:

σ = Ge (39)

Combining Eqs. (36,38,39) yields the stress evolution
equation:

σ̇ ' G (D − g) (40)

Eq. (40) shows that as expected, the stress, when ten-
sile, increases when the tissue is subjected to elongation
(Eq. 33) and decreases when the growth rate g (Eq. 30)
increases the tissue rest length; see [83, 84] for a similar
approach.

Eq. (40) can be associated to a rheological diagram as
follows. Consider a motor working at constant deforma-
tion rate g in series with a spring of constant k = G
(Fig. 7). D and e denote respectively the total deforma-
tion rate and the deformation of the spring: ė = D − g.
Combined with Eq. (39), this yields Eq. (40). This can
also be treated within the dissipation function formalism,
see Section III C.

Growth should be taken into account in the mass con-
servation equation through the source term s = g ρ, so
that Eq. (17) becomes:(

∂

∂t
+ v

∂

∂x

)
ρ + ρ

∂v

∂x
= g ρ (41)

FIG. 7: Model for growth in the presence of elasticity. The
deformation rate g is constant, and the spring has a stiffness
k.

3. Growth in higher dimension

We now extend the 1D, scalar description of growth
(Section III B 2) to incorporate more spatial dimensions.
Eq. (36) is generalized using Eq. (19): see Appendix D for
the definition and discussion of the elastic deformation
tensor e. The evolution of the elastic deformation now
reads:

ė = D +∇~v e + e∇~vT − g (42)

where the fields ~v, e, D and g depend on (~x, t). The
growth tensor g is mainly isotropic and changes the vol-
ume. It may however contain a component that reflects
statistically oriented cell divisions. Let g = giso+goriented

be the corresponding decomposition. Appendix D 4
shows that they satisfy:

giso ∝
(
I + 2e

)
(43)

Tr

[(
I + 2e

)−1
goriented

]
= 0 (44)

Using Eq. (42) and the relationship between stress and
deformation yields the stress evolution equation. One
can then incorporate it into the partial differential equa-
tions of the usual continuum mechanics framework, as in
Section II D.

C. Contractility

In tissues, cell-scale contractility is often determined
by the distribution of molecular motors such as myosin
II. Upon coarse-graining, it translates into tissue-scale
contractility. In the simplest case of a 1D description,
such contractility may be modelled by adding a constant
stress in parallel with the dashpot of a Maxwell rheolog-
ical diagram (Fig. 8a).

Choosing ε and for instance ε2 as independent vari-
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(a)

(b)

FIG. 8: Two equivalent models of contractility. (a) With a
constant active stress σa. (b) With a constant active defor-
mation rate Da.

ables (with ε = ε1 +ε2), the energy and dissipation func-
tions can be written in the form of Eqs. (7,8), with m = 1:

E(ε, ε2) =
1

2
kε21 =

1

2
k(ε− ε2)2 (45)

(46)

D(ε̇, ε̇2) =
1

2
ηε̇22 + σaε̇2 (47)

where σa denotes the active stress: it is positive in the
case of a contracting tissue.

Eqs. (45,46) with Eqs. (9,10) yield:

σ =
∂D
∂ε̇

+
∂E
∂ε

= k(ε− ε2). (48)

0 =
∂D
∂ε̇2

+
∂E
∂ε2

= ηε̇2 − k(ε− ε2) + σa (49)

Differentiating Eq. (48) yields σ̇ = k(ε̇− ε̇2). Combining
it with Eq. (49) yields the stress evolution equation:

σ̇ +
1

τ
(σ − σa) = kD (50)

where D = ε̇, see Eq. (16), and τ = η/k. Eq. (50) is the
evolution equation of a classical Maxwell element plus

a constant shift in stress due to the active stress. This
is reminiscent of the active force included in Ref. [28]
and corresponds to a simplified model of muscle mechan-
ics [85]. The active stress can of course be tensorial,
for instance when the spatial distribution of motors is
anisotropic. This can readily be taken into account by
the formalism, in analogy with continuum descriptions
at the scale of the cytoskeleton [61], but now at tissue
scale.

In the rheological diagram of Fig. 8b, Da represents
a constant deformation rate (negative for contractil-
ity), Such a rheological diagram has been introduced
at the sub-cellular length scale, in the context of the

actin/myosin cortex, and the active strain rate Da is then
interpreted in terms of the myosin concentration cmy, the
step length lmy of the molecular motors and the binding
rate τmy: Da = −cmylmy/τmy [86, 87].

Strikingly, the rheological diagram of Fig. 8b leads to
the same stress evolution equation as the diagram of
Fig. 8a. This can be checked easily by decomposing the
total deformation rate as ε̇ = ε̇1+ε̇2+Da and by defining
the energy and dissipation functions again in the form of
Eqs. (7,8) with m = 1:

E(ε, ε1) =
1

2
kε21 (51)

D(ε̇, ε̇1) =
1

2
ηε̇22 =

1

2
η(ε− ε̇1 −Da)2 (52)

Injecting Eqs. (51,52) into Eqs. (9,10) and differentiating
σ with respect to time yields:

σ̇ +
σ

τ
= k (D −Da) (53)

where D = ε̇, see Eq. (16). This equation is the same as
Eq. (50) if σa/τ is replaced by−kDa. The two rheological
diagrams given by Fig. 8 are thus equivalent (see another
example in Appendix B).

