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Abstract

Exception handling is provided by most modern programming lan-
guages. It allows to deal with anomalous or exceptional events which
require special processing. In computer algebra, exception handling is an
efficient way to implement the dynamic evaluation paradigm: for instance,
in linear algebra, dynamic evaluation can be used for applying programs
which have been written for matrices with coefficients in a field to matri-
ces with coefficients in a ring. Thus, a proof system for computer algebra
should include a treatement of exceptions, which must rely on a careful
description of a semantics of exceptions. The categorical notion of monad
can be used for formalizing the raising of exceptions: this has been pro-
posed by Moggi and implemented in Haskell. In this paper, we provide
a proof system for exceptions which involves both raising and handling,
by extending Moggi’s approach. Moreover, the core part of this proof
system is dual to a proof system for side effects in imperative languages,
which relies on the categorical notion of comonad. Both proof systems
are implemented in the Coq proof assistant.

1 Introduction

Using exceptions is an efficient way to simultaneously compute with dynamic
evaluation in exact linear algebra. For instance, for computing the rank of a
matrix, a program written for matrices with coefficients in a field can easily be
modified by adding an exception treatment in order to be applied to a matrix
with coefficients in a ring: the exception mechanism provides an automatic case
distinction whenever it is required.

The question that arises then is how to prove correctness of the new algo-
rithm. It would be nice to design proofs with two levels, as we designed the
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algorithms: a first level without exceptions, then a second level taking the ex-
ceptions into account. In this paper, we propose a proof system following this
principle.

Exceptions form a computational effect, in the sense that a syntactic ex-
pression f : X → Y is not always interpreted as a function JfK : JXK → JY K
(where, as usual, the sets JXK and JY K denote the interpretations of the types
X and Y ). For instance a function which raises an exception can be interpreted
as a function JfK : JXK → JY K + Exc where Exc is the set of exceptions and
“+” denotes the disjoint union. In a programming language, exceptions usually
differ from errors in the sense that it is possible to recover from an exception
while this is impossible for an error; thus, exceptions have to be both raised and
handled.

The fundamental computational effect is the evolution of states in an imper-
ative language, when seen from a functional point of view. There are several
frameworks for combining functional and imperative programming: the effect
systems classify the expressions according to the way they interact with the
store [11], while the Kleisli category of the monad of states (X × St)St (where
St is the set of states) also provides a classification of expressions [14]; indeed,
both approaches are related [19]. Lawvere theories were proposed for dealing
with the operations and equations related to computational effects [15, 12]. An-
other related approach, based on the fact that the state is observed, relies on
the classification of expressions provided by the coKleisli category of comonad
of states X × St and its associated Kleisli-on-coKleisli category [4].

The treatment of exceptions is another fundamental computational effect.
It can be studied from the point of view of the monad of exceptions X + Exc
(where Exc is the set of exceptions), or with a Lawvere theory, however in these
settings it is difficult to handle exceptions because this operation does not have
the required algebraicity property [16, 17]. This issue has been circumvented
in [18] in order to get a Hoare logic for exceptions, in [13] by using both algebras
and coalgebras. and in [17] by introducing handlers. The formalization of
exceptions can also be made from a coalgebraic point of view [10]. In this paper
we extend Moggi’s original approach: we use the classification of expressions
provided by the Kleisli category of the monad of exceptions and its associated
coKleisli-on-Kleisli category; moreover, we use the duality between states and
exceptions discovered in [3]. However, it is not necessary to know about monads
or comonads for reading this paper: the definitions and results are presented in
an elementary way, in terms of equational theories.

In Section 2 we give a motivating example for the use of exceptions as an
efficient way to compute with dynamic evaluation in exact linear algebra.

Then in Section 3 we define the syntax of a simple language for dealing with
exceptions.

The intended denotational semantics is described in Section 4: we dissociate
the core operations for switching between exceptions and non-exceptional values,
on one side, from their encapsulation in the raising and handling operations, on
the other side.

