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This paper deals with the problem of measuring the similarity degree between two normalized possibility distributions encoding preferences or uncertain knowledge. Many existing denitions of possibilistic similarity indexes aggregate pairwise distances between each situation in possibility distributions. This paper goes one step further, and discusses denitions of possibilistic similarity measures that include inconsistency degrees between possibility distributions. In particular, we propose a postulate-based analysis of similarity indexes which extends the basic ones that have been recently proposed in a literature.

Introduction

Uncertainty and imprecision are often inherent in modeling knowledge for most real-world problems (e.g. military applications, medical diagnosis, risk analysis, group consensus opinion, etc.). Uncertainty about values of given variables (e.g. the type of a detected aerial object, the temperature of a patient, the property_value of a client asking for a loan, etc.) can result from some errors and hence from non-reliability (in the case of experimental measures) or from dierent background knowledge (in the cognitive case of agents: doctors, etc.). As a consequence, it is possible to obtain dierent uncertain pieces of information about a given value from dierent sources. Obviously, comparing these pieces of information could be of a great interest in decision making, in case-based reasoning, in performing clustering from data having some imprecise attribute values, etc.

Comparing pieces of uncertain information given by several sources has attracted a lot of attention for a long time. For instance, we can mention the well-known Euclidean and KL-divergence [START_REF] Kullback | On information and suciency[END_REF] for comparing probability distributions. Another distance has been proposed by Chan et al. [START_REF] Chan | A distance measure for bounding probabilistic belief change[END_REF] for bounding probabilistic belief change. Moving to belief function theory [START_REF] Shafer | A mathematical theory of evidence[END_REF], several distance measures between bodies of evidence deserve to be mentioned. Some distances have been proposed as measures of performance (MOP) of identication algorithms [START_REF] Fixsen | The modied Dempster-Shafer approach to classication[END_REF] [START_REF] Jousselme | A new distance between two bodies of evidence[END_REF]. Another distance was used for the optimization of the parameters of a belief k -nearest neighbor classier [START_REF] Zouhal | An evidence-theoric k-NN rule with paprameter optimization[END_REF]. In [START_REF] Tessem | Approximations for ecient computation in the theory of evidence[END_REF], the authors proposed a distance for the quantication of errors resulting from basic probability assignment approximations.

Many contributions on measures of similarity between two given fuzzy sets have already been made [START_REF] Bouchon-Meunier | Towards general measures of comparison of objects[END_REF] [3] [6] [START_REF] Wang | A comparative study of similarity measures[END_REF]. For instance, in the work by Bouchon-Meunier et al. [START_REF] Bouchon-Meunier | Towards general measures of comparison of objects[END_REF], the authors proposed a similarity measure between fuzzy sets as an extension of Tversky's model on crisp sets [START_REF] Tversky | Features of similarity[END_REF]. The measure was then used to develop an image search engine. In [START_REF] Wang | A comparative study of similarity measures[END_REF], the authors have made a comparison between existing classical similarity measures for fuzzy sets and proposed the sameness degree which is based on fuzzy subsethood and implication operators. Moreover, in [START_REF] Baets | Transitivity preserving fuzzication schemes for cardinality-based similarity measures[END_REF] and [START_REF] Fono | Fuzzy implication operators for dierence operations for fuzzy sets and cardinality-based measures of comparison[END_REF], the authors have proposed many fuzzy distance measures which are fuzzy versions of classical cardinality-based distances. This paper deals with the problem of dening similarity measures between normalized possibility distributions. In [START_REF] Jenhani | Information Anity: a new similarity measure for possibilistic uncertain information[END_REF], a basic set of properties, that any possibilistic similarity measure should satisfy, has been proposed. This set of natural properties is too minimal and is satised by most existing indexes. Moreover, they do not take into account the inconsistency degree between possibility distributions. In this paper, we will mainly focus on revising and extending these properties to highlight the introduction of inconsistency in measuring possibilistic similarity.

