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Abstract

This paper deals with the problem
of measuring the similarity degree
between two normalized possibility
distributions encoding preferences or
uncertain knowledge. Many exist-
ing de�nitions of possibilistic simi-
larity indexes aggregate pairwise dis-
tances between each situation in pos-
sibility distributions. This paper
goes one step further, and discusses
de�nitions of possibilistic similarity
measures that include inconsistency
degrees between possibility distribu-
tions. In particular, we propose a
postulate-based analysis of similarity
indexes which extends the basic ones
that have been recently proposed in
a literature.
Keywords: Possibility theory; Sim-
ilarity; Inconsistency.

1 Introduction

Uncertainty and imprecision are often inher-
ent in modeling knowledge for most real-world
problems (e.g. military applications, medi-
cal diagnosis, risk analysis, group consensus
opinion, etc.). Uncertainty about values of
given variables (e.g. the type of a detected
aerial object, the temperature of a patient,
the property_value of a client asking for a
loan, etc.) can result from some errors and
hence from non-reliability (in the case of ex-
perimental measures) or from di�erent back-
ground knowledge (in the cognitive case of

agents: doctors, etc.). As a consequence, it is
possible to obtain di�erent uncertain pieces of
information about a given value from di�erent
sources. Obviously, comparing these pieces of
information could be of a great interest in de-
cision making, in case-based reasoning, in per-
forming clustering from data having some im-
precise attribute values, etc.
Comparing pieces of uncertain information
given by several sources has attracted a lot
of attention for a long time. For instance,
we can mention the well-known Euclidean and
KL-divergence [13] for comparing probability
distributions. Another distance has been pro-
posed by Chan et al. [2] for bounding prob-
abilistic belief change. Moving to belief func-
tion theory [15], several distance measures be-
tween bodies of evidence deserve to be men-
tioned. Some distances have been proposed
as measures of performance (MOP) of identi-
�cation algorithms [5] [10]. Another distance
was used for the optimization of the param-
eters of a belief k -nearest neighbor classi�er
[21]. In [16], the authors proposed a distance
for the quanti�cation of errors resulting from
basic probability assignment approximations.
Many contributions on measures of similar-
ity between two given fuzzy sets have already
been made [1] [3] [6] [18]. For instance, in the
work by Bouchon-Meunier et al. [1], the au-
thors proposed a similarity measure between
fuzzy sets as an extension of Tversky's model
on crisp sets [17]. The measure was then
used to develop an image search engine. In
[18], the authors have made a comparison be-
tween existing classical similarity measures for
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fuzzy sets and proposed the sameness degree
which is based on fuzzy subsethood and impli-
cation operators. Moreover, in [3] and [6], the
authors have proposed many fuzzy distance
measures which are fuzzy versions of classical
cardinality-based distances.
This paper deals with the problem of de�ning
similarity measures between normalized possi-
bility distributions. In [8], a basic set of prop-
erties, that any possibilistic similarity mea-
sure should satisfy, has been proposed. This
set of natural properties is too minimal and
is satis�ed by most existing indexes. More-
over, they do not take into account the in-
consistency degree between possibility distri-
butions. In this paper, we will mainly focus
on revising and extending these properties to
highlight the introduction of inconsistency in
measuring possibilistic similarity.
In fact, inconsistency should be considered
when measuring similarity as shown by this
example: Suppose that a conference chair has
to select the best paper among three selected
best papers (p1, p2, p3) to give an award to
its authors. The conference chair decides to
make a second reviewing and asks two refer-
ees r1 and r2 to give their preferences about
the papers which, in fact, will be represented
in the form of possibility distributions. Let us
consider these two situations:
Situation 1: The referee r1 expresses his full
satisfaction for p3 and fully rejects p1 and p2

(i.e. π1(p1) = 0, π1(p2) = 0, π1(p3) = 1)
whereas r2 expresses his full satisfaction for
p2 and fully rejects p1 and p3 (i.e. π2(p1) = 0,
π2(p2) = 1, π2(p3) = 0). Clearly, p1 will be
rejected but the chair cannot make a decision
that fully �ts referees' preferences.
Situation 2: The referee r1 expresses his full
satisfaction for p1 and p3 and fully rejects p2

(i.e. π′
1(p1) = 1, π′

1(p2) = 0, π′
1(p3) = 1)

whereas r2 expresses his full satisfaction for
p1 and p2 and fully rejects p3 (i.e. π′