In Section 5 we add decorations to the syntax, in order to classify the ex-
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pressions of the language according to their interaction with the exceptions.
Decorations extend the syntax much like compiler qualifiers or specifiers (e.g.,
like the throw annotation in C++ functions’ signatures). In addition, we also
decorate the equations, which provides a proof system for dealing with this dec-
orated syntax. The main result of the paper is that this proof system is sound
with respect to the semantics of exceptions (Theorem 5.5). A major property
of this new proof system is that we can separate the verification of the proofs
in two steps: a first step checks properties of the programs whenever there is
no effect, while a second step takes the effects into account via the decorations.
Several properties of exceptions have been proven using this proof system, and
these proofs have been verified in the Coq proof assistant.

2 Rank computations modulo composite num-

bers

Rank algorithms play a fundamental role in computer algebra. For instance,
computing homology groups of simplicial complexes reduces to computing ranks
and integer Smith normal forms of the associated boundary matrices [6]. One
of the most efficient method for computing the Smith normal form of such
boundary matrices also reduces to computing ranks but modulo the valence,
a product of the primes involved in the Smith form [7]. Now rank algorithms
(mostly Gaussian elimination and Krylov based methods) work well over fields
(note that Gaussian elimination can be adapted modulo powers of primes [7,
§5.1]). Modulo composite numbers, zero divisors arise. Gauss-Bareiss method
could be used but would require to know the determinant in advance, with is
more difficult than the valence. The strategy used in [7] is to factor the valence,
but only partially (factoring is still not polynomial). The large remaining com-
posite factors will have very few zero divisors and thus Gaussian elimination or
Krylov methods will have very few

risks of falling upon them. Thus one can use dynamic evaluation: try to
launch the rank algorithm modulo this composite number with large prime
factors and “pretend” to be working over a field [8]. In any case, if a zero
divisor is encoutered, then the valence has been further factored (in polynomial
time!) and the algorithm can split its computation independently modulo both
factors.

An effective algorithm design, here in C++, enabling this dynamic evalua-
tion with very little code modification, uses exceptions:

1. Add one exception at the arithmetic level, for signaling a tentative division
by a zero divisor, see Fig. 1.

2. Catch this exception inside the rank algorithm and throw a new exception
with the state of the rank iteration, see Fig. 2 (in our implementation the
class zmz wraps integers modulo m, the latter modulus being a static

global variable).
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inline Integer invmod(const Integer& a, const Integer& m) {
Integer gcd,u,v; ExtendedEuclideanAlgorithm(gcd,u,v,a,m);
if (gcd != 1) throw ZmzInvByZero(gcd);
return u>0?u:u+=m;

}

Figure 1: Throwing an exception upon division by a non unit

try {
invpiv = zmz(1) / A[k][k];

} catch (ZmzInvByZero e) {
throw GaussNonInvPivot(e.getGcd(), k, currentrank);

}

Figure 2: Re-throwing an exception to forward rank and iteration number in-
formation

3. Then it is sufficient to wrap the rank algorithm with a dynamic evaluation,
splitting the continuation modulo both factors, see Fig. 3.

The advantage of using exceptions over other software design is twofold:
first, throwing an exception at the arithmetic level and not only on the in-

verse call in the rank algorithm allows to prevent that other unexpected divisions
by zero divisors go unnoticed;

second, re-throwing a new exception in the rank algorithm allows to keep
its specifications unchanged. It also enables to keep the modifications of rank
algorithms to a minimum and to clearly separate normal behavior with primes
from the exceptional handling of splitting composite moduli.

In the following, we propose a proof system with decorations, so that proofs
can easily be made in two steps: a first step without exceptions, that is, just
preserving an initial proof of the rank algorithm; then a second level taking the
exceptions into account.

3 Syntax for exceptions

The syntax for exceptions in computer languages depends on the language: the
keywords for raising exceptions may be either raise or throw, and for handling
exceptions they may be either handle, try-with, try-except or try-catch,
for instance. In this paper we rather use throw and try-catch.

The syntax for dealing with exceptions may be described in two parts: a
basic part which deals with the basic data types and an exceptional part for
raising and handling exceptions.
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void DynEvalRank(RankPairs& vectranks, size t addedrank, ZmzMatrix&
A) {
try {
long rank = gaussrank(A); // in place modifications of A
vectranks.push back(RankPair(rank+addedrank, zmz::getModulus())

);
} catch (GaussNonInvPivot e) { // Split

long mymodulus1 = zmz::getModulus()/e.getGcd();
long mymodulus2 = zmz::getModulus()/mymodulus1;
// Homomorphism on the (n-k)×(m-k) remaining block
zmz::setModulus( mymodulus1 );
ZmzMatrix M1(A,e.getIndex(),e.getIndex());
DynEvalRank(vectranks, e.getCurrentRank(), M1);
// Homomorphism on the (n-k)×(m-k) remaining block
zmz::setModulus( mymodulus2 );
ZmzMatrix M2(A,e.getIndex(),e.getIndex());
DynEvalRank(vectranks, e.getCurrentRank(), M2);

} }

Figure 3: Recursive splitting wrapper around classical Gaussian elimination,
packing a list of pairs of rank and associated modulus.

