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Abstract

In this paper, we first provide a careful description of the denotational
semantics of exceptions in an object-oriented setting. Then we define a
proof system for exceptions which is sound with respect to this denota-
tional semantics. Our proof system is close to the syntax, as in effect
systems, in the sense that the exceptions do not appear explicitly in the
type of expressions which may raise them, much like compiler qualifiers
or specifiers. But our system also involves different kind of equations, in
order to separate the verification of properties that are true only up to
effects from the verification of generic properties. Thanks to a duality be-
tween the global state effect and the core part of the exception effect, the
proofs are in two parts: the first part is generic and can be directly dual-
ized from the proofs on global states, while the second part uses specific
rules. These specific rules are related to the encapsulation of the core part
into some control for the conditional raising and handling of exceptions.

Keywords: Semantics of exceptions in an object-oriented setting. Proof system
for exceptions. Computational effects.

Introduction

Exceptions form a computational effect, in the sense that a syntactic expression
f : X → Y is not always interpreted as a function JfK : JXK → JY K. For
instance a function which raises an exception has to be interpreted as a function
JfK : JXK → JY K + Exc where Exc is the set of exceptions and “+” denotes
the disjoint union. In a programming language, exceptions usually differ from
errors in the sense that it is possible to recover from an exception while this is
impossible for an error; thus, exceptions have to be both raised and handled.
There are exceptions in most object-oriented programming languages, and they
are usually the objects of classes which are related by a hierarchy of subclasses.
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In this paper we define the syntax of a simple language for dealing with
exceptions which are organized in a hierarchy of subtypes. We add “decorations”
to this syntax, in order to classify the expressions of the language according to
their interaction with the exceptions. Decorations extend the syntax much like
compiler qualifiers or specifiers. These decorations are similar to the effect

systems for instance of [14] or [27], where each function can be labelled by an
effect. Here, we also decorate the equations.

Moreover, we define an inference system for dealing with this decorated
syntax, and we prove that this inference system is sound with respect to the
semantics of exceptions. The result of this paper is then that we can use this
new inference system for proving various properties of exceptions in a novel way.
Indeed, we can separate the verification of the proofs in two steps: a first step
checks properties of the programs, up to effects, while a second step takes the
effect into account via the decorations.

Our method relies on a general algebraic framework for computational effects
based on category theory [3]. This framework has been used for dealing with
several issues related to effects [10, 4, 8]. This method has led to the discovery of
a duality between global states and exceptions, in which catching an exception is
dual to updating a state; this duality formalizes the fact that states are observed
while exceptions are constructed [7].

In contrast with this categorical approach, in this paper we focus on a logical
approach which is better suited to the construction of a proof system. Further-
more, with this point of view it should be easier to take advantage of the use
of a proof assistant. In addition, we extend our framework in the direction of
object-oriented languages by taking into account a hierarchy of types for excep-
tions. It should be noted that we distinguish the private operation of catching
an exception from the public operation of handling it (also called “try/catch”),
More precisely, in the mechanism for exceptions, we distinguish a core part from
a control part. The core part is private, it is made of tagging and untagging op-
erations, respectively dual from lookup and update functions for states. The
tagging operations construct exceptions from a parameter while the untagging
operations recover the parameter from an exception. Then, this core part is
encapsulated inside the control part via a succession of case distinctions. Prop-
erties of exceptions in programming languages can be proved using this inference
system, and the proofs usually have two parts: the first part can be obtained
“for free” by dualizing a proof on global states while the second part is specific
to exceptions.

To our knowledge, the first algebraic treatment of computational effects
is due to Moggi [19]; this approach relies on monads and is implemented in
the programming language Haskell [26, 16]. The examples proposed by Moggi
include the global states monad TX = (X×St)St , where St is the set of states,
and the exceptions monad TX = X + Exc, where Exc is the set of exceptions.
Later on, Plotkin and Power proposed to use Lawvere theories for dealing with
the operations and equations related to computational effects [20, 17]. With
this approach, it is inherently different and more difficult to handle exceptions
than to update states [21, 25, 18, 22]. Effect systems are related to monads,
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see [27], and exceptions in Java, also studied from a coalgebraic point of view,
can be found in [13]. We here rather use the extension of effect systems where
equations are also decorated, but still in a categorical framework [10].

In Section 1, we make precise the syntax we use for dealing with exceptions
in an object-oriented setting. Then we describe the intended denotational se-
mantics of exceptions in Section 2, dissociating the core operations from their
encapsulation. We propose in Section 3 a decorated inference system for ex-
ceptions, and we prove its soundness with respect to the intended semantics in
Theorems 3.1 and 3.6. Appendix A is an illustration of the approach, where
some properties of exceptions are proven using the decorated inference system.

1 Syntax

The syntax for exceptions in computer languages depends on the language: the
keywords for raising exceptions may be either raise or throw, and for handling
exceptions they may be either handle, try-with, try-except or try-catch,
for instance. In this paper we rather use throw and try-catch. The syntax
for dealing with exceptions may be described in two parts: a basic part which
deals with the basic data types and an exceptional part for raising and handling
exceptions.

The basic part of the syntax is a signature Sigbase , made of a types (or
sorts) and operations. For simplicity we assume that the operations in Sigbase
are either constants or unary; general n-ary operations will be mentioned in
Section 3.5.

The signature Sigexc for exceptions is made of Sigbase together with the
operations for raising and handling exceptions. The exceptional types form a
subset T of the set of types of Sigbase . For instance in C++ any type (basic
type or class) is an exceptional type, while in Java, or more generally in [5],
there is a base class for exceptional types, such that the exceptional types are
precisely the subtypes of this base class. Moreover, in this paper we consider a
simple hierarchy of types, as follows.

Definition 1.1. Given a signature Sigbase , a hierarchy of exceptional types

on Sigbase is a partially ordered set (T ,_) made of a subset T of types of
Sigbase and a partial order _ on T called the subtyping relation. Given a
hierarchy of exceptional types (T ,_) on Sigbase , the signature Sigbase,_ is
made of Sigbase together with, for each T ′ and T in T such that T ′ _ T , an
operation castT ′,T : T ′ → T called the cast operation from T ′ to T .

A hierarchy is called discrete when the unique subtype of each type T is T
itself. The duality between exceptions and states, as presented in [7], can be
used for deriving properties of exceptions from properties of states under the
assumption that the hierarchy of exceptional types is discrete.

