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rates. In a reliability context, arrivals of an EGP may stand for suc-
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zon time; 2) a replacement policy assessed through a cost function on
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1 Introduction

For several years, many attention has been paid to the modeling of re-

current event data. Application fields are various and include medicine,

reliability and insurance for instance. See [7] for an overview of models

and their applications. In reliability, the events of interest typically are

successive failures of a system submitted to instantaneous repair. In

case of perfect repairs (As Good As New repairs), the underlying pro-

cess describing the system evolution is a renewal process, which has been

widely used in reliability, see [2]. In case of imperfect repairs, the succes-

sive times to failure may however become shorter and shorter, leading to

some (stochastically) decreasing sequence of lifetimes. In the same way,

in case of improving systems such as software releases e.g., successive

times to failure may be increasing.

Such remarks have led to the development of different models taking

into account such features, among which geometric processes introduced

by [14]. In such a model, successive lifetimes X1, X2, . . . , Xn, . . . are

independent with identical distributions up to a multiplicative scale pa-

rameter: Xn = an−1Yn where (Yn)n≥1 is a sequence of independent and

identically distributed random variables (the interarrival times of a re-

newal process). According to whether a ≥ 1 or 0 < a < 1, the sequence

(Xn)n≥1 may be (stochastically) non-decreasing or non-increasing, which

is well adapted for modelling successive lifetimes. However, [5] point out

that, in the exponential case [exponentially distributed Yn’s], the geo-

metric process only allows for logarithmic growth or explosive growth,

but nothing in between (from the conclusion of [5]). In the same pa-

per, it is [also] shown that the expected number of counts at an arbitrary

time does not exist for the decreasing geometric process (from the ab-

stract). Such drawbacks of geometric processes are linked to the fast

increase or decrease in the successive periods, induced by the geometric

progression. We here envision a more general scaling factor, where Xn

is of the shape Xn = abnYn and (bn)n≥1 stands for a non decreasing

sequence. This allows for more flexibility in the progression of the Xn’s.

The corresponding counting process is named Extended Geometric Pro-

cess (EGP) in the sequel. A similar extension is also considered in [10]

where the author is only concerned with the case where the expected

number of counts is not finite on any arbitrary time interval.
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As a first step in the study of an EGP, we consider its semiparamet-

ric estimation based on the observation of the n first gap times. The

sequence (bn)n≥1 is assumed to be known and we start with the estima-

tion of the Euclidean parameter a. Following the regression method pro-

posed by [14], several consistency results are obtained for the estimator

â, including convergence rates. We next proceed to the estimation of the

unknown distribution of the underlying renewal process. The estimation

method relies on a pseudo version (Ỹn)n≥1 of the points (Yn)n≥1 of the

underlying renewal process, that is obtained by setting Ỹn = â−bnXn.

Again, several convergence results are obtained, such as strong uniform

consistency.

We next turn to applications of EGPs to reliability, with the previous

interpretation of arrivals of an EGP as successive failure times. A first

quantity of interest then is the mean number of instantaneous repairs

on some time interval [0, t], which corresponds to the pseudo-renewal

function associated to an EGP, seen as some pseudo-renewal process.

The pseudo-renewal function is proved to fulfill a pseudo-renewal equa-

tion, and tools are provided for its numerical solving. In case a < 1, the

system is aging and requires some action to prevent successive lifetimes

to become shorter and shorter. In that case, a replacement policy is

proposed: as soon as a lifetime is observed to be too short - below a

predefined threshold -, the system is considered as too degraded and it

is replaced by a new one. In case a ≥ 1, the system is improving at

each corrective action and no replacement policy is required. In case

a < 1, the replacement policy is assessed through a cost function, which

is provided in full form. The replacement policy proposed here is an

alternative to the one considered by [17], where the failure times are

modelled by a geometric process and the system is replaced by a new

one once it has been repaired N times (with N fixed). Non negligible

repair times are also considered by [17] (modelled by another geometric

process), which we do not envision here.

This paper is organized as follows. Section 2 is devoted to the semi-

parametric estimation of an EGP. Applications and numerical examples

are developed in Section 3 where the choice of (bn)n≥1 is also discussed.