2(p1) = 1,
π′

2(p2) = 1, π′
2(p3) = 0). In this case, the

chair can make a decision that satis�es both
reviewers since they agree that p1 is a good
paper.
The above example shows that, in some situ-

ations, distance alone is not su�cient to make
a decision since the expressed preferences in
both situations have the same distance. In
fact, if we consider the well-known Manhattan
distance (M(x,y)= 1

n

∑n
i=1 |xi −yi|), we obtain

M(π1, π2)=M(π′
1, π

′
2)=2/3. Hence, we should

consider an additional concept, namely, the
inconsistency degree which will play a crucial
role in measuring similarity between any given
two possibility distributions.
The rest of the paper is organized as fol-
lows. Section 2 gives necessary background
on possibility theory. Section 3 presents the
six proposed basic properties that a similar-
ity measure should satisfy. Section 4 proposes
new additional properties that take into ac-
count the inconsistency degrees. Section 5
gives some derived propositions from the pro-
posed properties. Section 6 suggests a similar-
ity measure that generalizes the one presented
in [8]. Finally, Section 7 concludes the paper.

2 Possibility Theory

Possibility theory represents a non-classical
uncertainty theory, �rst introduced by Zadeh
[20] and then developed by several authors
(e.g., Dubois and Prade [4]). In this section,
we will give a brief recalling on possibility the-
ory.
Possibility distribution
Given a universe of discourse Ω =
{ω1, ω2, ..., ωn}, one of the fundamen-
tal concepts of possibility theory is the notion
of possibility distribution denoted by π. π

corresponds to a function which associates
to each element ωi from the universe of
discourse Ω a value from a bounded and
linearly ordered valuation set (L,<). This
value is called a possibility degree: it encodes
our knowledge on the real world. Note
that, in possibility theory, the scale can be
numerical (e.g. L=[0,1]): in this case we
have numerical possibility degrees from the
interval [0,1] and hence we are dealing with
the quantitative setting of the theory. In the
qualitative setting, it is the ordering between
the di�erent possible values that is important.
By convention, π(ωi) = 1 means that it is fully
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possible that ωi is the real world, π(ωi) = 0
means that ωi cannot be the real world (is im-
possible). Flexibility is modeled by allowing
to give a possibility degree from ]0,1[. In pos-
sibility theory, extreme cases of knowledge are
given by:
- Complete knowledge: ∃ωi, π(ωi) =
1 and ∀ ωj 6= ωi, π(ωj) = 0.
- Total ignorance: ∀ ωi ∈ Ω, π(ωi) = 1 (all
values in Ω are possible).
Possibility and Necessity measures
From a possibility distribution, two dual mea-
sures can be derived: Possibility and Necessity
measures. Given a possibility distribution π

on the universe of discourse Ω, the correspond-
ing possibility and necessity measures of any
event A ⊆ 2Ω are, respectively, determined
by the formulas: Π(A) = maxω∈A π(ω) and
N(A) = minω/∈A (1−π(ω)) = 1−Π(A). Π(A)
evaluates at which level A is consistent with
our knowledge represented by π while N(A)
evaluates at which level A is certainly implied
by our knowledge represented by π.
Normalization
A possibility distribution π is said to be
normalized if there exists at least one state
ωi ∈ Ω which is totally possible (i.e.
maxω∈Ω{π(ω)} = π(ωi)=1). Otherwise, π is
considered as sub-normalized and in this case

Inc(π) = 1 − max
ω∈Ω

{π(ω)} (1)

is called the inconsistency degree of π. It is
clear that, for normalized π, maxω∈Ω{π(ω)} =
1, hence Inc(π)=0. The measure Inc is very
useful in assessing the degree of con�ict be-
tween two distributions π1 and π2 which is
given by Inc(π1 ∧ π2). For sake of simplicity,
we take theminimum and product conjunctive
(∧) operators. Obviously, when π1∧π2 gives a
sub-normalized possibility distribution, it in-
dicates that there is a con�ict between π1 and
π2 (Inc(π1 ∧ π2) ∈]0, 1]). On the other hand,
when π1∧π2 is normalized, there is no con�ict
and hence Inc(π1 ∧ π2) = 0.
Non-speci�city
Possibility theory is driven by the principle of
minimum speci�city : A possibility distribu-
tion π1 is said to be more speci�c than π2 if