The signature Sigexc for exceptions is made of Sigbase,_ together with the
operations for raising and handling exceptions, as follows.
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Definition 1.2. Let Sigbase be a signature and (T ,_) a hierarchy of excep-
tional types on Sigbase . The signature for exceptions Sigexc is made of Sigbase,_
together with, for each exceptional type T and each type Y in Sigbase a raising

(or throwing) operation:
throwT ,Y : T → Y ,

and a handling (or try-catch) operation for each Sigexc-term f : X → Y , each
non-empty list of exceptional types (T1, . . . , Tn) and each family of Sigexc-terms
g1 : T1 → Y , . . . , gn : Tn → Y :

try{f} catch {T1⇒g1| . . . |Tn⇒gn} : X → Y .

An important, and somewhat surprising, feature of a language with excep-
tions is that all expressions in the language, including the try-catch expressions,
propagate exceptions. Indeed, if an exception is raised before some try-catch

expression is evaluated, this exception is propagated. In fact, the catch block in
a try-catch expression may recover from exceptions which are raised inside the
try block, but the catch block alone is not an expression of the language.

More precisely, the operations for dealing with exceptions can be expressed
in terms of more elementary operations, which may be seen as private opera-
tions of the language. The tagging operations will be used for raising exceptions,
using a private empty type 0. The untagging operations will be used for han-
dling exceptions, more precisely for catching them inside the catch block in any
try-catch expression. We call them the core operations for exceptions. They
are not part of Sigexc, but the interpretation of the operations for raising and
handling exceptions, which are part of Sigexc, will be defined in terms of the
interpretations of the core operations.

Definition 1.3. Let Sigexc be a signature for exceptions. The core of Sigexc is
made of a type 0 called the empty type and two operations for each exceptional
type T : an operation tagT : T → 0 called the exception constructor or the
tagging operation for T and an operation untagT : 0 → T called the exception

recovery or the untagging operation for T .

2 Denotational semantics

In this Section we define a denotational semantics of exceptions which relies
on the semantics of exceptions in various languages, for instance in C++ [1,
Ch. 15], Java [12, Ch. 14] and ML [15].

The basic part of the syntax is interpreted in the usual way: each type X is
interpreted as a set JXK and each operation f : X → Y of Sigbase as a function
JfK : JXK → JY K. Each cast operation castT ′,T : T ′ → T is also interpreted as
a function JcastT ′,T K : JT ′K → JT K; the interpretations of the cast operations
must be such that JcastT ,T K is the identity on T and when T ′′ _ T ′ _ T then
JcastT ′′,T K = JcastT ′,T K ◦ JcastT ′′,T ′K.

When h : X → Y in Sigexc is a raising or handling operation, it is not
interpreted as a function JhK : JXK → JY K: this corresponds to the fact that the
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exceptions form a computational effect. Let us begin with an informal descrip-
tion of JhK. If h = throwT ,Y then JhK signals an error, which may be “caught”
by an exception handler; the function JhK turns the parameter of type T into an
exception, in such a way that this exception is considered as being of type Y . If
h = try{f} catch {T ⇒ g} then JhK(x) returns the same result as JfK(x) when
JfK(x) does not raise any exception; if JfK(x) raises an exception of type T ′ for
some subtype T ′ of T then this exception is caught, which means that its pa-
rameter y is recovered and JhK(x) returns the same result as JgK(y) (this result
may be an exception); otherwise, i.e., when JfK(x) raises an exception of type
T ′ where T ′ is not a subtype of T , the exception is returned (which usually
produces an error message like “uncaught exception. . . ”). The interpretation
of try{f} catch {T1 ⇒ g1| . . . |Tn ⇒ gn} for any n > 1 is similar; it is checked
whether the exception returned by f has type T1 or T2 . . . or Tn in this order,
taking into account possible inheritance, so that whenever Tk = Tj, or more
generally Tk _ Tj , with j < k, the clause Tk ⇒ gk is never executed.

The distinction between ordinary and exceptional values is discussed in Sub-
section 2.1. Then, denotational semantics of raising and handling exceptions are
considered in Subsections 2.2 and 2.3, respectively. We assume that some inter-
pretation of Sigbase,_ has been chosen.

2.1 Ordinary values and exceptional values

In order to express the denotational semantics of exceptions, a major point is the
distinction between two kinds of values: the ordinary (or non-exceptional) values
and the exceptions. It follows that the operations may be classified according
to the way they may, or may not, interchange these two kinds of values: an
ordinary value may be tagged for constructing an exception, and later on the
tag may be cleared in order to recover the value; then we say that the exception
gets untagged.

Definition 2.1. The set of exceptions Exc is the disjoint union of the sets JT K
for all the exceptional types T .

Definition 2.2. For each set A, the set A+Exc is the disjoint union of A and
Exc and the canonical inclusions are denoted (when needed) normalA : A →
A+ Exc and abruptA : Exc → A+ Exc. An element of A+ Exc is an ordinary

value if it is in A and an exceptional value if it is in Exc.

In the denotational semantics for exceptions, we will see that an operation
f : X → Y of Sigexc may be interpreted either as a function JfK : JXK → JY K
or as a function JfK : JXK → JY K + Exc. In order to interpret the terms of
Sigexc one must be able to define Jg ◦ fK from JgK and JfK if the codomain of
g is included in the domain of f , even though this is not the case for JfK and
JgK. This can be done thanks to the Kleisli composition associated using the
exception monad A+Exc [19]. Equivalently, this can be done by converting all
these functions to functions from JXK + Exc to JY K + Exc:

5



• every function ϕ : A→ B gives rise to the function

�ϕ = normalB ◦ ϕ : A→ B + Exc (1)

• and every function ψ : A→ B + Exc gives rise to the function

Ţψ = [ψ|abruptB ] : A+ Exc → B + Exc (2)

which is equal to ψ on A and to abruptB on exceptions.

• It follows that every ϕ : A→ B gives rise to

։ϕ = Ţ(�ϕ) = [normalB ◦ ϕ|abruptB] = ϕ+ idExc : A+ Exc → B + Exc

(3)

In this way, for each f : X → Y and g : Y → Z, whatever their effects, JfK
gives rise to a function from JXK+Exc to JY K+Exc and JgK to a function from
JY K + Exc to JZK + Exc, which can always be composed.

Definition 2.3. A function ϕ : A+ Exc → B + Exc:

• raises an exception if there is some x ∈ A such that ϕ(x) ∈ Exc.

• recovers from an exception if there is some e ∈ Exc such that ϕ(e) ∈ B.

• propagates exceptions if it is the identity on exceptions, i.e. if ϕ(e) = e for
every e ∈ Exc.

Clearly, a function ϕ : A + Exc → B + Exc which propagates exceptions
may raise an exception, but cannot recover from an exception. Such a function
ϕ is characterized by its restriction ϕ|A : A → B + Exc, since its restriction on
exceptions ϕ|Exc

: Exc → B + Exc is the inclusion abruptB of Exc in B + Exc.