In Section 4 we consider applications to reliability together with numer-

ical experiments. Concluding remarks end this paper in Section 5.
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2 Estimation of extended geometric processes

2.1 The model

Let (Tn)n≥0 be a sequence of failure times of a system. We have 0 =

T0 < T1 < · · · < Tn < · · · and we set Xn = Tn−Tn−1 for n ≥ 1. Assume

that (Xn)n≥1 satisfies Xn = abnYn where:

• (Yn)n≥1 are the interarrival times of a renewal process (RP), with

P (Y1 > 0) > 0,

• a ∈ (0,+∞),

• (bn)n≥1 is a non decreasing sequence of non negative real numbers

such that b1 = 0 and bn tends to infinity as n goes to infinity.

In [17], the sequence (bn)n≥1 is defined by bn = n − 1 for n ≥ 1.

In the present paper, the sequence (bn)n≥1 is first assumed to be fully

known. The case where bn is only known up to an Euclidean parameter

is further envisionned in Subsection 3.2. Unknown parameters hence are

a ∈ (0,+∞) and the cumulative distribution function (c.d.f.) F of the

underlying RP in a first step, plus the Euclidian parameter of the bn’s

in Subsection 3.2. Consequently, in each case, it is a semiparametric

model.

2.2 Estimation

Assuming that T1 < · · · < Tn are observed, we consider the problem of

estimating a and F (given the sequence bn). The following estimation

method was already considered by Lam in a series of papers, see [14, 16]

and [17].

Lam’s estimation method is based on a classical regression: writing

Zn = logXn for n ≥ 1, we have Zn = bnβ+µ+ en where β = log a, µ =

E[log Y1] and en = log Yn−µ are independent and identically distributed

(i.i.d.) centered errors. Parameters µ and β are next estimated by a least

square method:

(µ̂n, β̂n) = argmin
µ,β

n∑
k=1

(Zk − βbk + µ)2 .
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Here, µ is a nuisance parameter and we concentrate on the estimation

of β, or equivalently on the estimation of a = exp(β). We obtain

β̂n =
n−1

∑n
k=1 bkZk − n−2

∑n
k=1 Zk

∑n
k=1 bk

n−1
∑n

k=1 b
2
k − (n−1

∑n
k=1 bk)

2 ,

and

µ̂n = Z̄n − β̂nb̄n,

where b̄n = (b1 + · · · + bn)/n and Z̄n = (Z1 + · · · + Zn)/n. Next,

a is estimated by ân = exp(β̂n). Once a is estimated, we can obtain a

pseudo version (Ỹn)n≥1 of the inter-arrival times (Yn)n≥1 by setting Ỹn =

â−bn
n Xn. Then, we propose to estimate F by the empirical distribution

function F̂n defined by

F̂n(x) =
1

n

n∑
k=1

1{Ỹk≤x} x ∈ R+,

where 1{·} denotes the set indicator function. The convergence of F̂n

towards F is studied in Proposition 2.4, where a uniform strong consis-

tency result is obtained.

Assuming that E(log2(Yn)) exists, let us define Var(en) = σ2. We

then have

E(β̂n) = β,

and

Var(β̂n) =
σ2

nα2
n

, (1)

where

α2
n =

1

n

n∑
k=1

b2k −

(
1

n

n∑
k=1

bk

)2

.

If a central limit theorem holds, its formulation can only be

θn(β̂n − β)
d−→ N (0, σ2),

where
d−→ stands for the convergence in distribution and θn =

√
nαn.

Thus the convergence rate of β̂n towards β necessarily is of order θn.

Such a result is provided in Proposition 2.3.
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2.3 Asymptotics

Asymptotic results are given with respect to n → +∞.

2.3.1 Euclidean parameters

We here make use of strong law of large numbers for weighted sum of

i.i.d. random variables, as provided by [8, 3] and [4].

Proposition 2.1 (Strong consistency). Suppose that E(Z2
1 ) < +∞.

Then αn(β̂n − β)
a.s.−→ 0.

Proof. Remember that ei = log Yi−µ, and let Sn =
∑n

i=1 ai,nei, where

weights ai,n are defined by

ai,n =
bi − b̄n
αn

(setting α1 = 1).

Then, we have nαn(β̂n − β) = Sn. The ei’s are i.i.d. centered random

variables and have finite second order moment, because E(|Z1|2) < +∞.