The basic part of the syntax is a signature Sigbase , made of a types (or sorts)
and operations.

The exceptional types form a subset T of the set of types of Sigbase . For
instance in C++ any type (basic type or class) is an exceptional type, while in
Java

there is a base class for exceptional types, such that the exceptional types
are precisely the subtypes of this base class.

Now, we assume that some basic signature Sigbase and some set of excep-
tional types T have been chosen.

The signature Sigexc for exceptions is made of Sigbase
together with the operations for raising and handling exceptions, as follows.

Definition 3.1. The signature for exceptions Sigexc is made of Sigbase with
the following operations: a raising operation for each exceptional type T

and each type Y :
throwT ,Y : T → Y ,

and a handling operation for each Sigexc-term f : X → Y , each non-empty list of
exceptional types (Ti)1≤i≤n and each family of Sigexc-terms (gi : Ti → Y )1≤i≤n:

try{f} catch {Ti ⇒ gi}1≤i≤n : X → Y .
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An important, and somewhat surprising, feature of a language with excep-
tions is that all expressions in the language, including the try-catch expressions,
propagate exceptions. Indeed, if an exception is raised before some try-catch
expression is evaluated, this exception is propagated. In fact, the catch block in
a try-catch expression may recover from exceptions which are raised inside the
try block, but the catch block alone is not an expression of the language.

This means that the operations for catching exceptions are private opera-
tions: they are not part of the signature for exceptions. More precisely, the
operations for raising and handling exceptions can be expressed in terms of a
private empty type and two families of private operations: the tagging opera-
tions for creating exceptions and the untagging operations for catching them
(inside the catch block of any try-catch expression). The tagging and untagging
operations are called the core operations for exceptions. They are not part of
Sigexc, but the interpretations of the operations for raising and handling excep-
tions, which are part of Sigexc, are defined in terms of the interpretations of the
core operations. The meaning of the core operations is given in Section 4.

Definition 3.2. Let Sigexc be the signature for exceptions. The core of Sigexc
is the signature Sigcore made of Sigbase with a type 0 called the empty type and
two operations for each exceptional type T :

tagT : T → 0 and untagT : 0 → T

where tagT is called the exception constructor or the tagging operation and
untagT is called the exception recovery or the untagging operation.

4 Denotational semantics for exceptions

In this Section we define a denotational semantics for exceptions which relies
on the common semantics of exceptions in various languages, for instance in
C++ [1, Ch. 15], Java [9, Ch. 14] or ML.

The basic part of the syntax is interpreted in the usual way: each type X is
interpreted as a set JXK and each operation f : X → Y of Sigbase as a function
JfK : JXK → JY K.

But, when f : X → Y in Sigexc is a raising or handling operation, or when
f : X → Y in Sigcore is a tagging or untagging operation, it is not interpreted
as a function JfK : JXK → JY K: this corresponds to the fact that the exceptions
form a computational effect.

The distinction between ordinary and exceptional values is discussed in Sub-
section 4.1. Then, denotational semantics of raising and handling exceptions are
considered in Subsections 4.2 and 4.3, respectively. We assume that some inter-
pretation of Sigbase has been chosen.

4.1 Ordinary values and exceptional values

In order to express the denotational semantics of exceptions, a fundamental
point is to distinguish between two kinds of values: the ordinary (or non-
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exceptional) values and the exceptions. It follows that the operations may be
classified according to the way they may, or may not, interchange these two
kinds of values: an ordinary value may be tagged for constructing an exception,
and later on the tag may be cleared in order to recover the value; then we say
that the exception gets untagged.