2.2 Tagging and raising exceptions: throw

Raising exceptions relies on the interpretation of the tagging operations.

Definition 2.4. The interpretation of the empty type 0 is the empty set ∅; thus,
for each type X the interpretation of 0 +X can be identified to JXK. For each
exceptional type T , the interpretation of the tagging operation tagT : T → 0

is the coprojection function JtagT K : JT K → Exc, called the tagging function of
type T .

Thus, the tagging function JtagT K : JT K → Exc maps a non-exceptional value
(or parameter) a ∈ JT K to an exception JtagT K(a) ∈ Exc. This means that the
non-exceptional value a in JT K gets tagged as an exception JtagT K(a) in Exc.

Now we are ready to define the raising of exceptions in a programming
language.

Definition 2.5. For each exceptional type T and each type Y , the interpreta-
tion of the raising operation throwT ,Y is the tagging function JtagT K followed
by the inclusion of Exc in JY K + Exc:

JthrowT ,Y K = abrupt JY K ◦ JtagT K : JT K → JY K + Exc .
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2.3 Untagging and handling exceptions: try-catch

Handling exceptions relies on the interpretation of the untagging operations for
clearing the exception tags.

Definition 2.6. For each exceptional type T , the interpretation of the untag-
ging operation untagT : 0 → T is the function JuntagT K : Exc → JT K + Exc,
which satisfies for each exceptional type R:
{

JuntagT K ◦ JtagRK = normal JT K ◦ JcastR,T K : JRK → JT K + Exc whenever R _ T,

JuntagT K ◦ JtagRK = abrupt JT K ◦ JtagRK = JthrowR,T K : JRK → JT K + Exc otherwise.

(4)
It is called the untagging function of type T .

Thus, for each exception e ∈ Exc the untagging function JuntagT K(e) tests
whether e is in JRK for some subtype R of T ; if this is the case, then it returns
the parameter a ∈ JRK such that e = JtagT K(a), otherwise it propagates the
exception e. Since the domain of JuntagT K is Exc, JuntagT K is uniquely deter-
mined by its restrictions to all the exceptional types, and therefore by the above
equalities.

For handling exceptions of types T1, . . . Tn, raised by the interpretation of
some term f : X → Y of Sigexc, one provides for each k in {1, . . . , n} a term
gk : Tk → Y of Sigexc (thus, the interpretation of gk may itself raise exceptions).
Then the handling process builds a function which encapsulates some untagging
functions and which propagates exceptions.

Definition 2.7. For each term f : X → Y of Sigexc, each non-empty list
(g1, . . . , gn) of terms gk : Tk → Y of Sigexc where Tk is an exceptional type (for
k ∈ {1, . . . , n}), the interpretation of the handling operation try{f} catch {T1⇒
g1| . . . |Tn⇒gn} : X → Y is the function

Jtry{f} catch {T1⇒g1| . . . |Tn⇒gn}K : JXK → JY K + Exc

defined as follows, from the interpretations of f and of the gk’s. Let h =
Jtry{f} catch {T1 ⇒ g1| . . . |Tn ⇒ gn}K, for short. For each x ∈ JXK, h(x) ∈
JY K + Exc is defined by Algorithm 1.

This definition matches that of Java exceptions as, e.g., found in [12, Ch. 14]
or [2, § 5]. With the simplification of considering that inheritance and polymor-
phism are described by the hierarchy of exceptional types, this definition also
matches that of C++ exceptions (see [1, §15] or the high-level overview of [23,
§2]), or of Python [24, §7.4].

Alternatively, the interpretation h : JXK → JY K + Exc of the handling oper-
ation try{f} catch {T1⇒g1| . . . |Tn⇒gn} : X → Y can be defined in two steps,
as follows (the notation is simplified by dropping the J . . . K).

(try) the function try{f} k : X → Y + Exc is defined for any function k :
Exc → Y + Exc by:

try{f} k =
[

normalY | k
]

◦ f
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Algorithm 1 Interpretation of try{f} catch {T1⇒g1| . . . |Tn⇒gn}

Require: JfK : JXK → JY K + Exc; (JgkK : JTkK → JY K + Exc)k=1,...,n; x ∈ JXK.
Ensure: Jtry{f} catch {T1 ⇒ g1| . . . |Tn ⇒ gn}K(x) ∈ JY K + Exc, denoted h(x)

for short.
1: let y = JfK(x) ∈ JY K + Exc; {First JfK(x) is computed}
2: if y ∈ JY K then
3: return h(x) = y ∈ JY K ⊆ JY K + Exc; {If y is not an exception, then it

is the required result}
4: else {Now y is an exception}
5: for k = 1, . . . , n do
6: z = JuntagTk

K(y) ∈ JTkK + Exc; {Check whether type of y is a subtype
of Tk}

7: if z ∈ Tk then return h(x) = JgkK(z) ∈ JY K + Exc; end if {If
typeof(y) _ Tk, then y is caught}

8: end for
9: return h(x) = y ∈ Exc ⊆ JY K + Exc. {If the type of y is no subtype of

any Tk, then y is propagated}
10: end if

(catch) the function catch {T1⇒g1| . . . |Tn⇒gn} : Exc → Y +Exc is obtained
by setting p = 1 in the family of functions kp = catch {Tp⇒ gp| . . . |Tn⇒
gn} : Exc → Y + Exc (for p = 1, . . . , n+ 1) which are defined recursively
by:

kp =

{

abruptY when p = n+ 1
[

gp | kp+1

]

◦ untagTp
when p ≤ n

When n = 1 we simply get:

try{f} catch {T ⇒ g} =
[

normalY
∣

∣

[

g|abruptY
]

◦ untagT

]

◦ f

which can be illustrated as follows, with try{f} k on the left and k = catch {T ⇒
g} on the right (the subscripts are dropped):

Y

normal
��

normal

++WW
WW

WW
WW

WW
WW

WW
WW

WW
W

X
f

// Y + Exc
[normal|k]

//

=

=

Y + Exc

Exc

abrupt

OO

k

33gggggggggggggggggg

T

normal
��

g

++WW
WW

WW
WW

WW
WW

WW
WW

WW
W

Exc
untagT

// T + Exc
[g|abrupt ]

//

=

=

Y + Exc

Exc

abrupt

OO

abrupt

33gggggggggggggggggg

It should be noted that, in the interpretation of try{f} catch {T1 ⇒
g1| . . . |Tn ⇒ gn}, each function JgiK may itself raise exceptions. It should also
be noted that the types T1, . . . , Tn in try{f} catch {T1⇒g1| . . . |Tn⇒gn} form a
list: they are given in this order and they need not be pairwise distinct. It is as-
sumed that this list is non-empty because it is the usual choice in programming
languages, however it would be easy to drop this assumption.
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3 Decorations: from syntax to semantics

In Sections 1 and 2 we have formalized a signature for exceptions Sigexc and we
have described its denotational semantics. However the soundness property is
not satisfied, in the sense that the denotational semantics is not a model of the
signature: indeed, a term f : X → Y is not always interpreted as a function
JfK : JXK → JY K; it may be interpreted as JfK : JXK → JY K + Exc, or even
(typically when f is some untagging operation) as JfK : JXK+Exc → JY K+Exc.
In order to get soundness, in this Section we add decorations to the signature for
exceptions by classifying the operations and axioms according to the interaction
of their interpretations with the mechanism of exceptions.