Moreover, following the notations in [4], we have

An,2 =

(
1

n

n∑
i=1

a2i,n

)1/2

= 1

and hence lim supnAn,2 = 1. Applying Theorem 1.1 in [8], we obtain

that Sn/n = αn(β̂n − β) → 0 a.s..

Remark 2.1. It is straightforward to verify that

α2
n+1 = α2

n +
n

n+ 1

(
bn+1 − b̄n

)2
,

which implies that (αn)n≥1 is a non decreasing sequence. This mono-

tonicity plus the previous consistency result imply that β̂n
a.s.−→ β.

Proposition 2.2. (Law of Iterated Logarithm) If E[Z2
1 ] < +∞

then

lim sup
n→+∞

√
nα2

n

bn
√
logn

|β̂n − β| ≤ 2
√
2σ a.s.
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Proof. Let us consider again Sn =
∑n

i=1 ai,nei, where the ei’s are i.i.d.

centered random variables with finite second order moment. Weights

ai,n are now chosen equal to (bi − b̄n)/2bn and satisfy

A∞ = sup
n≥i≥1

|ai,n| ≤ 1 and
1

n

n∑
i=1

a2i,n = A2,n ≤ 1.

[3] established in their Theorem 2.1 that

lim sup
n→+∞

|Sn|√
n logn

≤
√
2A2

√
E[e21] a.s. (2)

where A2 = lim sup
n→+∞

A2,n. Because

β̂n − β =
1

nα2
n

n∑
i=1

(bi − b̄n)ei =
2bn
nα2

n

Sn

and since A2 ≤ 1, we have by (2)

lim sup
n→+∞

√
nα2

n|β̂n − β|
bn
√
logn

≤ 2
√
2σ a.s.

which proves the result.

Proposition 2.3. (Central Limit Theorem) If E([Z2
1 ]) < +∞ and√

nαn/bn → +∞, then

θn(ân − a)
d−→ N (0, a2σ2),

where we recall that θn =
√
nαn.

Proof. We first prove that

θn(β̂n − β)
d−→ N (0, σ2)

applying the Lindeberg-Feller theorem (see [12]) to

θn(β̂n − β) =
1

θn

n∑
k=1

(bk − b̄n)ek.

Using (1), we already know that

Var(θn(β̂n − β)) = σ2
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for all n ≥ 1 and the first condition in the theorem is fulfilled.

We now check the second condition: for all ε > 0, we have

n∑
k=1

(bk − b̄n)
2

θ2n
E
(
e2k1

{
|ek|> εθn

|bk−b̄n|

}) (3)

≤ E

(
e211

{
|e1|> εθn

max1≤k≤n |bk−b̄n|

}
)

×
n∑

k=1

(bk − b̄n)
2

θ2n

≤ E
(
e211{|e1|>εθn/2bn}

)
.

Because e1 = Z1−µ, E(|Z1|2) < +∞ and θn/bn → +∞, we obtain by

Lebesgue’s dominated convergence theorem that E
(
e211{|e1|>εθn/2bn}

)
→

0. Expression (3) hence tends to zero and the second condition of the

Lindeberg-Feller theorem holds.

We derive that θn(β̂n−β)
d−→ N (0, σ2), and next that θn(ân−a)

d−→
N (0, a2σ2) by the δ-method theorem (see e.g. [22]).

Example 2.1. If bn = (n− 1)α with α > 0, we have

θn
+∞∼ αnα+1/2

(α+ 1)
√
2α+ 1

and θn/bn → +∞ as n → +∞. We hence get that nα+1/2(β̂n − β)
d−→

N (0, (α+1)2 (2α+ 1)σ2/α2). In the special case where bn = n− 1, this

is consistent with the central limit result from [16] which states that

n3/2(β̂n − β)
d−→ N (0, 12σ2).

Example 2.2. If bn = log n, we have

θn
+∞∼

√
n

and θn/bn → +∞ as n → +∞. We hence get that n1/2(β̂n − β)
d−→

N (0, σ2).