Let Exc be a set, called the set of exceptions.
For each set A, the set A + Exc is the disjoint union of A and Exc and

the canonical inclusions are denoted normalA : A → A + Exc and abruptA :
Exc → A + Exc. For each functions f : A → B and g : Exc → B, we denote
by [f |g] : A+ Exc → B the unique function such that [f |g] ◦ normalA = f and
[f |g] ◦ abruptA = g.

Definition 4.1. An element of A + Exc is an ordinary value if it is in A and
an exceptional value if it is in Exc.

A function ϕ : A+ Exc → B + Exc:

• raises an exception if there is some x ∈ A such that ϕ(x) ∈ Exc.

• recovers from an exception if there is some e ∈ Exc such that ϕ(e) ∈ B.

• propagates exceptions if ϕ(e) = e for every e ∈ Exc.

Clearly, a function ϕ : A + Exc → B + Exc which propagates exceptions
may raise an exception, but cannot recover from an exception. Such a function
ϕ is characterized by its restriction ϕ|A : A → B + Exc, since its restriction on
exceptions ϕ|Exc

: Exc → B + Exc is the inclusion abruptB of Exc in B + Exc.
In the denotational semantics for exceptions, we will see that a term f : X →

Y of Sigexc or Sigcore may be interpreted either as a function JfK : JXK → JY K or
as a function JfK : JXK → JY K+Exc or as a function JfK : JXK+Exc → JY K+Exc.
However, in all cases, it is possible to convert JfK to a function from JXK+Exc
to JY K + Exc, as follows.

Definition 4.2. The upcasting conversions are the following transformations:

• every function ϕ : A→ B gives rise to �ϕ = normalB ◦ ϕ : A→ B + Exc,

• every function ψ : A→ B+Exc gives rise to Ţψ = [ψ|abruptB] : A+Exc →
B + Exc, which is equal to ψ on A and which propagates exceptions;

• it follows that every function ϕ : A → B gives rise to

։

ϕ = Ţ(�ϕ) =
[normalB ◦ ϕ|abruptB] = ϕ+ idExc : A+ Exc → B + Exc, which is equal
to ϕ on A and which propagates exceptions.

Since the upcasting conversions are safe (i.e., injective), when there is no
ambiguity the symbols �, Ţ and

։

may be omitted.
In this way, for each f : X → Y and g : Y → Z, whatever their effects, we

get JfK : JXK + Exc → JY K + Exc and JgK : JY K + Exc → JZK + Exc, which can
be composed.
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Thus, every term of Sigexc and Sigcore can be interpreted by first converting
the interpretation of each of its components f : X → Y to a function JfK :
JXK + Exc → JY K + Exc.

For Sigexc, this coincides with the Kleisli composition associated to the ex-
ception monad A+ Exc [14].

We will also use the following conversion.

Definition 4.3. The downcasting conversion is the following transformation:

• every function θ : A + Exc → B + Exc gives rise to Ťθ = θ ◦ normalA :
A→ B + Exc which is equal to θ on A and which propagates exceptions.

This conversion is unsafe: different θ’s may give rise to the same Ťθ.

4.2 Tagging and raising exceptions

Raising exceptions relies on the interpretation of the tagging operations. The
interpretation of the empty type 0 is the empty set ∅; thus, for each type X the
interpretation of 0 +X can be identified with JXK.

Definition 4.4. Let Exc be the disjoint union of the sets JT K for all the ex-
ceptional types T . Then, for each exceptional type T , the interpretation of the
tagging operation tagT : T → 0 is the coprojection function

JtagT K : JT K → Exc .

Thus, the tagging function JtagT K : JT K → Exc maps a non-exceptional value
(or parameter) a ∈ JT K to an exception JtagT K(a) ∈ Exc.

We can now define the raising of exceptions in a programming language.

Definition 4.5. For each exceptional type T and each type Y , the interpreta-
tion of the raising operation throwT ,Y is the tagging function JtagT K followed
by the inclusion of Exc in JY K + Exc:

JthrowT ,Y K = abrupt JY K ◦ JtagT K : JT K → JY K + Exc .

4.3 Untagging and handling exceptions

Handling exceptions relies on the interpretation of the untagging operations for
clearing the exception tags.