Signature
decoration

///o/o/o/o/o/o/o/o/o/o/o/o/o Decorated signature
interpretation

(sound)
///o/o/o/o/o/o/o/o/o/o/o/o/o
Semantics

(Section 1) (Section 3) (Section 2)

3.1 Decorations for exceptions

By looking at the interpretation (in Section 2) of the syntax for exceptions (from
Section 1), we may classify the operations and terms in three parts, depending
on their interaction with the exceptions mechanism. The terms are decorated
by (0), (1) and (2) used as superscripts, they are called respectively pure terms,
propagators and catchers, according to their interpretations:

(0) the interpretation of a pure term may neither raise exceptions nor recover
from exceptions,

(1) the interpretation of a propagator may raise exceptions but is not allowed
to recover from exceptions,

(2) the interpretation of a catcher may raise exceptions and recover from ex-
ceptions.

For instance, the decoration (0) corresponds to the decoration noexcept in C++
(replacement of the deprecated throw()) and the decoration (1) corresponds to
throw(...), still in C++. Now the decoration (2) is usually not encountered
in the language, since catching is usually the prerogative of the core untagging
function, which is private, see Definition 1.3.

Similarly, we may introduce two kinds of equations between terms. This is
done by using two distinct relational symbols: ≡ for strong equations and ∼ for
weak equations, which correspond to two distinct interpretations:

(≡) a strong equation is an equality of functions both on ordinary values and
on exceptions

(∼) a weak equation is an equality of functions only on ordinary values, but
maybe not on exceptions.
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Syntax Decorated syntax Interpretation

type Z type Z JZK

term X
f

// Y pure term X
f(0)

// Y JXK
JfK

// JY K

term X
f

// Y propagator X
f(1)

// Y JXK
JfK

// JY K + Exc

term X
f

// Y catcher X
f(2)

// Y JXK + Exc
JfK

// JY K + Exc

equation f = g : X → Y strong equation f (2) ≡ g(2) : X → Y JfK = JgK

equation f = g : X → Y weak equation f (2) ∼ g(2) : X → Y JfK ◦ normal JXK = JgK ◦ normal JXK

Figure 1: Interpretation of the decorated syntax.

The interpretation of these three kinds of terms and two kinds of equations
is summarized in Figure 1.

This interpretation shows that any propagator can be seen as a catcher and
that any pure term can be seen as a propagator and thus also as a catcher, as
shown in Equations (1), (2) and (3). This allows to compose terms of different
nature: Jh(2) ◦ f (1)K = JhK ◦ ŢJfK, Jh(2) ◦ g(0)K = JhK ◦ ։JgK, etc. It follows that
it is not a restriction to give the interpretation of the decorated equations only
when both members are catchers.

3.2 Decorated proof system

The decorated proof system for exceptions is made of rules which will be used
for constructing the raising and handling operations in Subsection 3.3 and for
proving properties of exceptions in Appendix A. In Theorem 3.1 we prove that
these rules are sound with respect to the interpretations of Figure 1.

The decorated proof system for exceptions is defined by the rules in Figure 2;
the decoration properties are often grouped with other properties: for instance,
“f (1) ∼ g(1)” means “f (1) and g(1) and f ∼ g”; in addition, the decoration (2) is
usually dropped, since the rules assert that every term can be seen as a catcher.

Theorem 3.1. The decorated rules for exceptions are sound with respect to the

interpretation of the decorations.

Proof. The interpretation of the decorations is defined in Figure 1. We have to
check that each rule in Figure 2 is such that, whenever the interpretation of its
premises is satisfied, so is the interpretation of its conclusion. This verification
is now easy, some hints are given below.

(a) The first part of the decorated monadic equational rules for exceptions
mean that the catchers satisfy the usual monadic equational rules with
respect to the strong equations.
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(a) Monadic equational rules for exceptions (first part):

f : X → Y g : Y → Z

g ◦ f : X → Z

X

idX : X → X

f : X → Y g1 ≡ g2 : Y → Z

g1 ◦ f ≡ g2 ◦ f : X → Z

f1 ≡ f2 : X → Y g : Y →

g ◦ f1 ≡ g ◦ f2 : X → Z

f

f ≡ f

f ≡ g

g ≡ f

f ≡ g g ≡ h

f ≡ h

f : X → Y g : Y → Z h : Z →W

h ◦ (g ◦ f) ≡ (h ◦ g) ◦ f

f : X → Y

f ◦ idX ≡ f

f : X →

idY ◦ f ≡

(b) Monadic equational rules for exceptions (second part):

f (0)

f (1)

f (1)

f (2)

X

id
(0)
X

f (0) g(0)

(g ◦ f)(0)
f (1) g(1)

(g ◦ f)(1)
f (1) ∼ g(1)

f ≡ g

f ≡ g

f ∼ g

f

f ∼ f

f ∼ g

g ∼ f

f ∼ g g ∼ h

f ∼ h

f (0) : X → Y g1 ∼ g2 : Y → Z

g1 ◦ f ∼ g2 ◦ f

f1 ∼ f2 : X → Y g : Y → Z

g ◦ f1 ∼ g ◦ f2

(c) Rules for the empty type 0:
X

[ ]X : 0 → X

X

[ ]
(0)
X

f : 0 → Y

f ∼ [ ]Y

(d) Rules for case distinction with respect to X + 0:

g(1) :X→Y k(2) :0→Y

[g | k](2) :X → Y

g(1) :X→Y k(2) :0→Y

[g | k] ∼ g

g(1) :X→Y k(2) :0→Y

[g | k] ◦ [ ]X ≡ k

g(1) : X → Y k(2) : 0 → Y f (2) : X → Y f ∼ g f ◦ [ ]X ≡ k

f ≡ [g | k]