Remark 2.2. Note that from standard results on linear regression

σ̂2
n =

1

n− 2

n∑
k=1

(
Zk − β̂nbk − µ̂n

)2
is an unbiased consistent estimator of σ2. Then, the asymptotic variance

of θn(ân − a) is consistently estimated by â2nσ̂
2
n.
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2.3.2 Functional parameter

The cumulative distribution function F is now estimated by

F̂n(x) =
1

n

n∑
i=1

1{Ŷi≤x} =
1

n

n∑
i=1

1{log Ŷi≤log x}

=
1

n

n∑
i=1

1{log Yi+bi(β−β̂n)≤log x} =
1

n

n∑
i=1

1{log Yi≤log x+bi(β̂n−β)}

for all x ∈ (0,+∞).

We also define F̂±
n by

F̂±
n (x) =

1

n

n∑
i=1

1{log Yi≤log x±bn|β̂n−β|} for all x ∈ (0,+∞),

and we have

F̂−
n (x) ≤ F̂n(x) ≤ F̂+

n (x) (4)

for all x ∈ (0,+∞).

Define moreover Ĝn and G by

Ĝn(x) =
1

n

n∑
i=1

1{log Yi≤x}, G(x) = P(log Y1 ≤ x) for all x ∈ R.

Proposition 2.4. (Uniform Strong Consistency) Assume that Z1

admits a bounded density g with respect to Lebesgue measure, that Z1

has a second order moment and that

lim sup
n→+∞

b2n
√
log n√
nα2

n

= 0. (5)

Then ∥F̂n − F∥∞ converges to 0 almost surely as n tends to infinity.

Proof. We have for all x ∈ (0,+∞) :

|F̂+
n (x)− F (x)| ≤ |Ĝn(log x+ bn|β̂n − β|)−G(log x+ bn|β̂n − β|)|

+ |G(log x+ bn|β̂n − β|)−G(log x)|

≤ ∥Ĝn −G∥∞ + ∥g∥∞bn|β̂n − β|, (6)
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where (6) is obtained by applying the mean value theorem to the second

term in the right hand side of the first inequality. From the Glivenko-

Cantelli theorem, we know that ∥Ĝn −G∥∞ → 0 a.s..

Besides, by Proposition 2.2 and (5) we have

lim sup
n→+∞

bn

∣∣∣β̂n − β
∣∣∣ ≤ lim sup

n→+∞

√
nα2

n

bn
√
log n

∣∣∣β̂n − β
∣∣∣ × lim sup

n→+∞

b2n
√
logn√
nα2

n

≤ 2
√
2σ × 0 = 0 a.s..

Since g is bounded, we derive from (6) that ∥F̂+
n − F∥∞ converges to

0 almost surely. By similar arguments, we also get that ∥F̂−
n − F∥∞

converges to 0 almost surely. Using (4), we have

∥F̂n − F∥∞ ≤ max
(
∥F̂+

n − F∥∞, ∥F̂−
n − F∥∞

)
which entails that ∥F̂n−F∥∞ → 0 almost surely. Hence the proposition

is proved.

Remark 2.3. The boundedness condition on g is satisfied whenever

f belongs to several parametric families (Weibull, Gamma, log-normal,

etc.). Condition (5) on the sequence
(
b2n

√
logn√
nα2

n

)
n≥1

is satisfied for many

non decreasing sequences (bn)n≥1 tending to infinity. For example:

• if b2n
√
logn/

√
n → 0, then Condition (5) is true, using the non

decreasingness of
(
α2
n

)
n∈N (see Remark 2.1). As a special case,

one can take bn = (log n)α with α > 0.

• if bn = (n− 1)α with α > 0 then

b2n
√
log n√
nα2

n

+∞∼ (α+ 1)2(2α+ 1)
√
log n

α2
√
n

→ 0

(see Example 2.1). Thus, Condition (5) is satisfied.

3 Numerical experiments

3.1 Monte Carlo study of the estimators

Figure 1 shows three boxplots obtained from estimates of a ∈ {0.85, 0.9,
0.95} for various sequences (bn)n≥1 based on 1000 simulated samples of
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size n = 50. Here, the underlying renewal process is generated using

independent inter-arrival times that follow a Weibull distribution with

shape parameter 2 and scale parameter 10. These boxplots show that

the convergence rate of ân heavily depends on bn. This is consistent with

the fact that in Section 2, we showed that for bn = n − 1,
√
n or log n,

the convergence rate of ân is proportional to n3/2, n or
√
n, respectively.