and only if for each state of a�airs ωi ∈ Ω,
π1(ωi) ≤ π2(ωi) [19]. Clearly, the more spe-
ci�c π, the more informative it is.
Given a permutation of the degrees of a pos-
sibility distribution π = 〈π(1), π(2), ..., π(n)〉
such that π(1) ≥ π(2) ≥ ... ≥ π(n), the non-
speci�city of a possibility distribution π, so-
called U-uncertainty is given by: U(π) =
∑n

i=2(π(i) − π(i+1)) log2 i + (1− π(1)) log2 n.
For the sake of simplicity, for the rest of the
paper, a possibility distribution π on a �nite
set Ω = {ω1, ω2, ..., ωn} will be denoted by
π[π(ω1), π(ω2), ..., π(ωn)].

3 Basic properties of a possibilistic
similarity measure

The issue of comparing possibility distribu-
tions has been studied in several works. More
recently, a set of basic properties has been pro-
posed in [8]. In this section, we will brie�y re-
call and slightly revise these properties. Note
that in this paper, we only deal with normal-
ized possibility distributions.
Let π1 and π2 be two possibility distribu-
tions on the same universe of discourse Ω.
A possibilistic similarity measure, denoted by
s(π1, π2), should satisfy:
Property 1. Non-negativity
s(π1, π2) ≥ 0.
Property 2. Symmetry
s(π1, π2) = s(π2, π1).
Property 3. Upper bound and Non-
degeneracy
∀ πi, s(πi, πi) = 1.
Namely, identity implies full similarity. This
property is weaker than the one presented in
[8] which also requires the converse, namely,
s(πi, πj)=1 i� πi = πj .
Property 4. Lower bound
If ∀ωi ∈ Ω,

i) π1(ωi) ∈ {0, 1} and π2(ωi) ∈ {0, 1},
ii) and π2(ωi) = 1− π1(ωi) then, s(π1, π2)=0.

Namely, s(π1, π2) = 0 should be obtained
only when we have to compare maximally

Proceedings of IPMU’08 175



contradictory possibility distributions.
Item i) means that π1 and π2 should be
binary and since we deal with normalized
possibility distributions, items i) and ii)
imply:
iii) ∃ ωq ∈ Ω s.t. π1(ωq) = 1
iv) ∃ ωp ∈ Ω s.t. π1(ωp) = 0

Property 5. Large inclusion (speci�city)
If ∀ωi ∈ Ω, π1(ωi) ≤ π2(ωi) and
π2(ωi) ≤ π3(ωi), which by de�nition means
that π1 is more speci�c than π2 which is
in turn more speci�c than π3, we obtain:
s(π1, π2)≥s(π1, π3).
Property 6. Permutation
Let π1, π2, π3 and π4 be four possibility dis-
tributions such that s(π1, π2)>s(π3, π4). Sup-
pose that ∀j = 1..4, and ωp, ωq ∈ Ω, we
have π′

j(ωp) = πj(ωq), π′
j(ωq) = πj(ωp) and

∀ωr 6= ωp, ωq, π′
j(ωr) = πj(ωr). Then,

s(π′
1, π

′
2)>s(π′

3, π
′
4).

These six properties can be viewed as basic
properties of any possibilistic similarity mea-
sure. They are satis�ed by the following sim-
ilarity measures:
Manhattan Distance:
SM (π1, π2) = 1 −

∑

n

i=1
(|π1(ωi)−π2(ωi)|)

n
Euclidean Distance:
SE(π1, π2) = 1 −

√

∑

n

i=1
(π1(ωi)−π2(ωi))2

n

Clearly, the above properties do not take into
account the amount of con�ict between pos-
sibility distributions. In fact, if we consider
again our example of the introduction, where
π1=[0 0 1], π2=[0 1 0], π′

1=[1 0 1] and π′
2=[1

1 0], then SM (π1, π2)=SM (π′
1, π

′
2)=0.33,

SE(π1, π2)=SE(π′
1, π

′
2)=0.18.

To overcome this drawback, we will enrich the
proposed properties by some additional ones.

4 Additional possibilistic similarity
properties

The �rst extension concerns Property 5, where
we consider a particular case of strict similar-
ity in case of strict inclusion:
Property 7. Strict inclusion
∀π1, π2, π3 s.t. π1 6= π2 6= π3, if π1 ≤ π2 ≤
π3, then s(π1, π2) > s(π1, π3).