D. Coupling non-mechanical fields to a rheological
model

Suppose we need to include an additional, non-
mechanical field, distinct from the rheological scheme.
The dissipation function formalism allows to postulate
forms of the energy and dissipation functions that re-
spect the symmetries of the system, and take into ac-
count the scalar, polar, axial or tensorial nature of the
non-mechanical field (see definitions in Appendix C). It
provides a framework within which various couplings be-
tween fields may be introduced in a systematic manner.

In the following, we present worked-out, simple exam-
ples that involve such couplings, in relation to a viscous
or viscoelastic rheology, and may be relevant to the de-
scription of specific tissues. Of course, more complex
couplings may be considered whenever needed, that also
involve other ingredients such as plasticity, tissue growth
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or cell contractility.

1. Scalar field

The simplest instance of a scalar field is arguably the
concentration field c of a morphogen [11] or of a relevant
signaling molecule (see Ref. [88] for a more complex case).
The energy E and the dissipation function D depend on
the fields (ε, εk, c) and (ε, ε̇k, ċ), respectively.

Let us treat a simple example which couples the scalar
field to the mechanical fields through the dissipation
function. In one spatial dimension, we consider the case
of a Maxwell viscoelastic liquid (Fig. 9), with total defor-
mation ε = ε1 + ε2, where ε1, ε2 denote the deformation
of the spring and of the dashpot, respectively. Its usual
evolution equation σ̇+σ/τ = kD (when subjected to de-
formation rate D = ε̇) is modified in the presence of a
coupled field, for instance a morphogen concentration c.

We choose for instance ε and ε2 as independent vari-
ables together with c and write functions of the same form
as Eqs. (7,8) with m = 2 additional internal variables:

E(ε, ε2, c) =
1

2
k(ε− ε2)2 +

1

2
χc2 (54)

D(ε̇, ε̇2, ċ) =
1

2
ηε̇22 +

1

2
ξċ2 + ωε̇2ċ (55)

In Eqs. (54,55) we choose to couple the concentration
c to the deformation ε2 through their time derivatives,
with a dissipative coupling coefficient ω. This and other
similar choices made below would need to be carefully
validated by comparison with experimental data in spe-
cific cases. To ensure the convexity of the dissipation
function, the parameters k, χ, η and ξ are non-negative,
and the following inequality holds:

ω2 ≤ ξη (56)

Eqs. (9,10) yield here the expression of the stress:

σ =
∂D
∂ε̇

+
∂E
∂ε

= k(ε− ε2) (57)

and two variational equations:

0 =
∂D
∂ε̇2

+
∂E
∂ε2

= ηε̇2 − k(ε− ε2) + ωċ (58)

0 =
∂D
∂ċ

+
∂E
∂c

= ξċ+ χc+ ωε̇2. (59)

Injecting Eq. (57) and its time derivative into Eq. (58),
we find the evolution equation for the stress field:

σ̇ +
σ

τ
= kD +

kω

η
ċ (60)

where the viscoelastic time is τ = η/k and where D = ε̇,
see Eq. (16). Similarly, eliminating ε̇2 between Eqs. (58)
and (59), then injecting Eq. (57), we find the evolution

FIG. 9: A Maxwell viscoelastic liquid.

equation for the scalar field c:

ċ+
c

τc
= − ω

ηξ − ω2
σ (61)

with a relaxation time

τc =
ξη − ω2

χη
(62)

Here τc is positive due to Eq. (56) and its inverse τ−1c can
be the degradation rate of the morphogen. Using (61),
we eliminate ċ in (60) and find:

σ̇ +
σ

τσ
= kD − kωχ

ηξ − ω2
c (63)

where the stress relaxation time

τσ =
ξη − ω2

ξk
(64)

is shorter than the usual viscoelastic time τ = η/k as
soon as the coupling ω is non-zero. Eqs. (61,63) provide
an Eulerian formulation of the system evolution in terms
of the deformation rate D.

In the long time limit, the rheology is viscous:

σ → η D (65)

c → ω

χ
D (66)

and all relevant fields are proportional to each other in
this linear regime.

2. Polar field

Relevant non-mechanical fields may not always be
scalar: they can for instance be polar or axial (Ap-
pendix C). For instance, in collectively migrating cells, a
cell acquires a front-rear asymmetry manifested both in
its shape and in intracellular protein distributions. Such
cell-scale asymmetry defines a vector field, the polarity ~p
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[48, 49], where ~p and −~p characterize opposite configura-
tions. This is an example of a polar orientational order
parameter.