Figure 1: Comparison of boxplots of 1000 estimates of a ∈
{0.85, 0.9, 0.95} obtained from samples of size 50 for bn = n− 1,

√
n− 1

and log n.

The estimator F̂n of F is based on the empirical distribution func-

tion obtained from the first n observations of the pseudo renewal process
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(Ỹn)n≥1 defined by Ỹn = â−bnXn. Figure 2 illustrates the uniform con-

sistency result obtained in Proposition 2.4. The cumulative distribution

function F (black solid line) is compared with 100 estimates F̂n (grey

solid lines) for n ∈ {50, 100, 200, 400}.

Figure 2: 100 estimates F̂n (grey solid lines) and the true F (black solid

line) for various values of n.

To better illustrate the convergence of F̂n towards F , we now cal-

culate the empirical mean of N = 1000 Mean Integrated Square Error

(MISE) values. For one sample, the MISE equals

1

n

n∑
i=1

(
F̂n

(
Ỹ(i)

)
− F

(
Ỹ(i)

))2
=

1

n

n∑
i=1

(
i/n− F

(
Ỹ(i)

))2
,
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where Ỹi = â−bi
n Xi for 1 ≤ i ≤ n and Ỹ(i) is the i−th order statistic. F

is the Weibull cdf with scale parameter 10 and shape parameter 2, and

a = 2.

n 50 100 200 400

bn = log n 0.0252 0.0195 0.0119 0.0080

bn =
√
n− 1 0.0194 0.0106 0.0055 0.0028

bn = n− 1 0.0098 0.0054 0.0024 0.0013

bn = (n− 1)3/2 0.0073 0.0039 0.0019 0.0010

Table 1: Mean of N = 1000 MISE values

3.2 On the choice of the bn’s

We have assumed that the sequence (bn)n≥1 was known. A natural

question hence is: how can we check the validity of the sequence (bn)n≥1?

We here propose a residual analysis, based on the fact that, in case of a

correct choice for bn and of a ”good” estimate â of a, the residuals k 7→
â−bkXk should be nearly i.i.d.. Such residuals and the corresponding

estimated cdf F̂n are plotted for different situations in Figures 3 and 4,

with bn = nθ0 . Such figures clearly illustrate the consequences of a bad

choice for bn.

Looking at the residuals can hence help to chose between several

possible choices for bn (between bn = n,
√
n or n3/2 in the previous

examples). When the possible choices for bn are unknown, another ap-

proach is required.

In case bn = g(n; θ), where g is a known link function indexed by

θ ∈ Θ ∈ Rp, we can estimate θ in the following way. For n ≥ 1, we have:

Zn = logXn = g(n; θ)β + µ+ en,

where β = log a and µ = E[log Y1]. Hence we can estimate µ, β and θ

by minimizing the cost function cn defined by

cn(µ, β, θ) =

n∑
k=1

(Zk − βg(k; θ)− µ)2.
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Figure 3: n = 100, a = 0.98, θ0 = 1.5, columns 1 to 3 correspond to

bn = n, bn =
√
n and bn = n3/2 (true) respectively. At the top are

residuals k 7→ â−bkXk while at the bottom are both the estimated cdf

of the renewal process (dotted) and the true cdf (solid).

It is easy to see that both optimal parameters µn(θ) and βn(θ) can be

expressed as functions of θ, with:

µn(θ) =
(
∑n

k=1 g(k; θ)) (
∑n

k=1 ykg(k; θ))− (
∑n

k=1 yk)
(∑n

k=1 g
2(k; θ)

)
(
∑n

k=1 g(k; θ))
2 − n (

∑n
k=1 g

2(k; θ))
,

(7)

βn(θ) =
(
∑n

k=1 g(k; θ)) (
∑n

k=1 yk)− n (
∑n

k=1 ykg(k; θ))

(
∑n

k=1 g(k; θ))
2 − n (

∑n
k=1 g

2(k; θ))
. (8)

Plugging these two functions into cn(µ, β, θ), we obtain a new cost func-

tion Cn which only depends on θ :

Cn(θ) =
n∑

k=1

(Zk − βn(θ)g(k; θ)− µn(θ))
2.