Note that π1 6= π2 and π1 ≤ π2 implies π1 <

π2 (strict speci�city).
Next property says that, giving two possibility
distributions π1 and π2, enhancing the degree
of a given situation (with the same value) re-
sults in an increasing of the similarity between
the two distributions. The similarity will be
even larger, if the enhancement leads to a de-
crease of the amount of con�ict. More pre-
cisely:
Property 8. Degree Enhancement
Let π1 and π2 be two possibility distributions.
Let ωi ∈ Ω. Let π′

1 and π′
2 s.t.:

i) ∀j 6= i, π′
1(ωj) = π1(ωj) and π′

2(ωj) =
π2(ωj),
ii) Let α s.t. α ≤ 1 − max(π1(ωi), π2(ωi)).
If π′

1(ωi) = π1(ωi)+α and π′
2(ωi) = π2(ωi)+α,

then:

• If Inc(π1 ∧ π2)=Inc(π′
1 ∧ π′

2), then
s(π1, π2) = s(π′

1, π
′
2).

• If Inc(π′
1 ∧ π′

2)<Inc(π1 ∧ π2), then
s(π′

1, π
′
2) > s(π1, π2).

The intuition behind the two below properties
is the following: consider two experts who pro-
vide possibility distributions π1 and π2. As-
sume that there exists a situation ω where
they disagree. Now, assume that the second
expert changes its mind and sets π2(ω) to be
equal to π1(ω). Then the new similarity be-
tween π1 and π2 increases. This is the aim of
Property 9. Property 10, goes one step fur-
ther and concerns the situation when the new
degree of π2(ω) becomes closer to π1(ω).
Property 9. Mutual convergence
Let π1 and π2 be two possibility distributions
s.t. for some ωi, we have π1(ωi) 6= π2(ωi). Let
π′

2 s.t.:
i) π′

2(ωi) = π1(ωi),
ii) and ∀j 6= i, π′

2(ωj) = π2(ωj)
Hence, we obtain: s(π1, π

′
2) > s(π1, π2).

Property 10. Generalized mutual con-
vergence
Let π1 and π2 be two possibility distributions
s.t. for some ωi, we have π1(ωi) > π2(ωi). Let
π′

2 s.t.:
i) π′

2(ωi) ∈]π2(ωi), π1(ωi)],
176 Proceedings of IPMU’08



ii) and ∀j 6= i, π′
2(ωj) = π2(ωj)

Hence, we obtain: s(π1, π
′
2) > s(π1, π2).

Property 11 means that if one starts with a
possibility distribution π1, and modify it by
decreasing (resp. increasing) only one situa-
tion ωi (leading to π2), or starts with a same
distribution π1 and only modify, identically,
another situation ωk (leading to π3), then the
similarity degree between π1 and π2 is the
same as between π1 and π3.
Property 11. Indi�erence preserving
Let π1 be a possibility distribution and α a
positive number. Let π2 s.t. π2(ωi) = π1(ωi)−
α (resp. π2(ωi) = π1(ωi) + α ) and ∀j 6= i,
π2(ωj) = π1(ωj).
Let π3 s.t. for k 6= i, π3(ωk) = π1(ωk) − α

(resp. π3(ωk) = π1(ωk) + α) and ∀j 6= k,
π3(ωj) = π1(ωj),
Then: s(π1, π2)=s(π1, π3).
Property 12 says that, if we consider two pos-
sibility distributions π1 and π2. If we increase
(resp. decrease) one situation ωp of π1 with
a degree α (leading to π′

1) and, similarly, in-
crease (resp. decrease) one situation ωq but
this time of π2 with the same degree α (lead-
ing to π′

2), then the similarity degree between
π1 and π′

1 will be equal to the one between π2

and π′
2.

Property 12. Maintaining similarity
Let π1 and π2 be two possibility distributions.
Let π′

1 and π′
2 s.t.

i) ∀j 6= p, π′
1(ωj) = π1(ωj) and π′

1(ωp) =
π1(ωp) + α (resp. π′

1(ωp) = π1(ωp) − α ).
ii) ∀j 6= q, π′

2(ωj) = π2(ωj) and π′
2(ωq) =

π2(ωq) + α (resp. π′
2(ωq) = π2(ωq) − α).

Then: s(π1, π
′
1)=s(π2, π

′
2).