We treat here for simplicity a case with one dimension
of space, where the polarity ~p = p(x, t)~ex (~ex is a unit
vector) couples to a Maxwell viscoelastic liquid (see Fig. 9
for the notations). The energy E and the dissipation
function D depend on the fields (ε, ε1, p) and (ε̇, ε̇1, ṗ),
respectively. When homogeneous polarity is preferred,
the energy functional includes a term accounting for the
cost of inhomogeneities of the polarity, with a prefactor
(called “Frank constant”) KF ≥ 0 [60]. The system is
invariant under the transformation x → −x, p → −p,
allowing for a coupling term between deformation and
polarity gradient in the energy function. Eqs. (7,8) read,
with m = 2:

E(ε, ε1, p) =
1

2
kε21 +

1

2
χp2

+
1

2
KF

(
∂p

∂x

)2

+ ω ε1
∂p

∂x
(67)

where k, χ, KF are non-negative parameters, and where
ω is a parameter satisfying the condition ω2 ≤ kKF im-
posed by the convexity of E . The simplest expression for
the dissipation function has no cross-coupling:

D(ε̇, ε̇1, ṗ) =
1

2
η(ε̇− ε̇1)2 +

1

2
ξṗ2 (68)

where η and ξ are non-negative parameters. The stress
now depends on the polarity gradient:

σ =
∂D
∂ε̇

+
∂E
∂ε

= η(ε̇− ε̇1) (69)

through the additional relationship:

0 =
∂D
∂ε̇1

+
∂E
∂ε1

= −η(ε̇− ε̇1) + kε1 + ω
∂p

∂x
(70)

The variational equation for the polar field is obtained
after integration by parts:

0 =
∂D
∂ṗ

+
∂E
∂p

= ξṗ+ χp−KF
∂2p

∂x2
− ω∂ε1

∂x
(71)

Combining Eqs. (69-71) we obtain a set of two coupled
evolution equations for the stress and polarity field:

σ̇ +
k

η
σ = kD +

ω2

kξ

∂2σ

∂x2
− ωχ

ξ

∂p

∂x

+ω
kKF − ω2

kξ

∂3p

∂x3
(72)

ṗ+
χ

ξ
p =

ω

kξ

∂σ

∂x
+
kKF − ω2

kξ

∂2p

∂x2
(73)

with D = ε̇, see Eq. (16). The relaxation times for the
polarity and stress are distinct. Eqs. (72,73) combined

FIG. 10: Viscous fluid.

with mechanical balance ∂σ/∂x = 0 may be solved nu-
merically once accompanied by relevant boundary condi-
tions. See Ref. [89] for a similar treatment also including
active couplings between the polar and mechanical fields.

3. Tensor field

Variables such as stress which require force measure-
ments are called dynamical quantities. On the opposite,
some variables can be determined from visual measure-
ment only: they are called static or kinematic if they can
be determined from still images or movies, respectively.
They are descriptive: their measurement do not require
any proper knowledge of either the physics or the biology
that underly the system behaviour, nor of the past his-
tory of the system. In epithelia, an example is given by
noting that planar cell polarity proteins exhibit tissue-
scale ordered domains that are often best described by
a tensor field [15, 16]. These tensors, and other similar
ones (see Appendix A), should be added to a consistent
continuum modelling of a cellular material, for instance
as variables of the energy and dissipation functions. See
also Refs. [90, 91] for a detailed study, within a varia-
tional framework, of the derivation of constitutive equa-
tions involving a tensorial order parameter.

Here, we treat the case of a viscous liquid (Fig. 10),

and choose to couple the deformation rate tensor D to a

second-order tensor Q in the dissipation function. For-
mally, Eqs. (7,8) should be written with an additional

internal variable Q, so that m = 1, and tensorial cou-
pling parameters. However, the trace and the deviators

of tensors (here D and Q) are largely independent; in
practice it is convenient to treat the trace and the devi-
ator as separate variables with distinct, scalar coupling
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parameters. Eqs. (7,8) thus read, with m = 2:

E(DevQ,TrQ) =

1

2
χ
(

DevQ
)2

+
1

2
χ̄
(

TrQ
)2

(74)

D(DevD,TrD,Dev
˙
Q,Tr

˙
Q) =

1

2
η
(

DevD
)2

+
1

2
η̄
(

TrD
)2

+
1

2
ξ

(
Dev

˙
Q

)2

+
1

2
ξ̄

(
Tr

˙
Q

)2

+ωDevDDev
˙
Q + ω̄TrDTr

˙
Q (75)

The parameters χ, χ̄, η, η̄, ξ, ξ̄ are non-negative, and the
inequalities ω2 ≤ ξη, ω̄2 ≤ ξ̄η̄ ensure the convexity of the
dissipation function. From Eqs. (9,10) we first compute
the stress tensor:

Devσ =
∂D

∂DevD
= ηDevD + ωDev

˙
Q (76)

Trσ =
∂D
∂TrD

= η̄TrD + ω̄Tr
˙
Q (77)

where a linear coupling to
˙
Q modifies the usual consti-

tutive equations of a viscous liquid. We next obtain the
variational equations:

0 =
∂D

∂Dev
˙
Q

+
∂E

∂DevQ

= ξDev
˙
Q + ωDevD + χDevQ (78)

0 =
∂D

∂Tr
˙
Q

+
∂E
∂TrQ

= ξ̄Tr
˙
Q + ω̄TrD + χ̄TrQ (79)

from which the evolution equations for the tensor Q read:

Dev
˙
Q +

χ

ξ
DevQ = −ω

ξ
DevD (80)

Tr
˙
Q +

χ̄

ξ̄
TrQ = − ω̄

ξ̄
TrD (81)

Note that the relaxation times for the trace and deviator
can in principle be different. Inserting (80-81) into (76-
77) yields the stress tensor:

Devσ =

(
η − ω2

ξ

)
DevD− ωχ

ξ
DevQ (82)

Trσ =

(
η̄ − ω̄2

ξ̄

)
TrD− ω̄χ̄

ξ̄
TrQ (83)

In the long time limit, we find for the tensor Q:

DevQ → −ω
χ

DevD (84)

TrQ → − ω̄
χ̄

TrD (85)

(compare with Eq. (66)), and for the viscous stress ten-
sor:

Devσ → ηDevD (86)

Trσ → η̄TrD (87)

(compare with Eq. (65)). Ref. [16] provides a study of

Eq. (84), where the tensor Q quantifies the polarization
of the Dachs protein in the dorsal thorax of fruitfly pupae.

IV. CONCLUSION

Starting from physical insights and symmetry consid-
erations, we are able to write down tensorial constitutive
equations and to insert them in the framework of con-
tinuum mechanics. Here is one example of the possible
form of these equations:

∂ρ

∂t
+∇ · (ρ~v) = s (88)

∇ · σ(~x, t) + ~f(~x, t) = ~0 (89)

σ = F
(
e,D,∇, . . .

)
(90)

ė = D +∇~v e + e∇~vT − g −Dp −Da (91)

where g is the growth rate, Dp the plastic deforma-

tion rate, and Da the active deformation rate. When
the constitutive relations are linear, this whole approach
boils down to the classical framework of hydrodynamics.
In the presence of plasticity, non-differentiable rheolog-
ical elements (sliders) are treated using the dissipation
function formalism. Ingredients specific to living tissues,
such as cell contractility or division, can be straightfor-
wardly included in a consistent manner. Further, non-
mechanical features can be naturally coupled to the me-
chanics in a systematic way in accordance with symmetry
principles. A complete set of partial differential equations
modelling the system can be explicitly derived from the
energy and dissipation functions, using the method de-
scribed in Section II B 3, and can then be solved numer-
ically. Section III D shows how to formally treat a large
variety of biomechanical problems.

Tools exist to analyse 2D or 3D movies of tissue dy-
namics and perform quantitative measurements within
a continuum mechanics description, so that data can be
compared with the model predictions, i.e. numerical so-
lutions of the model equations. Such a comparison is in-
strumental in determining the value of the unknown pa-
rameters, and is indeed already possible on a large scale
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in animal as well as in vegetal tissues. Computing the
difference(s) between wild-type tissues and other condi-
tions, using either mutants or drugs, enables to delineate
separately the contribution of a single ingredient within
a complex feedback network, and to further validate a
model. It is essential to limit the number of mechanical
parameters, which should be much lower than the num-
ber of measurements available to constrain the models.
In this respect, the continuum description is more eco-
nomical than a simulation of a whole tissue at the cell
scale. This advantage may be crucial when, e.g., study-
ing feedbacks between gene expression and mechanical
response. In situ measurements of local force and stress
are improving at a quick pace and will hopefully be soon
compared with local elastic deformation measurements.
Our modelling approach should help exploit the future
wealth of available data and incorporate it into a consis-
tent picture.

In practice, many issues need to be overcome in order
to validate continuum descriptions of tissues from exper-
imental data. First, an optimal length scale of measure-
ment must be properly defined, larger that the typical cell
size, but smaller than the sample size, and therefore suit-
able for hydrodynamics. Second, in heterogeneous time-
dependent systems like tissues, it is also often difficult to
average over space or time to improve the signal-to-noise
ratio. It may then be necessary to ensemble-average sev-
eral experiments performed in identical conditions, at the
cost of underestimating the intrinsic behavioural variabil-
ity of a living tissue. A third difficulty originates in the
very size of data, in terms of manipulation and repre-
sentation. Fourth, the formalism of generalised standard
materials, initially developed for hard condensed matter,
will probably require specific modelling efforts to incor-
porate features of soft condensed matter and biophysics,
such as progressive plasticity [92] or cell contour fluctua-
tions [7].

Facing this formidable task, it is important to deter-

mine the best approach in representing and correlating
various fields, to obtain a more intuitive grasp of the rela-
tive importance of various couplings. Simplifications may
also help, e.g., replacing symmetric tensors or even vec-
tors by scalars, assuming that amorphous materials have
isotropic moduli, etc. These simplifications can only be
informed by the specifics of any given system. Quite gen-
erally, genetic engineering or pharmacological treatment
can help discriminate the contribution made by a par-
ticular ingredient (e.g., by subtraction). Reference [16]
includes some examples of scale determination, choices
of simplifications, handling of data correlations when a
prefactor is unknown, maps of variables and correlations,
and the subtractive method.