We next minimize Cn (θ) with respect to θ, which provides an estimate

θ̂n for θ, and hence an estimate for bn’s (b̂n = g(n; θ̂n)).
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Figure 4: n = 400, a = 0.95, θ0 = 1, columns 1 to 3 correspond to

bn = n (true), bn =
√
n and bn = n3/2 respectively. At the top are

residuals k 7→ â−bkXk while at the bottom are both the estimated cdf

of the renewal process (dotted) and the true cdf (plain).

This procedure is illustrated in Figures 5 and 6 for g(k; θ) = kθ,

which show its efficiency.

3.3 Aircraft data

We end this session with the study of a real data set of size n = 29. This

data set contains successive times to failure (operating hours) of an air-

conditioning equipment of a Boeing 720 aircraft and it is taken from

data corresponding to 13 different aircraft. These data were studied in

[21] and are available in [18].

Figure 7 shows the successive failure times (operating hours).

Optimizing the criterion θ 7→ Cn(θ) for bn = (n − 1)θ, we obtain

θ̂ = 0.788, see Fig. 8.

Table 2 summarizes the results obtained for the estimation of pa-

rameter a for various bn’s. The estimate â of a is given with a 95%
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Figure 5: n = 100, a = 0.98, θ0 = 1.5, θ 7→ Cn(θ) is the plain curve, θ0
and θ̂n are superimposed vertical lines.

Figure 6: n = 100, a = 0.90, θ0 = 0.5, θ 7→ Cn(θ) is the plain curve, θ0
is the vertical plain line, θ̂n is the vertical dotted line.
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Figure 7: Successive failure times of the air-conditioning equipment.

asymptotic confidence interval [âmin, âmax] which is computed via Propo-

sition 2.3.

bn (n− 1)0.788 logn
√
n− 1 n− 1 (n− 1)3/2

â 0.900 0.620 0.740 0.952 0.992

95% CI for a [0.798,1.003] [0.275,0.966] [0.489,0.991] [0.901,1.003] [0.982,1.001]

Table 2: Estimates of a and various bn’s for the aircraft data.

It is interesting to note that, whatever the choice for bn, the esti-

mate of a belongs to (0, 1). This implies that the times between succes-

sive failures are stochastically non increasing. Note also that if we test

H0 : a = 1 by rejecting the hypothesis H0 whenever the 95% Confidence

Interval (CI) for a does not contain 1, then we do not reject H0 when

bn = (n − 1)θ with θ = 0.788, 1 or 1.5 while this hypothesis is rejected

when bn is log n or
√
n− 1 (see Tab. 2). It however is highly likely that

a < 1. Finally, Fig. 9 shows that the estimates of the cdf F also are sen-

sitive to the choice of bn: the further bn is from the optimal sequence,

the further the cdf estimates are from the empirical cdf obtained for

bn = (n− 1)0.788.

4 Application to reliability

A repairable system is now considered, with instantaneous repairs at

failure times and successive life-times modeled by an EGP. Once the

process has been statistically estimated, it may be used for prediction

purposes and/or optimization of replacement policies. As for prediction
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Figure 8: θ 7→ Cn(θ) for the aircraft data.

purpose, a typical quantity of interest is the mean number of failures on

some time interval [0, t]. In case of non increasing lifetimes (a ≤ 1), a

replacement policy is next studied, where the system is renewed as soon

as a lifetime is observed to be too short. We begin with some preliminary

results.

4.1 Preliminary results

Lemma 4.1. Setting T∞ = lim
n→+∞

Tn, we have the following di-

chotomy:

1. If
∑+∞

i=1 abi < +∞, then E (T∞) < +∞ (and T∞ < +∞ a.s.).

2. If
∑+∞

i=1 abi = +∞, then T∞ = +∞ a.s. (and E (T∞) = +∞).

Proof. In case a ≥ 1 (which implies
∑+∞

i=1 abi = +∞), we clearly have:

Tn ≥ Sn, where Sn =
∑n

j=1 Yj . As S∞ = +∞ a.s. (renewal case), we

get T∞ = +∞ a.s..
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Figure 9: Empirical cumulative distribution function for the aircraft

data.