In fact, inconsistency should be considered when measuring similarity as shown by this example: Suppose that a conference chair has to select the best paper among three selected best papers (p 1 , p 2 , p 3 ) to give an award to its authors. The conference chair decides to make a second reviewing and asks two referees r 1 and r 2 to give their preferences about the papers which, in fact, will be represented in the form of possibility distributions. Let us consider these two situations: Situation 1: The referee r 1 expresses his full satisfaction for p 3 and fully rejects p 1 and p 2 (i.e. π 1 (p 1 ) = 0, π 1 (p 2 ) = 0, π 1 (p 3 ) = 1) whereas r 2 expresses his full satisfaction for p 2 and fully rejects p 1 and p 3 (i.e. π 2 (p 1 ) = 0, π 2 (p 2 ) =1, π 2 (p 3 ) = 0). Clearly, p 1 will be rejected but the chair cannot make a decision that fully ts referees' preferences. 

(p 1 ) = 1, π ′ 2 (p 2 ) = 1, π ′ 2 (p 3 ) = 0).
In this case, the chair can make a decision that satises both reviewers since they agree that p 1 is a good paper.

The above example shows that, in some situ-ations, distance alone is not sucient to make a decision since the expressed preferences in both situations have the same distance. In fact, if we consider the well-known Manhattan distance (M(x,y)=

1 n n i=1 |x i -y i |), we obtain M(π 1 , π 2 )=M(π ′ 1 , π ′
2 )=2/3. Hence, we should consider an additional concept, namely, the inconsistency degree which will play a crucial role in measuring similarity between any given two possibility distributions.

The rest of the paper is organized as follows. Section 2 gives necessary background on possibility theory. Section 3 presents the six proposed basic properties that a similarity measure should satisfy. Section 4 proposes new additional properties that take into account the inconsistency degrees. Section 5 gives some derived propositions from the proposed properties. Section 6 suggests a similarity measure that generalizes the one presented in [START_REF] Jenhani | Information Anity: a new similarity measure for possibilistic uncertain information[END_REF]. Finally, Section 7 concludes the paper.

Possibility Theory

Possibility theory represents a non-classical uncertainty theory, rst introduced by Zadeh [START_REF] Zadeh | Fuzzy sets as a basis for a theory of possibility[END_REF] and then developed by several authors (e.g., Dubois and Prade [START_REF] Dubois | Possibility theory: An approach to computerized processing of uncertainty[END_REF]). In this section, we will give a brief recalling on possibility theory.

Possibility distribution

Given a universe of discourse Ω = {ω 1 , ω 2 , ..., ω n }, one of the fundamental concepts of possibility theory is the notion of possibility distribution denoted by π. π corresponds to a function which associates to each element ω i from the universe of discourse Ω a value from a bounded and linearly ordered valuation set (L,<). This value is called a possibility degree: it encodes our knowledge on the real world. Note that, in possibility theory, the scale can be numerical (e.g. L=[0,1]): in this case we have numerical possibility degrees from the interval [0,1] and hence we are dealing with the quantitative setting of the theory. In the qualitative setting, it is the ordering between the dierent possible values that is important. By convention, π(ω i ) = 1 means that it is fully possible that ω i is the real world, π(ω i ) = 0 means that ω i cannot be the real world (is impossible). Flexibility is modeled by allowing to give a possibility degree from ]0,1[. In possibility theory, extreme cases of knowledge are given by:

-Complete knowledge: ∃ω i , π(ω i ) = 1 and ∀ ω j = ω i , π(ω j ) = 0.
-Total ignorance:

∀ ω i ∈ Ω, π(ω i ) = 1 (all values in Ω are possible).