Ultimately, numerical estimates for the parameters are
needed in order to validate a model. Questions that
need be considered are among the following, especially
in the more distant perspective of integrating ingredients
from genetics with mechanical models to fully understand
morphogenetic processes. What kind of model parame-
ters can be extracted from state-of-the art experimental
data? What minimal set of data is required for extracting
the parameters associated with a given class of models?
Or reciprocally, given a modelling framework, what set
of minimal experiments are necessary for validation and
parameter extraction? Can we discriminate among mod-
els on the base of their capacity to interprete the data in
the most economical way?
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FIG. 11: Measurement of texture. (A) Snapshot of a foam, in
an isotropic region; its texture has two equal eigenvalues. (B)
Same foam, in an anisotropic region; ; its texture has two dif-
ferent eigenvalues. (C) A tissue. Straight lines, called “links”,
are drawn between centers of neighbouring cells. Reprinted
from [80].

Appendix

APPENDIX A: TENSORIAL TOOLS TO
DESCRIBE CELLULAR MATERIALS

The deformation and the deformation rate are among
the most fundamental variables in the classical theory of
continuum materials. In the case of cellular materials,
the continuum description has to include the cell shapes,
the neighbour configuration and other local geometrical
properties. Blanchard et al. [93, 94] measure separately
the deformation rate and the cell shape changes. Their
difference is attributed only to the net effect of cell rear-
rangements, which is thus indirectly estimated.

Alternatively, Graner et al. introduce a direct and in-
dependent measurement of the deformation rate, the cell
shape changes and the rate of intercalation, without any
a priori assumption regarding the causal relationship be-
tween these quantities. This method, explained in detail
in Ref. [80], has been applied to foams [92] and to tissues
[16]. We recall it here briefly in the 2D case.

Consider two cells which share an edge (Fig. 11).
Their centers of mass have coordinates ~r1 = (x1, y1) and
~r2 = (x2, y2). A pair of such cells is called a “link”,

characterised by the vector ~̀ = ~r2 − ~r1 with coordinates
(X,Y ) = (x2 − x1, y2 − y1). The link vector carries the
information on link length and angle. The link matrix m
is defined as:

m =

(
X2 XY
Y X Y 2

)
(A1)
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It retains the information of link size and angle, but not
of its sign. Averaging it over a group of cells, at any
chosen length scale, reduces the whole cell pattern to
the information of deformation and anisotropy over the

corresponding set of links, called its texture, M =
〈
m
〉
:

2D : M =

( 〈
X2
〉
〈XY 〉

〈Y X〉
〈
Y 2
〉 ) (A2)

There exist two orthogonal axes (eigenvectors) in which

M would be diagonal, with strictly positive eigenvalues
λi (i = 1 or 2). If we call 〈`+〉 the r.m.s. length of
links in the direction of elongation (say, 1) and 〈`−〉 the
r.m.s. length of links in the direction of compression
(say, 2), then λ1 ≈

〈
`2+
〉
/2 and λ2 ≈

〈
`2−
〉
/2. In 2D,

M is represented by an ellipse with axes proportional to
the eigenvalues λi. It is more circular in Fig. 11A than
in Fig. 11B. This measurement easily becomes multi-
scale upon coarse-graining over some spatial domain, by
performing averages over links (lines in Fig. 11C); time
averages over several images can be performed too.

The above mentioned kinematic tensors (the deforma-
tion rate, the cell shape changes and the rate of inter-
calation) can be expressed using the formalism based on
this texture [80]. The cell shape changes correspond to
the changes in texture. The links which appear (or disap-
pear) in the time interval between two successive images
of a movie characterise all changes in the cell pattern
topology. All links which are conserved during the time
interval between two successive images of a movie can be
tracked: their changes express the relative motion of two
neighboring cells, and thus measure the velocity gradient.

APPENDIX B: NON-UNICITY OF THE
DIAGRAM REPRESENTATION

Usually, when constructing a rheological diagram, one
starts from physical insights about the material; for in-
stance, in the case of a tissue: “cells store elasticity”
or “cell rearrangements are negligible”. Depending on
the system configuration and structure, the correspond-
ing forces and displacements are put in series or in paral-
lel. If the component elements (e.g. springs or dashpots)
are intuitively associated with precise cellular structures,
then the topologies of these diagrams reflect how these
structures are thought to be mutually connected mechan-
ically.

Once the diagram has been constructed, a unique set
of equations can be written (see Section II B 1). It con-
tains the relevant parameters which can eventually be
extracted from rheological data. If the model success-
fully reproduces the data, one is tempted to infer that
the initial physical modelling has been correct and that
the rheological diagram is validated. We now point out
on a very simple example that different rheological dia-
grams may be associated to the same equations.

(A)

(B)

FIG. 12: Two rheological models with identical constitutive
equation, Eq. (B1). (A) Maxwell-based model, same as Fig
1. (B) Voigt-based model.