5 Derived propositions

In what follows, we will derive some propo-
sitions from the above de�ned properties that
should characterize any possibilistic similarity
measure. A consequence of Property 7 is that
only identity between two distributions imply
full similarity, namely:

Proposition 1 Let s a possibilistic similarity
measure s.t. s satis�es Properties 1-12. Then,
∀πi, πj, s(πi, πj)=1 i� πi=πj.

This also means that: ∀πj 6= πi, s(πi, πi) >

s(πi, πj).
Besides, only completely contradictory possi-
bility distributions imply a similarity degree
equal to 0:

Proposition 2 Let s a possibilistic similarity
measure s.t. s satis�es Properties 1-12. Then,
∀πi, πj, s(πi, πj)=0 i� ∀ωi ∈ Ω,

i) π1(ωi) ∈ {0, 1} and π2(ωi) ∈ {0, 1},
ii) and π2(ωi) = 1 − π1(ωi)

As a consequence of Property 8, discounting
the possibility degree of a same situation leads
to a decrease of similarity:

Proposition 3 Let s a possibilistic similar-
ity measure satisfying Properties 1-12. Let π1

and π2 be two possibility distributions. Let ωi

∈ Ω. Let π′
1 and π′

2 s.t.:
i) ∀j 6= i, π′

1(ωj) = π1(ωj) and π′
2(ωj) =

π2(ωj),
ii) Let β s.t. β ≤ min(π1(ωi), π2(ωi)).
If π′

1(ωi) = π1(ωi)−β and π′
2(ωi) = π2(ωi)−β.

Then:
If Inc(π1 ∧π2)=Inc(π′

1 ∧π′
2), then s(π1, π2) =

s(π′
1, π

′
2).

If Inc(π1∧π2)<Inc(π′
1∧π′

2), then s(π1∧π2) >

s(π′
1 ∧ π′

2).

As a consequence of Property 9 and Property
10, starting from a possibility distribution π1,
we can de�ne a set of possibility distributions
that, gradually, converge to the most similar
possibility distribution to π1:

Proposition 4 Let s a possibilistic similar-
ity measure satisfying Properties 1-12. Let π1

and π2 be two possibility distributions s.t. for
some ωi, π1(ωi) > π2(ωi). Let πk (k=3..n) be
a set of n possibility distributions. Each πk is
derived in step k from πk−1 as follows:
i) πk(ωi) = πk−1(ωi) + α

with α ∈]0, π1(ωi) − πk−1(ωi)]
ii) and ∀j 6= i, πk(ωj) = πk−1(ωj)
Hence, we obtain s(π1, π2) < s(π1, π3) <

s(π1, π4) < ... < s(π1, πn) ≤ 1.
Proceedings of IPMU’08 177



6 An example of a similarity
measure

This section proposes to analyze an exten-
sion of the Information A�nity measure, re-
cently proposed in [8] and denoted InfoAff .
Let us recall that InfoAff takes into ac-
count the Manhattan distance (M(π1, π2) =
1
n

∑n
i=1 |π1(ωi)− π2(ωi)|), along with the well

known inconsistency measure. By extension,
we mean that we do not restrict ourselves
to the Manhattan distance, but we can also
consider the Euclidean distance (E(π1, π2) =
√

∑

n

i=1
(π1(ωi)−π2(ωi))2

n ). Moreover, for the
Inconsistency measure (Equation(1)), we can
also take either the minimum or the product
conjunctive operators.

De�nition 1 Let π1 and π2 be two possibility
distributions on the same universe of dis-
course Ω. We de�ne a measure GA�(π1, π2)
as follows:

GAff(π1, π2) = 1 −
κ ∗ d(π1, π2) + λ ∗ Inc(π1 ∧ π2)

κ + λ
(2)

where κ>0 and λ>0. d represents a (Man-
hattan or Euclidean) normalized metric dis-
tance between π1 and π2. Inc(π1 ∧ π2) is the
inconsistency degree between the two distribu-
tions (see Equation (1)) where ∧ is taken as
the product or min operators.

Proposition 5 The GAff measure satis�es
all the proposed properties.