Possibility and Necessity measures

From a possibility distribution, two dual measures can be derived: Possibility and Necessity measures. Given a possibility distribution π on the universe of discourse Ω, the corresponding possibility and necessity measures of any event A ⊆ 2 Ω are, respectively, determined by the formulas: Π(A) = max ω∈A π(ω) and

N (A) = min ω / ∈A (1-π(ω)) = 1-Π(A). Π(A)
evaluates at which level A is consistent with our knowledge represented by π while N (A) evaluates at which level A is certainly implied by our knowledge represented by π.

Normalization

A possibility distribution π is said to be normalized if there exists at least one state ω i ∈ Ω which is totally possible (i.e. max ω∈Ω {π(ω)} = π(ω i )=1). Otherwise, π is considered as sub-normalized and in this case

Inc(π) = 1 -max ω∈Ω {π(ω)} (1) 
is called the inconsistency degree of π. It is clear that, for normalized π, max ω∈Ω {π(ω)} = 1, hence Inc(π)=0. The measure Inc is very useful in assessing the degree of conict between two distributions π 1 and π 2 which is given by Inc(π 1 ∧ π 2 ). For sake of simplicity, we take the minimum and product conjunctive (∧) operators. Obviously, when π 1 ∧π 2 gives a sub-normalized possibility distribution, it indicates that there is a conict between π 1 and π 2 (Inc(π 1 ∧ π 2 ) ∈]0, 1]). On the other hand, when π 1 ∧π 2 is normalized, there is no conict and hence Inc(π 1 ∧ π 2 ) = 0.

Non-specicity

Possibility theory is driven by the principle of minimum specicity: A possibility distribution π 1 is said to be more specic than π 2 if and only if for each state of aairs ω i ∈ Ω, π 1 (ω i ) ≤ π 2 (ω i ) [START_REF] Yager | On the specicity of a possibility distribution[END_REF]. Clearly, the more specic π, the more informative it is.

Given a permutation of the degrees of a pos-

sibility distribution π = π (1) , π (2) , ..., π (n) such that π (1) ≥ π (2) ≥ ... ≥ π (n)
, the nonspecicity of a possibility distribution π, socalled U-uncertainty is given by:

U (π) = n i=2 (π (i) -π (i+1) ) log 2 i + (1 -π (1) ) log 2 n.
For the sake of simplicity, for the rest of the paper, a possibility distribution π on a nite set Ω = {ω 1 , ω 2 , ..., ω n } will be denoted by

π[π(ω 1 ), π(ω 2 ), ..., π(ω n )].
3 Basic properties of a possibilistic similarity measure

The issue of comparing possibility distributions has been studied in several works. More recently, a set of basic properties has been proposed in [START_REF] Jenhani | Information Anity: a new similarity measure for possibilistic uncertain information[END_REF]. In this section, we will briey recall and slightly revise these properties. Note that in this paper, we only deal with normalized possibility distributions.

Let π 1 and π 2 be two possibility distributions on the same universe of discourse Ω.

A possibilistic similarity measure, denoted by s(π 1 , π 2 ), should satisfy:

Property 1. Non-negativity s(π 1 , π 2 ) ≥ 0. Property 2. Symmetry s(π 1 , π 2 ) = s(π 2 , π 1 ). Property 3.
Upper bound and Nondegeneracy

∀ π i , s(π i , π i ) = 1.
Namely, identity implies full similarity. This property is weaker than the one presented in [START_REF] Jenhani | Information Anity: a new similarity measure for possibilistic uncertain information[END_REF] which also requires the converse, namely, s(π i , π j )=1 i π i = π j .

Property 4. Lower bound

If ∀ω i ∈ Ω, i) π 1 (ω i ) ∈ {0, 1} and π 2 (ω i ) ∈ {0, 1}, ii) and π 2 (ω i ) = 1 -π 1 (ω i ) then, s(π 1 , π 2 )=0.
Namely, s(π 1 , π 2 ) = 0 should be obtained only when we have to compare maximally contradictory possibility distributions. Item i) means that π 1 and π 2 should be binary and since we deal with normalized possibility distributions, items i) and ii) imply:

iii) ∃ ω q ∈ Ω s.t. π 1 (ω q ) = 1 iv) ∃ ω p ∈ Ω s.t. π 1 (ω p ) = 0
Property 5. Large inclusion (specicity)

If ∀ω i ∈ Ω, π 1 (ω i ) ≤ π 2 (ω i ) and π 2 (ω i ) ≤ π 3 (ω i ),
which by denition means that π 1 is more specic than π 2 which is in turn more specic than π 3 , we obtain: s(π 1 , π 2 )≥s(π 1 , π 3 ).