Fig. 12a, identical to Fig 1, shows a Maxwell element
(linear viscoelastic liquid) in parallel with a dashpot. As
shown in Section II B 1, the corresponding equation is of
the form:

σ̇ + ασ = βε̇+ γε̈ (B1)

with

α =
kA1
ηA1

β =
ηA1 + ηA2
ηA1

kA1

γ = ηA2 (B2)

It happens that this equation also corresponds to a dis-
tinct rheological diagram, namely a Voigt element (linear
viscoelastic solid) in series with a dashpot (Fig. 12b). In
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the latter case the equation parameters are

α =
kB1

ηB1 + ηB2

β =
ηB2

ηB1 + ηB2
kB1

γ =
ηB1 η

B
2

ηB1 + ηB2
(B3)

They can be obtained from those of Fig. 12a using:

kB1 = kA1
(ηA1 + ηA1 )2

(ηA1 )2
(B4)

ηB1 =
ηA2
ηA1

(ηA1 + ηA1 ) (B5)

ηB2 = ηA1 + ηA1 (B6)

Conversely, the parameters for Fig. 12a can be obtained
from those of Fig. 12b using:

kA1 = kB1
(ηB2 )2

(ηB1 + ηB1 )2
(B7)

ηA1 =
(ηB2 )2

ηB1 + ηB1
(B8)

ηA2 =
ηB1 η

B
2

ηB1 + ηB1
(B9)

APPENDIX C: SCALAR, POLAR, AXIAL,
TENSOR

In terms of symmetry, in 1D the main distinction is be-
tween variables which either change or do not change sign
under the transformation x → −x. In two or more di-
mensions, each parameter or variable used to describe the
mechanical behaviour of a material can be classified ac-
cording to its number of independent components: scalar,
vector and tensor. To avoid ambiguities regarding vec-
tors sometimes found in the literature, Ref. [95] suggests
to distinguish polar and axial quantities We present here
in 2D the vocabulary we use, which can be immediately
generalised to 3D.

a. Scalar A scalar is simply a real number: it has a
magnitude that can be ordered on a single scale. This is
the case for the cell density ρ or for the concentration c.

b. Polar A vector consists in several components;
for instance a magnitude and one (in 2D) or two (in 3D)
angles. It is a polar quantity ~p : its sign is significant,
and changing ~x → −~x transforms ~p in −~p. It is used to
describe a force or a velocity, or a protein concentration
whose distribution along a cell contour has a local max-
imum. It is usually represented graphically as an arrow.

A unit vector has only angles, and no information
for magnitude: for instance the orientation of a polar
molecule, or the direction of polarisation of a migrating

cell.
c. Axial An axial quantity is unchanged under the

transformation ~x→ −~x and its sign is not significant. It
has a magnitude. Its angles are defined so as to identify
opposite directions: in 2D, for instance, the angle is de-
fined modulo π, i.e. between 0 and π. It describes the
axis of a fiber, a nematic molecule, or a protein concen-
tration whose distribution along a cell contour has two
diametrically opposed maxima. It is often represented
graphically as a bar (without any arrow) or as a bivector
(a bar with an arrow at each end) whose length encodes
the magnitude.

d. Symmetric tensor A symmetric tensor is usually
represented graphically as an ellipse. It has two or three
perpendicular axes in 2D or in 3D, respectively. It has
one magnitude per axis. In 2D, one angle between 0 and
π is enough to describe the orientation of both axes. A
symmetric tensor remains unchanged under the transfor-
mation ~x→ −~x. The adjective “symmetric” denotes the
symmetry of components. Examples include the stress
(magnitude is positive for traction, negative for compres-
sion), the deformation, the deformation rate, the inertia
tensor.

The isotropic part of a symmetric tensor is its trace
times the identity tensor. The information it conveys
thus reduces to the trace, which is a scalar. The
anisotropic part of a symmetric tensor, i.e. what remains
when its symmetric part has been removed, is called the
deviator: the sum of its (two or three) magnitudes is
zero. In 2D, the information it carries reduces to one
magnitude and one angle. It can be represented as a
bar (usually oriented by convention along the axis with
a positive magnitude).

A very different example is a tensor like the inertia of a
fiber or a nematic molecule. It has one finite magnitude,
the other(s) being equal to zero, and can be plotted as
a bar whose length encodes the magnitude, like an axial
quantity. Axial quantities can thus be considered as a
subcategory of symmetric tensors.

e. General tensor Tensors which are not symmet-
ric are characterised by a general matrix, i.e. four in-
dependent numbers in 2D. One example is the velocity
gradient. In the case of the velocity gradient tensor one
often separates its antisymmetric part, called the vortic-
ity (represented, in 2D, as if it were a scalar) from the
symmetric part, the deformation rate (represented as a
symmetric tensor).

f. Pseudo-scalar, pseudo-vector The vorticity has
its sign reversed under the transformation ~x → −~x. It
is therefore considered as a pseudo-scalar (in 2D) or a
pseudo-vector (in 3D). Incorporating vorticity (or any
other pseudo-scalar or pseudo-vector such as a cross vec-
tor product) into equations is often easier in the form of
the equivalent antisymmetric tensor (recall that vortic-
ity can be seen as the antisymmetric part of the velocity
gradient).

g. Higher order tensor Higher order tensors are of-
ten used to relate two usual (second order) tensors. For
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instance, the elastic modulus relates the stress to the de-
formation in the linear response limit, and is intrinsically
a fourth order tensor. However, for an isotropic mate-
rial, such a fourth order tensor reduces to only a few
independent coefficients. For instance, in linear elastic-
ity, the relation between the stress and the deformation
(two symmetric tensors) reduces to one linear scalar rela-
tion between the traces of both tensors and one propor-
tionality relation between the deviators of both tensors.
It is thus not necessary to use a fourth order tensor in
that case. All other cases treated in the present article
can also be expressed in simpler terms. Correspondingly,
such higher order tensors are not discussed.