(e) Rules for the propagation of exceptions:
k(2) : X → Y

▽k(1) : X → Y

k(2) : X → Y

▽k ∼ k

(f) Rules for the casting and tagging operations:
R, T ∈ T R _ T

cast
(0)
R,T : R → T

T ∈ T

tag
(1)
T : T → 0

(f
(1)
T : T → Y )T∈T

[fT ]
(2)
T∈T : 0 → Y

(f
(1)
T : T → Y )T∈T

[fT ]T∈T ◦ tagT ∼ fT

(f
(1)
T : T → Y )T∈T f (2) : 0 → Y for all T ∈ T f ◦ tagT ∼

f ≡ [fT ]T∈T

Figure 2: Decorated rules for exceptions

(b) The second part of the decorated monadic equational rules for exceptions
deal with the conversions between decorations and with the properties of
weak equations. Every strong equation is a weak one while every weak
equation between propagators is a strong one. Weak equations do not form
a congruence since the substitution rule holds only when the substituted
term is pure. Indeed, let us look more closely at the interpretation of the
replacement and the pure substitution rules for weak equations (note that
substitution is possible only for pure terms in general since two functions
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with a different behavior on exceptional values might not return the same
value if an exception has occurred):

• For the replacement, let f1 ∼ f2 : X → Y . Then Jf1K ◦ normal JXK =
Jf2K ◦ normal JXK → JY K + Exc so that for any catcher g : Y → Z,
interpreted as JgK : JY K+Exc → JZK+Exc, we also have JgK ◦ Jf1K ◦
normal JXK = JgK ◦ Jf2K ◦ normal JXK : JXK → JZK+ Exc, which is the
interpretation of g ◦ f1 ∼ g ◦ f2.

• for the pure substitution, let g1 ∼ g2 : Y → Z. Then Jg1K ◦
normal JY K = Jg2K ◦ normal JY K : JY K → JZK + Exc. Thus, for any

pure term f (0) : X → Y , interpreted as JfK : JXK → JY K, we have

Jg
(2)
i ◦ f (0)K = JgiK ◦ ։JfK = JgiK ◦ Ţ(�JfK), so that by Equations (2)

and (1), Jg
(2)
i ◦f (0)K◦normal JXK = JgiK◦� JfK = JgiK◦normal JY K◦JfK.

From g1 ∼ g2, we thus have Jg1K◦normal JY K◦JfK = Jg2K◦normal JY K◦

JfK, and therefore Jg
(2)
1 ◦f (0)K◦normal JXK = Jg

(2)
2 ◦f (0)K◦normal JXK

which is the interpretation of g1 ◦ f ∼ g2 ◦ f .

(c) The interpretation of 0 and [ ]
(0)
X are the empty set ∅ and the inclusion of ∅

in JXK, respectively. Since 0+Exc can be identified with Exc, the empty
type plays an important role in the decorated proof system. For instance,
a propagator f : X → 0 is interpreted as a function JfK : JXK → Exc and
a catcher f : 0 → Y as a function JfK : Exc → JY K + Exc.

(d) For the interpretation of [g|k](2) : X → Y , since ∅ + Exc can be identified
with Exc we have JkK : Exc → JY K + Exc. Then, the interpretation of

[g|k](2) is the usual case distinction function
[

JgK
∣

∣ JkK
]

: JXK + Exc →
JY K+Exc, i.e., the function which coincides with JgK on JXK and with JkK
on Exc. This can be illustrated as follows, by a diagram in the decorated
logic (on the left) and its interpretation (on the right).

X

id(0)

��

g(1)

++WW
WW

WW
WW

WW
WW

WW
WW

WW
WW

WW

X
[g|k](2)

//

∼

≡

Y

0

[ ](0)

OO

k(2)

33gggggggggggggggggggggg

JXK

normalJXK

��

JgK

++WW
WW

WW
WW

WW
WW

WW
WW

WW
WW

W

JXK + Exc

[

JgK
∣

∣JkK
]

//

=

=

JY K + Exc

Exc

abruptJXK

OO

JkK

33ggggggggggggggggggggg

(5)

(e) The rules for the propagation of exceptions build a propagator ▽k(1) :
X → Y from any catcher k(2) : X → Y . The interpretation of ▽k(1) is
J▽k(1)K = Jk(2)K ◦ normal JXK, which means that J▽kK : JXK → JY K + Exc

is the restriction of JkK : JXK + Exc → JY K + Exc to JXK. If required,
as seen in Subsection 2.1, the function J▽kK is extended to JXK + Exc

by propagating the exceptions; for simplicity, this function can still be
denoted J▽kK. Thus, JkK and J▽kK coincide on JXK but they differ on

12



Exc: if they are applied to an argument which is an exception, then JkK
might catch this exception while J▽kK will always propagate it.

(f) These rules mean that the interpretation of the family of propagators (tagT :
T → 0)T∈T , which is the family (JtagT K : JT K → Exc)T∈T , is a disjoint
union: Exc =

∑

T∈T JT K with the inclusions JtagT K. This allows to build
a catcher with source 0 from a family of propagators with non-0 sources:
given a propagator fT : T → Y for each exceptional type T , we get a
catcher f = [fT ]T : 0 → Y such that f ◦ tagT ∼ fT for each T , and this
f is unique up to strong equations. This is interpreted as follows: given
a function JfT K : JT K → JY K + Exc for each exceptional type T , we get a
unique function JfK : Exc → Y + Exc such that JfK ◦ JtagT K = JfT K for
each T : indeed, since Exc is the disjoint union of the sets JT K, the function
JfK is defined componentwise as JfT K on each JT K.

Note: the unicity rules in (c), (d) and (f) can be replaced by the following
“symmetric” rules:

(c′)
f1, f2 : 0 → Y

f1 ∼ f2
(d′)

f1, f2 : X → Y f1 ∼ f2 f1 ◦ [ ]X ≡ f2 ◦ [ ]X
f1 ≡ f2

(f ′)
f1, f2 : 0 → Y for all T ∈ T f1 ◦ tagT ∼ f2 ◦ tagT

f1 ≡ f2

The untagging operations can be defined by applying these rules.

Proposition 3.2. For each exceptional type T there is a catcher, denoted

untag
(2)
T : 0 → T , unique up to strong equations, which satisfies the follow-

ing weak equations:
{

untag
(2)
T ◦ tag

(1)
R ∼ cast

(0)
R,T : R → T whenever R _ T

untag
(2)
T ◦ tag

(1)
R ∼ [ ]

(0)
T ◦ tag

(1)
R : R→ T otherwise

(6)

Proof. Let T be some exceptional type. For each type R ∈ T we define fR :
R→ T by fR = castR,T if R _ T and fR = [ ]T ◦ tagR otherwise. According to
the Rules (f), each fR is a propagator and there is a catcher [fR]R∈T : 0 → T ,
unique up to strong equations, such that [fR]R∈T ◦ tagR ∼ fR for each R ∈ T .
Let untagT = [fR]R∈T .