Property 6. Permutation

Let π 1 , π 2 , π 3 and π 4 be four possibility distributions such that s(π 1 , π 2 )>s(π 3 , π 4 ). Suppose that ∀j = 1..4, and ω p , ω q ∈ Ω, we have π ′ j (ω p ) = π j (ω q ), π ′ j (ω q ) = π j (ω p ) and ∀ω r = ω p , ω q , π ′ j (ω r ) = π j (ω r ). Then,

s(π ′ 1 , π ′ 2 )>s(π ′ 3 , π ′ 4 ).
These six properties can be viewed as basic properties of any possibilistic similarity measure. They are satised by the following similarity measures:

Manhattan Distance:

S M (π 1 , π 2 ) = 1 - n i=1 (|π 1 (ω i )-π 2 (ω i )|) n
Euclidean Distance:

S E (π 1 , π 2 ) = 1 - n i=1 (π 1 (ω i )-π 2 (ω i )) 2 n
Clearly, the above properties do not take into account the amount of conict between possibility distributions. In fact, if we consider again our example of the introduction, where

π 1 =[0 0 1], π 2 =[0 1 0], π ′ 1 =[1 0 1] and π ′ 2 =[1 1 0], then S M (π 1 , π 2 )=S M (π ′ 1 , π ′ 2 )=0.33, S E (π 1 , π 2 )=S E (π ′ 1 , π ′ 2 )=0.18.
To overcome this drawback, we will enrich the proposed properties by some additional ones.

Additional possibilistic similarity properties

The rst extension concerns Property 5, where we consider a particular case of strict similarity in case of strict inclusion: Property 7. Strict inclusion

∀π 1 , π 2 , π 3 s.t. π 1 = π 2 = π 3 , if π 1 ≤ π 2 ≤ π 3 , then s(π 1 , π 2 ) > s(π 1 , π 3 ).
Note that π 1 = π 2 and π 1 ≤ π 2 implies π 1 < π 2 (strict specicity).

Next property says that, giving two possibility distributions π 1 and π 2 , enhancing the degree of a given situation (with the same value) results in an increasing of the similarity between the two distributions. The similarity will be even larger, if the enhancement leads to a decrease of the amount of conict. More precisely:

Property 8. Degree Enhancement

Let π 1 and π 2 be two possibility distributions.

Let

ω i ∈ Ω. Let π ′ 1 and π ′ 2 s.t.: i) ∀j = i, π ′ 1 (ω j ) = π 1 (ω j ) and π ′ 2 (ω j ) = π 2 (ω j ), ii) Let α s.t. α ≤ 1 -max(π 1 (ω i ), π 2 (ω i )). If π ′ 1 (ω i ) = π 1 (ω i )+α and π ′ 2 (ω i ) = π 2 (ω i )+α,
then:

• If Inc(π 1 ∧ π 2 )=Inc(π ′ 1 ∧ π ′ 2 ), then s(π 1 , π 2 ) = s(π ′ 1 , π ′ 2 ). • If Inc(π ′ 1 ∧ π ′ 2 )<Inc(π 1 ∧ π 2 ), then s(π ′ 1 , π ′ 2 ) > s(π 1 , π 2 ).
The intuition behind the two below properties is the following: consider two experts who provide possibility distributions π 1 and π 2 . Assume that there exists a situation ω where they disagree. Now, assume that the second expert changes its mind and sets π 2 (ω) to be equal to π 1 (ω). Then the new similarity between π 1 and π 2 increases. This is the aim of Property 9. Property 10, goes one step further and concerns the situation when the new degree of π 2 (ω) becomes closer to π 1 (ω).