Definition 4.6. For each exceptional type T , the interpretation of the untag-
ging operation untagT : 0 → T is the function

JuntagT K : Exc → JT K + Exc ,

which satisfies for each exceptional type R:

JuntagT K ◦ JtagRK =

{

normal JT K when R = T

abrupt JT K ◦ JtagRK when R 6= T
: JRK → JT K + Exc.
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Thus, the untagging function JuntagT K, when applied to any exception e,
first tests whether e is in JT K; if this is the case, then it returns the parameter
a ∈ JT K such that e = JtagT K(a), otherwise it propagates the exception e.

Since the domain of JuntagT K is Exc, JuntagT K is uniquely determined by
its restrictions to all the exceptional types, and therefore by the equalities in
Definition 4.6.

For handling exceptions of types T1, . . . Tn, raised by the interpretation of
some term f : X → Y of Sigexc, one provides for each i in {1, . . . , n} a term
gi : Ti → Y of Sigexc (thus, the interpretation of gi may itself raise excep-
tions). Then the handling process builds a function which first executes f ,
and if f returns an exception then maybe catches this exception. The catching
part encapsulates some untagging functions, but the resulting function always
propagates exceptions.

Definition 4.7. For each term f : X → Y of Sigexc, and each non-empty lists
(Ti)1≤i≤n of exceptional types and (gi : Ti → Y )1≤i≤n of terms of Sigexc, let
(recover i)1≤i≤n denote the family of functions defined recursively by:

recover i =

{

[ JgnK | abruptY ] ◦ untagTn
when i = n

[ JgiK | recover i+1 ] ◦ untagTi
when i < n

: Exc → Y + Exc

Then the interpretation of the handling operation is:

Jtry{f} catch {Ti ⇒ gi}1≤i≤nK = [ normalY | recover 1 ] ◦ JfK.

It should be noted that JfK : JXK → JY K + Exc and that similarly
Jtry{f} catch {Ti ⇒ gi}1≤i≤nK : JXK → JY K + Exc.

When n = 1 we get:

Jtry{f} catch {T ⇒ g}K = [ normalY | [ JgK | abruptY ] ◦ untagT ] ◦ JfK .

This definition matches that of Java exceptions [9, Ch. 14] or C++ excep-
tions [1, §15].

In particular, in the interpretation of try{f} catch {Ti ⇒ gi}1≤i≤n, each
function JgiK may itself raise exceptions;

and the types T1, . . . , Tn need not be pairwise distinct, but if Ti = Tj for
some i < j then gj is never executed.

5 A decorated equational proof system for ex-

ceptions

In Sections 3 and 4 we have formalized the signature for exceptions Sigexc,
its associated core signature Sigcore , and we have described their denotational
semantics. However the soundness property is not satisfied, in the sense that
the denotational semantics is not a model of the signature, in the usual sense:
indeed, a term f : X → Y is not always interpreted as a function JfK : JXK →
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JY K; it may be interpreted as JfK : JXK → JY K + Exc, or as JfK : JXK + Exc →
JY K + Exc.

In order to get soundness, in this Section we add decorations to the signa-
ture for exceptions by classifying the operations and equations according to the
interaction of their interpretations with the mechanism of exceptions.

Signature
decoration

///o/o/o/o/o/o/o/o Decorated signature
interpretation

(sound)
///o/o/o/o/o/o/o/o

Semantics
(Section 3) (Section 5) (Section 4)

5.1 Decorations for exceptions

By looking at the interpretation (in Section 4) of the syntax for exceptions (from
Section 3), we get a classification of the operations and terms in three parts,
depending on their interaction with the exceptions mechanism.

The terms are decorated by (0), (1) and (2) used as superscripts, they are
called respectively pure terms, propagators and catchers, according to their
interpretations:

(0) the interpretation of a pure term may neither raise exceptions nor recover
from exceptions,

(1) the interpretation of a propagator may raise exceptions but is not allowed
to recover from exceptions,

(2) the interpretation of a catcher may raise exceptions and recover from ex-
ceptions.

For instance, the decoration (0) corresponds to the decoration noexcept in C++
(replacement of the deprecated throw()) and the decoration (1) corresponds to
throw(...), still in C++. The decoration (2) is usually not encountered in the
language, since catching is the prerogative of the core untagging function, which
is private.

Similarly, we introduce two kinds of equations between terms. This is done
by using two distinct relational symbols which correspond to two distinct inter-
pretations:

(≡) a strong equation is an equality of functions both on ordinary values and
on exceptions

(∼) a weak equation is an equality of functions only on ordinary values, but
maybe not on exceptions.