3.3 Decorated signature for exceptions

Now we can add decorations to the signature for exceptions.

Definition 3.3. Let Sigbase,_ be a signature with a hierarchy of exceptional
types and let Sigexc be the corresponding signature for exceptions, as in Def-
inition 1.2. The decorated signature for exceptions Sigdecoexc is made of Sigexc
decorated as follows: the basic operations are pure and the raising and handling
operations are propagators.

13



This decorated proof system is used now for constructing the raising and
handling operations from the core tagging and untagging operations.

Definition 3.4. For each exceptional type T and each type Y , the raising

propagator throw
(1)
T ,Y : T → Y is defined as:

throw
(1)
T ,Y = [ ]

(0)
Y ◦ tag

(1)
T .

Definition 3.5. For each propagator f (1) : X → Y , each non-empty list of types

(T1, . . . , Tn) and each propagators g
(1)
j : Tj → Y for j = 1, . . . , n, the handling

propagator (try{f} catch {T1⇒g1| . . . |Tn⇒gn})(1) : X → Y is defined as:

try{f} catch {T1⇒g1| . . . |Tn⇒gn} = ▽TRY {f} catch {T1⇒g1| . . . |Tn⇒gn}

from a catcher TRY {f} catch {T1⇒g1| . . . |Tn⇒gn} : X → Y which is defined
as follows in two steps:

(try) the catcher TRY {f} k : X → Y is defined for any catcher k : 0 → Y by:

(TRY {f} k)(2) =
[

id
(0)
Y | k(2)

](2)

◦ f (1)

(catch) the catcher catch {T1⇒g1| . . . |Tn⇒gn} : 0 → Y is obtained by setting
p = 1 in the family of catchers kp = catch {Tp⇒gp| . . . |Tn⇒gn} : 0 → Y

(for p = 1, . . . , n+ 1) which are defined recursively by:

k(2)p =







[ ]
(0)
Y when p = n+ 1

[

g
(1)
p | k

(2)
p+1

](2)

◦ untagTp
(2) when p ≤ n

Since kn+1 = [ ]Y , using the decorated rules it is easy to prove that
[gn|kn+1] ≡ gn (a proof is given in appendix, Lemma A.1). It follows that
when n = 1 and 2 we get respectively:

try{f} catch {T ⇒ g} ≡ ▽

( [

idY | g ◦ untagT
]

◦ f
)

(7)

try{f} catch {T⇒g | S⇒h} ≡ ▽

( [

id | [g | h ◦ untagS ] ◦ untagT
]

◦ f
)

(8)

When n = 1 this can be illustrated as follows, with TRY {f} k on the left and
k = catch {T ⇒ g} on the right:

Y

id(0)

��

id(0)

++WW
WW

WW
WW

WW
WW

WW
WW

WW
WW

WW

X
f(1)

// Y
[id|k](2)

//

∼

≡

Y

0

[ ](0)

OO

k(2)

33gggggggggggggggggggggg

T

id(0)

��

g(1)

++VV
VV

VV
VV

VV
VV

VV
VV

VV
VV

VV

0
untag

(2)
T

// T
[g|[ ]](2)

//

∼

≡

Y

0

[ ](0)

OO

[ ](0)

33gggggggggggggggggggggg
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Theorem 3.6. The raising and handling constructions in Definitions 3.4

and 3.5 are sound with respect to the semantics of exceptions in Section 2.

Proof. The proof is quite straightforward. A subtle point is that the handling
mechanism is formalized by h = try{f} catch {T1⇒g1| . . . |Tn⇒gn} rather than
H = TRY {f} catch {T1 ⇒ g1| . . . |Tn ⇒ gn}. Indeed, since H is a catcher and
h is the propagator defined as h = ▽H , the functions JHK and JhK coincide on
JXK but not necessarily on Exc: if they are applied to an argument which is an
exception, then JHK might catch this exception while JhK will always propagate
it. Thus, the semantics of the handling of exceptions coincide with JhK, not with
JHK.

3.4 Catch all

The catch construction is easily extended to a catch-all construction, like
catch(...) in C++, or (except, else) in Python. We add to the decorated
logic for exceptions a pure unit type 1, which means, a type 1 such that for each
type X there is a pure term ( )X : X → 1, unique up to strong equations. Then

we add a catcher untag
(2)
all : 0 → 1 with the equations untagall ◦ tagT ∼ ( )T

for every exceptional type T , which means that untagall catches exceptions of
the form tagT (a) for every T and forgets the value a. For each propagators
f (1) : X → Y and g(1) : 1 → Y , the propagator “handle the exception e raised

in f , if any, with g” is defined as:

(try{f} catch {all ⇒ g})(1) = ▽([idY | g ◦ untagall ] ◦ f) : X → Y

The interpretation of the catch-all construction is easily obtained from this
definition and from Figure 1. Since the interpretation of g is a constant, it can
be identified to an element JgK ∈ JY K+Exc. The function Jtry{f} catch {all ⇒
g}K : JXK → JY K + Exc is defined by Algorithm 2.

Algorithm 2 Interpretation of try{f} catch {all ⇒ g}

Require: x ∈ JXK + Exc, JfK : JXK → JY K + Exc, JgK ∈ JY K + Exc.
Ensure: Jtry{f} catch {all ⇒ g}K(x) ∈ JY K + Exc.
1: if x ∈ Exc then return x ∈ Exc ⊆ JY K + Exc; end if {If x is an

exception, propagate it (▽ does this)}
2: Compute y := JfK(x) ∈ JY K + Exc; {now x is not an exception}
3: if y ∈ Y then return y ∈ JY K ⊆ JY K + Exc; end if {If JfK(x) is not an

exception, return normally (via idY )}
4: return JgK ∈ JY K + Exc. {now JfK(x) is any exception, untag (all) and

return JgK}

This is indeed the required semantics of the “catch-all” construction [1,
§15.3.5]. It may be combined with other catchers, and it follows from this
construction that every catcher following a “catch-all” is syntactically allowed,
but never executed.
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3.5 Higher-order constructions

The handling of exceptions can easily be extended to a functional language.
In order to add higher-order features to our interpretation, let us introduce a
functional type ZW for each types W and Z. Then each ψ : W → Z + Exc

gives rise to λx.ψ : 1 → (Z+Exc)W , which does not raise exceptions. It follows
that the interpretation of try{λx.ψ} catch {T1 ⇒ g1| . . . |Tn ⇒ gn} is the same
as the interpretation of λx.ψ, which is the intended meaning of exceptions in
functional languages like ML [15].