Property 9. Mutual convergence

Let π 1 and π 2 be two possibility distributions s.t. for some ω i , we have

π 1 (ω i ) = π 2 (ω i ). Let π ′ 2 s.t.: i) π ′ 2 (ω i ) = π 1 (ω i ), ii) and ∀j = i, π ′ 2 (ω j ) = π 2 (ω j )
Hence, we obtain:

s(π 1 , π ′ 2 ) > s(π 1 , π 2 ).

Property 10. Generalized mutual convergence

Let π 1 and π 2 be two possibility distributions s.t. for some ω i , we have

π 1 (ω i ) > π 2 (ω i ). Let π ′ 2 s.t.: i) π ′ 2 (ω i ) ∈]π 2 (ω i ), π 1 (ω i )], 176 Proceedings of IPMU'08 ii) and ∀j = i, π ′ 2 (ω j ) = π 2 (ω j )
Hence, we obtain:

s(π 1 , π ′ 2 ) > s(π 1 , π 2 ).
Property 11 means that if one starts with a possibility distribution π 1 , and modify it by decreasing (resp. increasing) only one situation ω i (leading to π 2 ), or starts with a same distribution π 1 and only modify, identically, another situation ω k (leading to π 3 ), then the similarity degree between π 1 and π 2 is the same as between π 1 and π 3 .

Property 11. Indierence preserving

Let π 1 be a possibility distribution and α a positive number. Let

π 2 s.t. π 2 (ω i ) = π 1 (ω i )- α (resp. π 2 (ω i ) = π 1 (ω i ) + α ) and ∀j = i, π 2 (ω j ) = π 1 (ω j ). Let π 3 s.t. for k = i, π 3 (ω k ) = π 1 (ω k ) -α (resp. π 3 (ω k ) = π 1 (ω k ) + α) and ∀j = k, π 3 (ω j ) = π 1 (ω j ), Then: s(π 1 , π 2 )=s(π 1 , π 3 ).
Property 12 says that, if we consider two possibility distributions π 1 and π 2 . If we increase (resp. decrease) one situation ω p of π 1 with a degree α (leading to π ′ 1 ) and, similarly, increase (resp. decrease) one situation ω q but this time of π 2 with the same degree α (leading to π ′ 2 ), then the similarity degree between π 1 and π ′ 1 will be equal to the one between π 2 and π ′ 2 .

Property 12. Maintaining similarity

Let π 1 and π 2 be two possibility distributions.

Let π ′ 1 and π ′ 2 s.t. i) ∀j = p, π ′ 1 (ω j ) = π 1 (ω j ) and π ′ 1 (ω p ) = π 1 (ω p ) + α (resp. π ′ 1 (ω p ) = π 1 (ω p ) -α ). ii) ∀j = q, π ′ 2 (ω j ) = π 2 (ω j ) and π ′ 2 (ω q ) = π 2 (ω q ) + α (resp. π ′ 2 (ω q ) = π 2 (ω q ) -α).
Then: s(π 1 , π ′ 1 )=s(π 2 , π ′ 2 ).

Derived propositions

In what follows, we will derive some propositions from the above dened properties that should characterize any possibilistic similarity measure. A consequence of Property 7 is that only identity between two distributions imply full similarity, namely: Proposition 1 Let s a possibilistic similarity measure s.t. s satises Properties 1-12. Then, ∀π i , π j , s(π i , π j )=1 i π i =π j .