Example 1 Let us give an example to ex-
plain the proposed properties. For this exam-
ple, we will take d as the Manhattan distance,
∧ as the minimum conjunctive operator and
κ = λ = 1.
Property 7. Strict inclusion
Let π1[0.3,0.3,1],π2[0.6,0.3,1] and π3[1,0.3,1].
Clearly π1 ≤ π2 ≤ π3 and π1(ω1) <

π2(ω1) < π3(ω1) ⇒ GAff(π1, π2) = 0.95 >

GAff(π1, π3) = 0.88

Property 8. Degree enhancement
Let π4[0,0,1], π′

4[0.6,0,1], π5[0,1,0] and
π′

5[0.6,1,0] (we added 0.6 to ω1).
We have d(π′

4,π′
5)=d(π4,π5)=0.66. But

Inc(π′
4 ∧ π′

5)=0.4 6= Inc(π4 ∧ π5)=1.

⇒ GA�(π′
4,π′

5)=0.46>GA�(π4,π5)=0.17
Property 9 and 10. Mutual convergence
Let π6[0.2,1,0.5] and π′

6[0.2,1,1]
(We took π′

6(ω3)=π1(ω3)=1) ⇒
GA�(π1,π′

6)=0.86>GA�(π1,π6)=0.53.
Property 11. Indi�erence preserving
Let π11[1 0.8 0.4], α = 0.4. If we subtract 0.4
from ω2 in π11 or from ω3 in π11 ⇒ π12[1 0.4
0.4] and π13[1 0.8 0].
⇒ GA�(π11,π12)=GA�(π11,π13)=0.93.
If we add 0.2 to ω2 in π11 or to ω3 in π11 ⇒
π′

12[1 1 0.4] and π′
13[1 0.8 0.6].

⇒ GA�(π11,π′
12)=GA�(π11,π′

13)=0.96.
Property 12. Maintaining similarity
Let π14[1 0.7 0], π15[1 0.2 0.7]. If we add
α = 0.3 to ω2 in π14 and to ω3 in π15 ⇒ π′

14[1
1 0] and π′

15[1 0.2 1].
⇒ GA�(π14,π′

14)=GA�(π15,π′
15)=0.95.

If we subtract α = 0.5 to ω2 in π14 and to ω3

in π15 ⇒ π′′
14[1 0.2 0] and π′′

15[1 0.2 0.2].
⇒ GA�(π14,π′′

14)=GA�(π15,π′′
15)=0.91.

Example 2 If we reconsider the example of
the referees where π1=[0 0 1], π2=[0 1 0],
π′

1=[1 0 1] and π′
2=[1 1 0]. If we ap-

ply GA�, we obtain: GA�(π1,π2)=0.16 <
GA�(π′

1,π′
2)=0.66

7 Conclusion

This paper revised and extended recently pro-
posed properties [8] that a similarity measure
between possibility distributions should sat-
isfy. Although the Manhattan and Euclidean
distances satisfy all the six basic properties,
they do not satisfy the new extended ones
(as shown by the example at the end of Sec-
tion 3). Moreover, we have proposed a mea-
sure, namely, the Generalized A�nity func-
tion which satis�es all the axioms. We argue
that the proposed measure is useful in many
applications where uncertainty is represented
by possibility distributions e.g. similarity-
based possibilistic decision trees [9]. We can
also mention the possibilistic clustering prob-
lem [11] which generally uses fuzzy similarity
measures.
Appendix A. Proofs
For lack of space, we only provide the proof of
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Proposition 5, only when d=Manhattan dis-
tance and ∧=min. We can easily check that d
can be replaced by the Euclidean distance and
∧ by the product. Moreover, since GA� gen-
eralizes InfoA� [8], proofs of unchanged prop-
erties (Property 1, Property 2, Property 5 and
Property 6) are immediate and consequently
are not provided. The proof of Proposition 5
shows that our proposed measure satis�es all
the proposed properties.
Proof of Proposition 5
Let us begin by showing that GA� satis�es
the strong Upper and Lower bound proper-
ties derived respectively in Proposition 1 and
Proposition 2.
Proposition 1:
One direction is evident since πi=πj ⇒
GA�(πi, πj)=1 (Property 3).
Now, suppose that GA�(πi, πj)=1 and πi 6=
πj .
GA�(πi, πj)=1 ⇒ d(πi, πj)=0 AND Inc(πi ∧
πj)=0 (since we deal with normalized distri-
butions) ⇒ πi=πj (contradiction with the as-
sumption). Hence, GA�(πi, πj)=1 i� πi=πj .
Proposition 2:
One direction is evident since π1=1−π2 (with
π1 and π2 are binary normalized possibil-
ity distributions) ⇒ GA�(π1, π2)=0 (Prop-
erty 4).
Now, suppose that:
i) GA�(π1, π2)=0 and
ii)π1 6= 1 − π2 and
iii)π1 and π2 are not binary.
GA�(π1, π2)=0 ⇒ κ∗d(π1,π2)+λ∗Inc(π1∧π2)