APPENDIX D: TRANSPORT OF ELASTIC
DEFORMATION

The evolution of a tensor representing a quantity at-
tached to the material, such as the elastic deformation
e, results not only from the physical ingredients (such
as growth, plasticity, contractility, see Section III), but
also from the transport by the velocity field. We here
investigate in detail the latter contribution. We will see
that it complements the ~v · ∇ contribution that is used
for scalars and vectors.

For simplicity, the coordinate system used to express
the tensor is usually a fixed (orthonormal) referential.
Meanwhile, the material is transported by the velocity
field and the natural coordinate system used to describe
the tensor is thus altered (and may be no longer orthonor-
mal). For instance, if the material is rotated as a solid,
the tensor rotates in the same manner. This implies that
the time evolution of tensors, the so-called “objective
derivative”, involves new terms that are of order 1 in
the elastic deformation [62, 72–74].

As discussed in Section II C, we have in mind a tissue
that may undergo a large number of cell rearrangements
(this is often realistic since cell shapes can deform only
up to a finite limit) so that eventually the accumulation
of rearrangements can constitute a large contribution to
the total deformation ε. In Appendix D 1, we define elon-
gation tensors and determine their time evolution. In
Appendix D 2, we discuss their relation to deformation.
In Appendix D 3, we derive the evolution equation for the
deformation tensor. Finally, in Appendix D 4, we discuss
volume conservation.

1. Elastic elongation tensors

A reasonable way to define the current elastic (tenso-
rial) deformation e of a material is to quantify how much
the current material state locally departs from a (local)
relaxed state that would be obtained by cutting out a
small region of interest [19]. This has recently been done
in two different ways [53, 80] and applied to bubbles (or
droplets) in the context of liquid foams (or emulsions,

respectively). In both methods, the deformation e is as-

sessed by (i) taking representative vectors ~̀ attached to
the material in its current configuration, (ii) determin-

ing how they differ from their original value ~̀0 and (iii)
finding the deformation tensor e that is compatible with

the change from ~̀
0 to ~̀. Rather than dealing with de-

formation e whose rest value is zero, both methods deal
with (squared) elongation tensors, whose rest values are
proportional to identity.

The method of Ref. [80] is operational on images (or
movies) of 2D foams, as described in Appendix A. It mea-

sures only vectors ~̀ in the current configuration. It relies
on the assumption that the corresponding relaxed vectors
~̀
0 (from bubble center to bubble center) are distributed

isotropically with, say, a mean squared length 〈~̀
T

0
~̀
0〉 =

R2. It then provides the tensor M = 〈~̀ ⊗ ~̀〉 = 〈~̀ ~̀
T
〉

suitably averaged spatially. Thus M = R2 I when the
material is at rest.

The method of Ref. [53] starts with vectors ~̀0 located

on a circle in the relaxed configuration (~̀
T

0
~̀
0 = R2) and

on an ellipse in the current configuration (~̀
T
B
−1
~̀ = R2),

thus with B = I when the current configuration is re-
laxed. This method is mainly a theoretical one, since
the corresponding actual experiments require ablation,
which is a destructive technique [19].

Let us now examine how the tensor M of the former
method and the tensor B of the latter method evolve
when the material is subjected to a velocity field ~v(~r).

After a time dt has elapsed, a vector ~̀ attached to the

material is turned into ~̀′ = (I + ξ)~̀, where we have

noted ξ ≡ ∇~v dt. The new value of m = ~̀ ~̀T is m
′

=

(I + ξ)m (I + ξ
T

). Thus, m
′ −m = ξm + mξ

T
+O(ξ

2
).

Averaging over center-to-center vectors ~̀ yields: M
′
−

M = ξM+Mξ
T

+O(ξ
2
). Dividing by dt and taking the

limit dt→ 0 yields the time-derivative of M:(
∂

∂t
+ ~v · ∇

)
M = ∇~vM + M∇~vT (D1)

Regarding the tensor B of Ref. [53], its value after dt

obeys: ~̀
′T
B
′−1
~̀′ = R2 hence ~̀

T
(I + ξ

T
)B
′−1

(I + ξ)~̀ =

~̀TB
−1
~̀. Since this applies for many independent values

of vector ~̀ (on an ellipse), the tensors themselves are

equal: (I + ξ
T

)B
′−1

(I + ξ) = B
−1

. Taking advantage of

the fact that ξ is small: B
′

= (I + ξ)B(I + ξ
T

) + O(ξ
2
)

and thus it turns out that B evolves in the same manner
as M: (

∂

∂t
+ ~v · ∇

)
B = ∇~vB + B∇~vT (D2)
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Let us now compare M and B in more detail. As
mentioned above, when the tissue is at rest, one has