This also means that:

∀π j = π i , s(π i , π i ) > s(π i , π j ).
Besides, only completely contradictory possibility distributions imply a similarity degree equal to 0: Proposition 2 Let s a possibilistic similarity measure s.t. s satises Properties 1-12. Then,

∀π i , π j , s(π i , π j )=0 i ∀ω i ∈ Ω, i) π 1 (ω i ) ∈ {0, 1} and π 2 (ω i ) ∈ {0, 1}, ii) and π 2 (ω i ) = 1 -π 1 (ω i )
As a consequence of Property 8, discounting the possibility degree of a same situation leads to a decrease of similarity: Proposition 3 Let s a possibilistic similarity measure satisfying Properties 1-12. Let π 1 and π 2 be two possibility distributions.

Let ω i ∈ Ω. Let π ′ 1 and π ′ 2 s.t.: i) ∀j = i, π ′ 1 (ω j ) = π 1 (ω j ) and π ′ 2 (ω j ) = π 2 (ω j ), ii) Let β s.t. β ≤ min(π 1 (ω i ), π 2 (ω i )). If π ′ 1 (ω i ) = π 1 (ω i )-β and π ′ 2 (ω i ) = π 2 (ω i )-β.
Then:

If Inc(π 1 ∧ π 2 )=Inc(π ′ 1 ∧ π ′ 2 ), then s(π 1 , π 2 ) = s(π ′ 1 , π ′ 2 ). If Inc(π 1 ∧π 2 )<Inc(π ′ 1 ∧π ′ 2 ), then s(π 1 ∧π 2 ) > s(π ′ 1 ∧ π ′ 2 ).
As a consequence of Property 9 and Property 10, starting from a possibility distribution π 1 , we can dene a set of possibility distributions that, gradually, converge to the most similar possibility distribution to π 1 : Proposition 4 Let s a possibilistic similarity measure satisfying Properties 1-12. Let π 1 and π 2 be two possibility distributions s.t. for some

ω i , π 1 (ω i ) > π 2 (ω i ). Let π k (k=3..n) be a set of n possibility distributions. Each π k is derived in step k from π k-1 as follows: i) π k (ω i ) = π k-1 (ω i ) + α with α ∈]0, π 1 (ω i ) -π k-1 (ω i )] ii) and ∀j = i, π k (ω j ) = π k-1 (ω j ) Hence, we obtain s(π 1 , π 2 ) < s(π 1 , π 3 ) < s(π 1 , π 4 ) < ... < s(π 1 , π n ) ≤ 1.
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6 An example of a similarity measure This section proposes to analyze an extension of the Information Anity measure, recently proposed in [START_REF] Jenhani | Information Anity: a new similarity measure for possibilistic uncertain information[END_REF] and denoted Inf oAf f . Let us recall that Inf oAf f takes into account the Manhattan distance (M(π 1 , π 2 ) =

1 n n i=1 |π 1 (ω i ) -π 2 (ω i )|)
, along with the well known inconsistency measure. By extension, we mean that we do not restrict ourselves to the Manhattan distance, but we can also consider the Euclidean distance (E(π

1 , π 2 ) = n i=1 (π 1 (ω i )-π 2 (ω i )) 2 n
). Moreover, for the Inconsistency measure (Equation( 1)), we can also take either the minimum or the product conjunctive operators.

Denition 1 Let π 1 and π 2 be two possibility distributions on the same universe of discourse Ω. We dene a measure GA(π 1 , π 2 ) as follows:

GAf f (π1, π2) = 1 - κ * d(π1, π2) + λ * Inc(π1 ∧ π2) κ + λ
where κ>0 and λ>0. d represents a (Manhattan or Euclidean) normalized metric distance between π 1 and π 2 . Inc(π 1 ∧ π 2 ) is the inconsistency degree between the two distributions (see Equation ( 1)) where ∧ is taken as the product or min operators.

Proposition 5 The GAf f measure satises all the proposed properties.