κ+λ =1
⇒ κ ∗ d(π1, π2) + λ ∗ Inc(π1 ∧ π2) = κ + λ.
Since, κ>0, λ>0 ⇒ d(π1, π2) = 1 AND
Inc(π1 ∧ π2) = 1 ⇒ ∀ωi, |π1(ωi) − π2(ωi)|=1
AND ∀ωi, min(π1(ωi), π2(ωi))=0 ⇒
1) ∀ i, π1(ωi) ∈ {0,1} and π2(ωi) ∈ {0,1} and
2) ∀ i, π1(ωi)=1 − π2(ωi) (contradiction with
ii) and iii) of the above assumption).
Proofs of Property 1, Property 2, Property
5 and Property 6 are immediate since both
d and Inc satisfy them as shown in [8]. Let
us now prove that GA� satis�es Property 7-
Property 12.
Property 7:
If π1 is more speci�c than π2 which is in

turn more speci�c then π3, since ∃ ω0 s.t.
π1(ω0) < π2(ω0) < π3(ω0):
⇒ d(π1, π2)<d(π1, π3) (hence, κ ∗ d(π1, π2) <

κ ∗ d(π1, π3) ) and
⇒ max(π1 ∧ π2)=max(π1 ∧ π3)=1
⇒ Inc(π1 ∧ π2) = Inc(π1 ∧ π3) = 0

⇒ 1 − κ∗d(π1,π2)+λ∗Inc(π1∧π2)
κ+λ >

1 − κ∗d(π1,π3)+λ∗Inc(π1∧π3)
κ+λ

⇒ GAff(π1, π2) > GAff(π1, π3).
Property 8:
We have d(π′

1, π
′
2)=d(π1, π2) since we added

the same value α to the same ωi in π1 and
π2. In the other hand, if min(π′

1(ωi), π
′
2(ωi)) <

(max(π1∧π2)) then Inc(π′
1∧π′

2) > Inc(π1∧π2)
⇒ GAff(π1, π2) > GAff(π′

1, π
′
2).

Else Inc(π′
1 ∧ π′

2)=Inc(π1 ∧ π2)
⇒ GAff(π′

1, π
′
2) = GAff(π1, π2)

Property 9 & 10:
We have, π2(ωi) 6= π1(ωi) and ∀j 6= i,
π′

2(ωj) = π2(ωj). When taking π′
2(ωi) =

π1(ωi) or π′
2(ωi) = x s.t. x ∈]π2(ωi), π1(ωi)],

we certainly obtain:
⇒ d(π1, π

′
2) < d(π1, π2) and Inc(π1 ∧ π′

2) ≤
Inc(π1 ∧ π2)
⇒ κ ∗ d(π1, π

′
2) + λ ∗ Inc(π1 ∧ π′

2) < κ ∗
d(π1, π2) + λ ∗ Inc(π1 ∧ π2)
⇒ GAff(π1, π

′
2) > GAff(π1, π2)

Property 11:
1) If we add α to π1(ωi) (which leads to
π2) or α to π1(ωj) (which leads to π3) ⇒
d(π1, π2)=d(π1, π3)= α

|Ω| (|Ω| is the cardinal-
ity of the universe of discourse). Besides,
Inc(π1 ∧ π2)=Inc(π1 ∧ π3)=0 (since we only
deal with normalized distributions)
⇒ GA�(π1, π2)=GA�(π1, π3).
2) The second proof is immediate from 1) if
we subtract α.
Property 12:
1) Similarly to the above proof, if we add α to
π1(ωi) and keep the other degrees unchanged
(which leads to π′

1) and α to π2(ωj) and keep
the other degrees unchanged (which leads to
π′

2) ⇒ d(π1, π
′
1)=d(π2, π

′
2)= α

|Ω| and Inc(π1 ∧

π′
1)=Inc(π2 ∧ π′

2)=0 (since we only deal with
normalized distributions)
⇒ GA�(π1, π

′
1)=GA�(π2, π

′
2).

2) The second proof is immediate from 1) if
we subtract α.
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