The interpretation of these three kinds of terms and two kinds of equations
is summarized in Fig. 4.

It has been shown in Section 4.1 that any propagator can be seen as a catcher
and that any pure term can be seen as a propagator and thus also as a catcher.
This allows to compose terms of different nature,
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Syntax Decorated syntax Interpretation

type type

X X JXK

term pure term

X
f

// Y X
f(0)

// Y JXK
JfK

// JY K

term propagator

X
f

// Y X
f(1)

// Y JXK
JfK

// JY K + Exc

term catcher

X
f

// Y X
f(2)

// Y JXK + Exc
JfK

// JY K + Exc

equation strong equation

f = g : X → Y f (2) ≡ g(2) : X → Y JfK = JgK

equation weak equation

f = g : X → Y f (2) ∼ g(2) : X → Y JfK ◦ normal JXK = JgK ◦ normal JXK

Figure 4: Interpretation of the decorated syntax.

so that it is not a restriction to give the interpretation of the decorated
equations only when both members are catchers.

Now we can add decorations to the signature for exceptions Sigexc and its
associated core signature Sigcore , from Definitions 3.1 and 3.2.

Definition 5.1. The decorated signature for exceptions Sigdecoexc and its associ-
ated decorated core signature Sigdecocore are made of Sigexc and Sigcore , respectively,
decorated as follows: the basic operations are pure, the tagging, raising and han-
dling operations are propagators, and the untagging operations are catchers.

5.2 Decorated rules for exceptions

In this Section we define an equational proof system for exceptions. This proof
system is made of the rules in Fig. 5. It can be used for

proving properties of exceptions, for instance in the Coq proof assistant.
In Fig. 5, the decoration properties are often grouped with other properties:

for instance, “f (1) ∼ g(1)” means “f (1) and g(1) and f ∼ g”; in addition, the
decoration (2) is usually dropped, since the rules assert that every term can be
seen as a catcher; and several rules with the same premisses may be grouped
together: H1...Hn

C1...Cp
stands for H1...Hn

C1
,. . . ,H1...Hn

Cp
.
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(a) Monadic equational rules for exceptions (first part):

f : X → Y g : Y → Z

g ◦ f : X → Z

X

idX : X → X

f

f ≡ f

f ≡ g

g ≡ f

f ≡ g g ≡ h

f ≡ h

f : X → Y g1 ≡ g2 : Y → Z

g1 ◦ f ≡ g2 ◦ f : X → Z

f1 ≡ f2 : X → Y g : Y → Z

g ◦ f1 ≡ g ◦ f2 : X → Z

f : X → Y g : Y → Z h : Z →W

h ◦ (g ◦ f) ≡ (h ◦ g) ◦ f

f : X → Y

f ◦ idX ≡ f

f : X → Y

idY ◦ f ≡ f

(b) Monadic equational rules for exceptions (second part):

f (0)

f (1)

f (1)

f (2)

X

id
(0)
X

f (0) g(0)

(g ◦ f)(0)
f (1) g(1)

(g ◦ f)(1)
f (1) ∼ g(1)

f ≡ g

f ≡ g

f ∼ g

f

f ∼ f

f ∼ g

g ∼ f

f ∼ g g ∼ h

f ∼ h

f (0) : X → Y g1 ∼ g2 : Y → Z

g1 ◦ f ∼ g2 ◦ f

f1 ∼ f2 : X → Y g : Y → Z

g ◦ f1 ∼ g ◦ f2

(c) Rules for the empty type 0:
X

[ ]
(0)
X : 0 → X

f, g : 0 → Y

f ∼ g

(d) Case distinction with respect to X + 0:

g(1) :X→Y k(2) :0→Y

[g | k](2) :X → Y [g | k] ∼ g [g | k] ◦ [ ]X ≡ k

f, g : X → Y f ∼ g f ◦ [ ]X ≡ g ◦ [ ]X
f ≡ g

(e) Propagating exceptions:
k(2) : X → Y

(Ťk)(1) : X → Y Ťk ∼ k

(f) Tagging:

T ∈ T

tag
(1)
T

: T → 0

(f
(1)
T : T → Y )T∈T

[fT ]
(2)
T∈T : 0 → Y [fT ]T∈T ◦ tagT ∼ fT

f, g : 0 → Y f ◦ tagT ∼ g ◦ tagT for all T ∈ T

f ≡ g

(g) Untagging:

T ∈ T

untag
(2)
T

: 0 → T untagT ◦ tagT ∼ idT

R, T ∈ T R 6= T

untagT ◦ tagR ∼ [ ]T ◦ tagR

Figure 5: Decorated rules for exceptions
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Rules (a) are the usual rules for the monadic equational logic; they are valid
for all decorated terms and for strong equations.