Example 1 Let us give an example to explain the proposed properties. For this example, we will take d as the Manhattan distance, ∧ as the minimum conjunctive operator and 

κ = λ = 1. Property 7. Strict inclusion Let π 1 [0.3,0.3,1],π 2 [0.6,0.3,1] and π 3 [1,0.3,1]. Clearly π 1 ≤ π 2 ≤ π 3 and π 1 (ω 1 ) < π 2 (ω 1 ) < π 3 (ω 1 ) ⇒ GAf f (π 1 , π 2 ) = 0.95 > GAf f (π 1 , π 3 ) = 0.
=[0 0 1], π 2 =[0 1 0], π ′ 1 =[1 0 1] and π ′ 2 =[1 1 0]. If we ap- ply GA, we obtain: GA(π 1 ,π 2 )=0.16 < GA(π ′ 1 ,π ′ 2 )=0.66 7 

Conclusion

This paper revised and extended recently proposed properties [START_REF] Jenhani | Information Anity: a new similarity measure for possibilistic uncertain information[END_REF] that a similarity measure between possibility distributions should satisfy. Although the Manhattan and Euclidean distances satisfy all the six basic properties, they do not satisfy the new extended ones (as shown by the example at the end of Section 3). Moreover, we have proposed a measure, namely, the Generalized Anity function which satises all the axioms. We argue that the proposed measure is useful in many applications where uncertainty is represented by possibility distributions e.g. similaritybased possibilistic decision trees [START_REF] Jenhani | Sim-PDT: a similaritybased possibilistic decision tree approach[END_REF]. We can also mention the possibilistic clustering problem [START_REF] Krishnapuram | A possibilistic approach to clustering[END_REF] which generally uses fuzzy similarity measures.

Appendix A. Proofs

For lack of space, we only provide the proof of One direction is evident since π i =π j ⇒ GA(π i , π j )=1 (Property 3). Now, suppose that GA(π i , π j )=1 and π i = π j . GA(π i , π j )=1 ⇒ d(π i , π j )=0 AND Inc(π i ∧ π j )=0 (since we deal with normalized distributions) ⇒ π i =π j (contradiction with the assumption). Hence, GA(π i , π j )=1 i π i =π j .

Proposition 2:

One direction is evident since π 1 =1-π 2 (with π 1 and π 2 are binary normalized possibility distributions) ⇒ GA(π 1 , π 2 )=0 (Property 4). Now, suppose that: i) GA(π 1 , π 2 )=0 and ii)π 1 = 1π 2 and iii)π 1 and π 2 are not binary. GA(π 1 , π 2 )=0 ⇒ κ * d(π 1 ,π 2 )+λ * Inc(π

1 ∧π 2 ) κ+λ =1 ⇒ κ * d(π 1 , π 2 ) + λ * Inc(π 1 ∧ π 2 ) = κ + λ.
Since, κ>0, λ>0 ⇒ d(π 1 , π 2 ) = 1 AND

Inc(π 1 ∧ π 2 ) = 1 ⇒ ∀ω i , |π 1 (ω i ) -π 2 (ω i )|=1
AND ∀ω i , min(π 1 (ω i ), π 2 (ω i ))=0 ⇒ 1) ∀ i, π 1 (ω i ) ∈ {0,1} and π 2 (ω i ) ∈ {0,1} and 2) ∀ i, π 1 (ω i )=1π 2 (ω i ) (contradiction with ii) and iii) of the above assumption).

Proofs of Property 1, Property 2, Property 5 and Property 6 are immediate since both d and Inc satisfy them as shown in [START_REF] Jenhani | Information Anity: a new similarity measure for possibilistic uncertain information[END_REF]. Let us now prove that GA satises Property 7-Property 12.