This holds for the decorated logic as well. Let us introduce a functional type
ZW (d) for each typesW and Z and each decoration (d) for terms. The interpre-

tation of ZW (0) is JZK
JW K

, the interpretation of ZW (1) is (JZK + Exc)JW K and
the interpretation of ZW (2) is (JZK + Exc)(JW K+Exc). Then each ψ(d) : W → Z

gives rise to λx.ψ : 1 → ZW (d), and a major point is that λx.ψ is pure for
every decoration (d) of ψ. Informally, we can say that the abstraction moves
the decoration from the term to the type. This means that the interpreta-
tion of (λx.ψ)(0) depends on the decoration of ψ: for instance when ψ(1) is a
propagator the interpretation of (λx.ψ)(0) is λx.ψ : 1 → (JZK + Exc)JW K. Be-
sides, it is easy to prove in the decorated logic that, whenever f is pure, we
get try{f} catch {T1 ⇒ g1| . . . |Tn ⇒ gn} ≡ f . It follows that this occurs when
f is a lambda abstraction: try{λx.ψ} catch {T1 ⇒ g1| . . . |Tn ⇒ gn} ≡ λx.ψ, as
expected in functional languages.

Conclusion and future work

We have presented a new framework for formalizing the handling of exceptions:
decorations extend the syntax much like compiler qualifiers or specifiers. Dec-
orations form a bridge between the syntax and the denotational semantics by
turning the syntax sound with respect to the semantics.

The salient features of our approach are:

1. Decorating the equations allows to separate properties that are true only
up to effects from generic properties.

2. There is an automatic process translating the decorated terms and prop-
erties into their interpretations.

3. We give a full system taking e.g. into account hierarchies of exceptional
types, higher-order constructions, etc.

4. The proofs are in two parts: the first part is generic and can be directly
dualized from the proofs on global states, the second part uses specific
rules on exceptions.

5. The verification of the proofs can be done in two steps: in a first step,
decorations are dropped and the proof is checked syntactically; in a second
step, the decorations are taken into account in order to prove properties
involving computational effects.
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Our plan for future work then includes the following:

1. Our restriction to unary operations symbols in the basic signature can be
dropped thanks to the notion of sequential product from [10].

2. We plan to extend the use of a proof assistant for checking the decorated
proofs on exceptions. Indeed the decorated proof system for states, as
described in [8] has been implemented in Coq 1 with the formalization
of [10], so that the given proofs can be automatically verified. From this
implementation, it should be possible to extract and dualize the generic
part where there are correspondance between states and exceptions and
then extend it to handle the full system for exceptions.

3. In the same spirit, Hilbert-Post completeness has been established for the
global state effect, see [9]. Therefore, the duality should yield a similar
Hilbert-Post completeness for the core part of exceptions. Extension to
the full system for exceptions is an open problem.

Acknowledgment. We are indebted to Olivier Laurent for pointing out the
extension of our approach to functional languages.
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A Some decorated proofs

The decorated rules are now used for proving some properties of exceptions.
First, let us assume that the hierarchy of exceptional types is discrete (i.e.,
without any proper subtype). Then, we know from [7] that the tagging and
untagging operations for exceptions are dual to the lookup and update opera-
tions for states. Thus, we may reuse the decorated proofs involving states from
[8] for proving properties on the core part of exceptions. When the hierarchy
is not discrete, the properties and their proofs have to be generalized. In addi-
tion, whether the hierarchy is discrete or not, some additional decorated proofs
are needed for deriving properties of the raising and handling operations from
properties of the core operations, using Definitions 3.4 and 3.5. For instance,
starting from any one of the seven equations for states in [20], we can dualize
this equation and derive a property about raising and handling exceptions. We
give the examples of the annihilation catch-raise property in Subsection A.2
and of the commutation catch-catch property in Subsection A.3. First, a simple
proof is given in Subsection A.1.

A.1 A propagator propagates

The following lemma has been used in Section 3.3. It states that given an
exception, a propagator will do nothing apart from propagating it.

Lemma A.1. For each propagator g(1) : X → Y we have g ◦ [ ]X ≡ [ ]Y and

g ≡ [g | [ ]Y ].

Proof. In these proofs the labels refer to the kind of rules which are used: either
(a), (b), (c) or (d).
First, let us prove that g ◦ [ ]X ≡ [ ]Y :

X(c)
[ ]X : 0→ X g : X → Y

(a)
g ◦ [ ]

X
: 0→ Y

(c)
g ◦ [ ]

X
∼ [ ]

Y

g(1)

X(c)
[ ]

(0)
X(b)

[ ]
(1)
X(b)

(g ◦ [ ]
X
)(1)

Y(c)
[ ]

(0)
Y(b)

[ ]
(1)
Y

(b)
g ◦ [ ]

X
≡ [ ]

Y

This first result is the unique non-obvious part in the proof of g ≡ [g | [ ]Y ]:

g(1) : X → Y

Y(c)
[ ]

(0)
Y : 0→ Y

(b)
[ ]

(1)
Y : 0→ Y

(b)
[ ]

(2)
Y : 0→ Y

g(1) : X → Y
(b)

g(2) : X → Y
g

(b) g ∼ g

...
g ◦ [ ]

X
≡ [ ]

Y(d)
g ≡

[

g | [ ]
Y

]
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A.2 Annihilation handle-raise

On states, the annihilation lookup-update property means that updating any lo-
cation with the content of this location does not modify the state. A decorated
proof of this property is given in [8, Proposition 3.1]. By duality we get the
following annihilation untag-tag property (Lemma A.2), which means that tag-
ging just after untagging, both with respect to the same exception type, returns
the given exception.

Well this is true as long as there are no subtypes in exception types. Oth-
erwise catching an exception of type R _ T with untagT and then re-throwing
with tagT would slice the object of type R to become an object of the base type
T , see example A.4 below.

Now, on a type without proper subtype, the result is preserved and can
be used in Proposition A.3 for proving the annihilation catch-raise property:
catching an exception and re-raising it is like doing nothing.

Lemma A.2 (Annihilation untag-tag). For each type L ∈ T without any proper

subtype:

tag
(1)
L ◦ untag

(2)
L ≡ id

(0)
0

.

Now we can prove the annihilation catch-raise property, adding the parts
about handling exceptions:

Proposition A.3 (Annihilation catch-raise). For each propagator f (1) : X → Y

and each type L ∈ T without any proper subtype:

try{f} catch {L⇒ throwL,Y } ≡ f .