Rules (b) provide more information on the decorated monadic equational
logic for exceptions; in particular, the substitution of f in a weak equation
g1 ∼ g2 holds only when f is pure, which is quite restrictive.

Rules (c) ensure that the empty type is a kind of initial type with respect
to weak equations.

Rules (d) are used for case distinctions between exceptional arguments (on
the “0” side of X + 0) and non-exceptional arguments (on the “X” side of
X + 0).

The symbol Ť in rules (e) is interpreted as the downcast conversion, see
Definition 4.3.

Rules in (f) mean that the tagging operations are interpreted as the canonical
inclusions of the exceptional types in the set Exc, see Definition 4.4.

The rules in (g) determine the untagging operations up to strong equa-
tions: an untagging operation recovers the exception parameter whenever the
exception type is matched, and it propagates the exception otherwise see Defi-
nition 4.6.

Remark 5.2. It has been shown in [3] that the denotational semantics of the
core language for exceptions is dual to the denotational semantics for states:
the tagging and untagging operations are respectively dual to the lookup and
update operations. In fact, this duality is also valid for the decorated equational
logics.

This decorated proof system is used now (in Definition 5.4) for construct-
ing the raising and handling operations from the core tagging and untag-
ging operations. It has to be noted that the term catch {Ti ⇒ gi}1≤i≤n ◦ f
may catch exceptions, while the handling operation, which coincides with
catch {Ti ⇒ gi}1≤i≤n ◦ f on non-exceptional values, must propagate exceptions;
this is why the downcast operator Ť is used.

Definition 5.3. For each exceptional type T and each type Y , the raising

operation throw
(1)
T ,Y : T → Y is the propagator defined as:

throw
(1)
T ,Y = [ ]Y ◦ tagT .

Definition 5.4. For each propagator f (1) : X → Y , each non-empty lists

of types (Ti)1≤i≤n and propagators (g
(1)
i : Ti → Y )1≤i≤n, let catch {Ti ⇒

gi}
(2)
1≤i≤n : Y → Y denote the catcher defined by:

catch {Ti ⇒ gi}
(2)
1≤i≤n = [ idY | recover 1 ]

where (recover
(2)
i : 0 → Y )1≤i≤n denotes the family of catchers defined recur-

sively by:

recover
(2)
i =

{

gn ◦ untagTn
when i = n,

[gi | recover i+1 ] ◦ untagTi
when i < n.

13



Then, the handling operation (try{f} catch {Ti ⇒ gi}1≤i≤n)
(1) : X → Y is the

propagator defined by:

try{f} catch {Ti ⇒ gi}1≤i≤n = Ť (catch {Ti ⇒ gi}1≤i≤n ◦ f)

When n = 1 we get:

try{f} catch {T ⇒ g} = Ť (catch {T ⇒ g} ◦ f) = Ť ([ idY | g ◦ untagT ] ◦ f).

Now Theorem 5.5 derives easily, by induction, from Fig. 5 and 4 and from
Definitions 5.3 and 5.4.

Theorem 5.5. The decorated rules for exceptions and the raising and handling
constructions are sound with respect to the denotational semantics of exceptions.

5.3 A decorated proof: a propagator propagates

With these tools, it is now possible to prove properties of programs involving
exceptions and to check these proofs in Coq. For instance, let us prove that
given an exception, a propagator will do nothing apart from propagating it.
Recall that the interpretation of [ ]Z (or, more precisely, of

։

[ ]Z) is abrupt JZK :
Exc → JZK + Exc.

Lemma 5.6. For each propagator g(1) : X → Y we have g ◦ [ ]X ≡ [ ]Y .

Proof. This lemma can be proved as follows; the labels refer to Fig. 5, and their
subscripts to the proof in Coq of Fig. 6.