M/R2 = B = I. Since R is a constant, Eqs. (D1)

and (D2) show that M/R2 and B evolve identically. As a
result, they are actually equal not only when the material
is at rest, but also at all times:

M

R2
= B (D3)

2. Expression of the elastic deformation tensor

In Appendix D 1, we have derived the evolution of the

elongation M/R2 = B. We will now determine its re-
lation to deformation tensors and choose one particular
definition of the deformation e. Let us first assume that
some symmetric tensor e provides the link, up to first or-
der, between the initial and the current material vectors:

~̀ = [I + e +O(|e|2)]~̀0. (D4)

where |e| is the norm of tensor e. It is always possible to
choose e symmetric since the absolute orientation of the
local initial state is arbitrary (see Ref. [53] for detail).

Hence, M = 〈~̀ ~̀
T
〉 = [I + e + O(|e|2)]〈~̀0 ~̀

T

0 〉[I + e +

O(|e|2)]. Recalling that 〈~̀0 ~̀
T

0 〉 = R2, this yields:

B =
M

R2
= I + 2e +O(|e|2) (D5)

At small deformations, all deformation measures obey
Eq. (D4). Ref. [53] chooses to define the deformation
tensor e such that higher order terms are identically zero:

I + 2e ≡ B (D6)

3. Evolution of the elastic deformation tensor

Combining Eq. (D2) and (D6) yields :(
∂

∂t
+ ~v · ∇

)
e−∇~ve− e∇~vT =

∇~v +∇~vT

2
(D7)

In the rheology literature, the left-hand side of this equa-
tion is known as the upper-convected derivative (Eq. (19))
of the deformation tensor e. Other definitions of the de-
formation than Eq. (D6), with higher order terms, yield
an evolution equation that differs from Eq. (D7), see e.g.
Ref. [80].

4. Volume conservation

Following the analysis of Ref. [53], let us now discuss
the conservation of volume in the various terms of the

constitutive equation.

If βi are the eigenvalues of B, the ellipse (or ellipsoid)

~̀TB
−1
~̀ = R2 defined by B has half-axes

√
βiR, to be

compared to the radius R of the circle (or sphere) in the

relaxed configuration (~̀
T

0
~̀
0 = R2). Hence, the volume

of the ellipsoid is Ω =
∏d
i=1

√
βi =

√
detB times larger

than that of the sphere, where d is the dimension (1, 2
or 3) of space. Thus, the ratio of both volumes changes
with a rate given by:

Ω̇

Ω
=

1√
detB

d

dt

(√
detB

)
=

1

2 detB

d

dt

(
detB

)
=

1

2
Tr

(
B
−1 ˙

B

)
(D8)

Injecting Eq. (91) for the time evolution of B into
Eq. (D8) above, one obtains:

Tr(D) =
Ω̇

Ω
+ Tr

(
B
−1

Dp

)
+Tr

(
B
−1

g

)
+ Tr

(
B
−1
Da

)
(D9)

Thus the actual rate of volume change ∇·~v = Tr(D) can
be decomposed into several contributions: the contribu-
tion from the elastic stretching (term Ω̇/Ω), the (usually
small) plastic contribution from the rearrangements, see
Eqs. (21) and (22), the contribution from the growth rate,
see Eqs. (42) and (44), and that from the active defor-
mation rate, see Eq. (53).

APPENDIX E: MEASURING THE DIVISION
AND APOPTOSIS RATES

Section III B incorporates the apoptosis rate ka and the
division rate kd into a continuum model. Here we define
operationally how these quantities can be extracted from
experimental movies.

If the tissue is disordered enough (that is, if cells are
not totally synchronized and spatially correlated), time
and space scales ∆t and ∆x can be chosen to count the
number of divisions and apoptoses in each space-time box
of size ∆x∆t. Then the apoptosis rate is :

ka ≡
1

∆t

Napo (∆x,∆t)

N (∆x)
(E1)

where Napo is the number of apoptoses in the space-time
box ∆x∆t, and N is the number of cells in space box
∆x, assumed to be roughly constant if Napo (∆x,∆t)�



23

N (∆x). Similarly the division rate is :

kd ≡
1

∆t

Ndiv (∆x,∆t)

N (∆x)
(E2)

These measured rates have a meaning in terms of con-
tinuum description if ∆x∆t is sufficiently large to have
Napo, Ndiv � 1. Microscopy movies of a tissue can give
access to its division and apoptosis dynamics in time and
space.

As a consequence, if the tissue dynamics is ergodic

and if the division rate kd is constant, k−1d measures an
average of the cell cycle duration. The definitions of kd
ad ka remain operational and valid even when either of
these conditions is not met. If a cell apoptosis eventually
results in its complete disappearance, the contribution of
apoptosis to growth is −ka, and at the tissue scale the
growth rate is:

g = kd − ka (E3)
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