Proof. By Equation (7) and Definition 3.3 we have try{f} catch {L ⇒
throwL,Y } ≡ ▽([idY | [ ]Y ◦ tagL ◦ untagL] ◦ f). By Lemma A.2
[idY | [ ]Y ◦ tagL ◦ untagL] ≡ [idY | [ ]Y ], and the Rule (d) implies that
[idY | [ ]Y ] ≡ idY . Thus try{f} catch {L ⇒ throwL,Y } ≡ ▽f . In addition,
since ▽f ∼ f and f is a propagator we get ▽f ≡ f . Finally, the transitivity of
≡ yields the proposition.

Example A.4. The latter lemma and proposition are not true anymore for
general exceptional types. Indeed in this case, whenever R _ T , then
tagT ◦ untagT ◦ tagR ∼ tagT ◦ castR,T . In other words, if f throws an exception
of type R and R _ T , then try{f} catch {T ⇒ throwT ,Y } would instead throw
an exception of type T .

A.3 Commutation handle-handle

On states, the commutation update-update property means that updating two
independent locations can be done in any order. By duality we get the following
commutation untag-untag property, (Lemma A.5) which means that untagging
with respect to two distinct exceptional types can be done in any order, provided
that the exceptional types have no common subtype.
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A detailed decorated proof of the commutation update-update property is
given in [8, Proposition 3.3]. The statement of this property and its proof
use semi-pure products, which were introduced in [10] in order to provide a
decorated alternative to the strength of a monad. Dually, for the commutation
untag-untag property we use semi-pure coproducts, thus generalizing the rules
for the casting and tagging operations.

The coproduct of two types A and B is defined as a type A + B with two

pure coprojections q
(0)
1 : A → A + B and q

(0)
2 : B → A + B, which satisfy

the usual coproduct property with respect to pure morphisms. Then the semi-

pure coproduct of a propagator f (1) : A → C and a catcher k(2) : B → C is

a catcher [f |k](2) : A + B → C which is characterized, up to strong equations,
by the following decorated version of the coproduct property: [f |k] ◦ q1 ∼ f

and [f |k] ◦ q2 ≡ k. Then as usual, the coproduct f ′ + k′ : A + B → C +D of
a propagator f ′ : A → C and a catcher k′ : B → D is the catcher f ′ + k′ =
[q1 ◦ f | q2 ◦ k] : A+B → C +D.

Whenever f and g are propagators it can be proved that ▽ [f |g] ≡ [f |g]; thus,
up to strong equations, we can assume that in this case [f | g] : A + B → C is
a propagator; it is characterized, up to strong equations, by [f | g] ◦ q1 ≡ f and
[f | g] ◦ q2 ≡ g.

Lemma A.5 (Commutation untag-untag). For any two types T , S in T , with-

out any common subtype:

(untagT + idS)
(2) ◦ untag

(2)
S ≡ (idT + untagS )

(2) ◦ untag
(2)
T : 0 → T + S

Strictly speaking, the proof of the dual lemma in [8, Proposition 3.3] is not
completely applicable here since we do not suppose a discrete type hierarchy,
only that the two involved types have no common subtype. Both proofs are
however very close and we here provide the new one, for the sake of completeness.

Proof. Using Rule (f) of Figure 2, it is sufficient to prove that for all R ∈
T , f ◦ tagR ∼ g ◦ tagR with f the left hand-side and g the right hand-side, as in
the following diagrams:

0

[ ]
S

��

untagT
// T

q
T

��

f (2) : 0
untagS

// S
untagT+idS

//

≡

∼

T + S

S

idS

OO

idS

// S

q
S

OO

T

idT

��

idT
// T

q
T

��

g(2) : 0
untagT

// T
idT+untagS

//

∼

≡

T + S

0

[ ]
T

OO

untagS

// S

q
S

OO

• When R _ T , (untagT + idS)◦untagS ◦ tagR ∼ (untagT + idS)◦ [ ]S ◦ tagR.
By the definition of the semi-pure coproduct, we have that (untagT +
idS) ◦ [ ]S ≡ qT ◦ untagT so that (untagT + idS) ◦ untagS ◦ tagR ∼ qT ◦
untagT ◦tagR ∼ qT ◦castR,T . We also have (idT +untagS )◦untagT ◦tagR ∼
(idT + untagS ) ◦ castR,T ∼ (idT + untagS ) ◦ idT ◦ castR,T . The definition
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of the semi-pure coproduct here yields, (idT + untagS ) ◦ idT ∼ qT ◦ idT

so that, since castR,T is pure, we have (idT + untagS ) ◦ untagT ◦ tagR ∼
qT ◦ idT ◦ castR,T ∼ qT ◦ castR,T .

• The case R _ S is similar.

• Finally, for R 6_ T and R 6_ S, we have (untagT + idS) ◦ untagS ◦ tagR ∼
qT ◦ untagT ◦ tagR ∼ qT ◦ [ ]T ◦ tagR ∼ [ ]T+S ◦ tagR as well as (idT +
untagS )◦untagT ◦ tagR ∼ (idT +untagS )◦ [ ]T ◦ tagR ∼ qS ◦untagS ◦ tagR ∼
qS ◦ [ ]S ◦ tagR ∼ [ ]T+S ◦ tagR.

Proposition A.6 (Commutation catch-catch). For any propagator f (1) : X →
Y , for any two types T , S in T without any common subtype and any propagators

g(1) : T → Y , h(1) : S → Y :

try{f} catch {T⇒g | S⇒h} ≡ try{f} catch {S⇒h | T⇒g}

Proof. According to Equation (8): try{f} catch {T ⇒ g | S ⇒ h} ≡
▽([id | [g | h ◦ untagS ] ◦ untagT ] ◦ f). Thus, the result will follow from
[g | h ◦ untagS ] ◦ untagT ≡ [h | g ◦ untagT ] ◦ untagS . It is easy to check that
[g | h ◦ untagS ] ≡ [g | h] ◦ (idT + untagS ), so that [g | h ◦ untagS ] ◦ untagT ≡
[g | h]◦(idT+untagS )◦untagT . Indeed, let z(2) : T → Y = [g | h]◦(idT+untagS ).
From the rules of the semi-pure coproduct, we have that z ◦ [ ] ≡ (h ◦ untagS ) :
0 → Y and z ◦ idT ∼ (g ◦ idT )

(1) : T → Y . Using Rule (d) from Figure 2, this
shows that z ≡ [g | h ◦ untagS ].

Similarly [h | g ◦ untagT ] ◦ untagS ≡ [h | g] ◦ (untagT + idS) ◦ untagS hence
[h | g ◦ untagT ] ◦ untagS ≡ [g | h] ◦ (untagT + idS) ◦ untagS . Then the result
follows from Lemma A.5.
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