Situation 2 :

 2 The referee r 1 expresses his full satisfaction for p 1 and p 3 and fully rejects p 2 (i.e. π ′ whereas r 2 expresses his full satisfaction for p 1 and p 2 and fully rejects p 3 (i.e. π ′

	2

  88 Inc(π 4 ∧ π 5 )=1. If we subtract 0.4 from ω 2 in π 11 or from ω 3 in π 11 ⇒ π 12 [1 0.4 0.4] and π 13 [1 0.8 0]. ⇒ GA(π 11 ,π 12 )=GA(π 11 ,π 13 )=0.93. If we add 0.2 to ω 2 in π 11 or to ω 3 in π 11 ⇒ GA(π 11 ,π ′ 12 )=GA(π 11 ,π ′ 13 )=0.96. Property 12. Maintaining similarity Let π 14 [1 0.7 0], π 15 [1 0.2 0.7]. If we add α = 0.3 to ω 2 in π 14 and to ω 3 in π 15 ⇒ π ′ GA(π 14 ,π ′ 14 )=GA(π 15 ,π ′ 15 )=0.95. If we subtract α = 0.5 to ω 2 in π 14 and to ω 3 in π 15 ⇒ π ′′ 14 [1 0.2 0] and π ′′ 15 [1 0.2 0.2]. ⇒ GA(π 14 ,π ′′ 14 )=GA(π 15 ,π ′′ 15 )=0.91. Example 2 If we reconsider the example of the referees where π 1

	Property 8. Degree enhancement Let π 4 [0,0,1], π ′ 4 [0.6,0,1], π 5 [0,1,0] and π ′ 5 [0.6,1,0] (we added 0.6 to ω 1 ). We have d(π ′ 4 ,π ′ 5 )=d(π 4 ,π 5 )=0.66. But Inc(π ′ 4 ∧ π ′ 5 )=0.4 = ⇒ GA(π ′ 4 ,π ′ 5 )=0.46>GA(π 4 ,π 5 )=0.17 Property 9 and 10. Mutual convergence Let π 6 [0.2,1,0.5] and π ′ 6 [0.2,1,1] (We took π ′ 6 (ω 3 )=π 1 (ω 3 )=1) ⇒ GA(π 1 ,π ′ 6 )=0.86>GA(π 1 ,π 6 )=0.53. Property 11. Indierence preserving Let π 11 [1 0.8 0.4], α = 0.4. π ′ 12 [1 1 0.4] and π ′ 13 [1 0.8 0.6]. 14 [1 1 0] and π ′ 15 [1 0.2 1].

⇒ ⇒

  Proposition 5, only when d=Manhattan distance and ∧=min. We can easily check that d can be replaced by the Euclidean distance and ∧ by the product. Moreover, since GA generalizes InfoA[START_REF] Jenhani | Information Anity: a new similarity measure for possibilistic uncertain information[END_REF], proofs of unchanged properties (Property 1, Property 2, Property 5 and Property 6) are immediate and consequently are not provided. The proof of Proposition 5 shows that our proposed measure satises all the proposed properties.Proof of Proposition 5Let us begin by showing that GA satises the strong Upper and Lower bound properties derived respectively in Proposition 1 and Proposition 2.

	Proposition 1:

(p 1 ) = 1, π ′ 1 (p

) = 0, π ′ 1 (p

) = 1)
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Property 7:

If π 1 is more specic than π 2 which is in turn more specic then π 3 , since ∃ ω 0 s.t. π 1 (ω 0 ) < π 2 (ω 0 ) < π 3 (ω 0 ):

Property 8:

We have d(π ′ 1 , π ′

2 )=d(π 1 , π 2 ) since we added the same value α to the same ω i in π 1 and π 2 . In the other hand, if min(π ′

we certainly obtain:

1) If we add α to π 1 (ω i ) (which leads to π 2 ) or α to π 1 (ω j ) (which leads to

2) The second proof is immediate from 1) if we subtract α.

Property 12:

1) Similarly to the above proof, if we add α to π 1 (ω i ) and keep the other degrees unchanged (which leads to π ′ 1 ) and α to π 2 (ω j ) and keep the other degrees unchanged (which leads to

2 )=0 (since we only deal with normalized distributions) ⇒ GA(π 1 , π ′ 1 )=GA(π 2 , π ′ 2 ). 2) The second proof is immediate from 1) if we subtract α.
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