X(c)1
[ ]

X
: 0→ X g : X → Y

(a)
g ◦ [ ]

X
: 0→ Y

(c)2
g ◦ [ ]

X
∼ [ ]

Y

g(1)

X(c)3
[ ]

(0)
X(b)1

[ ]
(1)
X(b)2

(g ◦ [ ]
X
)(1)

Y(c)4
[ ]

(0)
Y(b)3

[ ]
(1)
Y

(b)4
g ◦ [ ]

X
≡ [ ]

Y

The proof in Coq follows the same line as the mathematical proof above. It
goes as in Figure 6. The Coq library for exceptions, EXCEPTIONS-0.1.tar.gz,
can be found online: http://coqeffects.forge.imag.fr (in file Proofs.v) with
proofs of many other properties of programs involving exceptions.

It should be recalled that any Coq proof is read from bottom up. Last, the
application of the from empty is weakly unique rule certifies that the term
g o (@empty X), because its domain is the empty type, is weakly equal to
the term (@empty Y). Thus, we have the left side sub-proof: g o (@empty

X) ∼ (@empty Y). There, weak equality is converted into strong: apply-
ing propagator weakeq is strongeq resolves the goal: g o (@empty X) ==

(@empty Y) and produces as sub-goals that there is no catcher involved in both
hand sides (middle and right side sub-proofs).
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Lemma propagator propagates 1:
forall X Y (g: term Y X),
is propagator g -> g o (@empty X) == (@empty Y).
Proof.

intros.
(* (b)4 *) apply propagator weakeq is strongeq.
(* (b)2 *) apply is comp. assumption.
(* (b)1 *) apply is pure propagator. (* (c)3 *) apply is empty.
(* (b)3 *) apply is pure propagator. (* (c)4 *) apply is empty.
(* (c)2 *) apply from empty is weakly unique.

Qed.

Figure 6: Proof in Coq that “a propagator propagates exceptions”

5.4 A hierarchy of exceptional types

In object-oriented languages, exceptions are usually the objects of classes which
are related by a hierarchy of subclasses. Our framework can be extended in this
direction by introducing a hierarchy of exceptional types: the set T is endowed
with a partial order _ called the subtyping relation, and the signature Sigbase
is extended with a cast operation castR,T : R → T whenever R _ T .

The interpretation of castR,T is a pure function JcastR,T K : JRK → JT K, such
that JcastT ,T K is the identity on JT K and when S _ R _ T then JcastS ,T K =
JcastR,T K ◦ JcastS ,RK.

Definition 4.6 has to be modified as follows: the function JuntagT K : Exc →
JT K + Exc satisfies for each exceptional type R:

JuntagT K◦JtagRK =

{

normal JT K ◦ JcastR,T K when R _ T

abrupt JT K ◦ JtagRK otherwise
: JRK → JT K+Exc.

6 Conclusion

Exceptions are part of most modern programming languages and they are useful
in computer algebra, typically for implementing dynamic evaluation.

We have presented a new framework for formalizing the treatment of excep-
tions. These decorations form a bridge between the syntax and the denotational
semantics by turning the syntax sound with respect to the semantics, without
adding any explicit “type of exceptions” as a possible return type for the oper-
ations.

The salient features of our approach are:

• We provide rules for equational proofs on programs involving exceptions
(Fig. 5) and an automatic process for interpreting these proofs (Fig. 4).
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• Decorating the equations allows to separate properties that are true only
up to effects (weak equations) from properties that are true even when
effects are considered (strong equations).

• Moreover, the verification of the proofs can be done in two steps: in a
first step, decorations are dropped and the proof is checked syntactically;
in a second step, the decorations are taken into account in order to prove
properties involving computational effects.

• The distinction between the language for exceptions and its associated
private core language (Definitions 3.1 and 3.2) allows to split the proofs in
two successive parts; in addition, the private part can be directly dualized
from the proofs on global states (relying on [3] and [4]).

• A proof assistant can be used for checking the decorated proofs on ex-
ceptions. Indeed the decorated proof system for states, as described
in [4] has been implemented in Coq [2] and dualized for exceptions (see
http://coqeffects.forge.imag.fr).

We have used the approach of decorated logic, which provides rules for com-
putational effects by adding decorations to usual rules for “pure” programs.
This approach can be extended in order to deal with multivariate operations [5],
conditionals, loops, and high-order languages.
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