Let us now assume a ∈ (0, 1). If
∑+∞

i=1 abi < +∞, we easily derive

the first point, due to

E (Tn) =

n∑
i=1

E (Xi) = E (Y1)

n∑
i=1

abi . (9)

As for the second point, let cn =
∑n

i=1 a
bi . As cn ≥ nabn , we have

a2bn/c2n ≤ 1/n2 and
∑+∞

n=1
a2bn

c2n
< +∞. We derive that

+∞∑
n=1

Var (Xn)

c2n
= Var (Y1)

+∞∑
n=1

a2bn

c2n
< +∞

and in case
∑+∞

i=1 abi = +∞, Theorem 6.7 from [20] implies that:

Tn − E (Tn)

cn
=

Tn

cn
− E (Y1) → 0 a.s.

so that T∞ = +∞ a.s..
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Remark 4.1. Such results extend similar results from [15] provided

in the special case where bi = i− 1.

We now look at an example.

Example 4.1. Let bn = nα (log (n))β with α ≥ 0 and β ≥ 0, and let

a ∈ (0, 1). Then
∑+∞

i=1 abi = +∞ if and only if α = 0 and one of the

following conditions is fulfilled:

• β < 1,

• β = 1 and a ≥ 1/e.

Proof. In case α > 0, we have 0 ≤ abn = an
α(logn)β ≤ an

α
for all n ≥ 3.

If α ≥ 1, then 0 ≤ abn ≤ an
α ≤ an, from which we derive that∑+∞

i=1 abi < +∞.

If 0 < α < 1, we have:

a(n+1)α

anα = 1 + α log (a)nα−1 + o
(
nα−1

)
from where we derive that

lim
n→+∞

n

(
a(n+1)α

anα − 1

)
= lim

n→+∞
α log (a)nα = −∞ < −1.

This implies that
∑+∞

n=1 a
nα

< +∞ using Raabe’s rule, and hence
∑+∞

i=1 abi

< +∞.

In case (α, β) = (0, 1), we have abn = nlog(a), so that
∑+∞

i=1 abi < +∞
if and only if a < 1/e.

For α = 0 and β ̸= 1, the series
∑+∞

i=1 abi has the same behavior as∫ +∞
1 a(log(u))

β

du, with

lim
u→+∞

uθa(log(u))
β

= lim
u→+∞

e((log(u))
β−1 log(a)+θ) log(u)

=

{
0 if β > 1,

+∞ if β < 1,

for all θ > 0. We deduce that
∑+∞

i=1 abi < +∞ if and only if β > 1,

which completes this proof.
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4.2 Mean number of failures

In order to get a ”pseudo-renewal” equation for the ”pseudo-renewal”

function associated to the EGP, we here envision the case where the first

interarrival timeX1 of the EGP is distributed asXk = abkYk, with k ≥ 1.

This means that at time T0 = 0, the system has already been repaired

k − 1 times. The successive interarrival times then are distributed as

Xk, Xk+1, . . . This situation is denoted by Φ0 = k.

For k ≥ 1, we set Pk to be the conditional probability measure given

that Φ0 = k, with k ≥ 1 and Ek the associated conditional expectation.

In case k = 1, we have: P = P1 and E = E1. For any interval I ⊂ R+,

we also set N (I) to be the number of failures (or arrivals of the EGP)

on I, with

N (I) =

+∞∑
n=1

1{Tn∈I}

In case I = [0, t], we simply set: N (t) = N ([0, t]).

Given that Φ0 = k, the ”pseudo-renewal” function is

nk (t) = Ek (N (t)) =

+∞∑
n=1

Pk (Tn ≤ t)

and nk (t) stands for the mean number of failures on [0, t]. In case k = 1,

we set n (t) = n1 (t).

A necessary condition for nk (t) to be finite for all t ≥ 0 is T∞ = +∞
a.s. (see [6] in the more general set up of Markov renewal functions),

which here writes
∑+∞

i=1 abi = +∞, see Lemma 4.1. We next provide a

sufficient condition.

Proposition 4.1. Assume E (Y1) < +∞ and lim
n→+∞

nabn > 1
E(Y1)

(and

hence
∑+∞

i=1 abi = +∞). Then nk (t) < +∞ for all t ≥ 0 and all k ≥ 1.

Proof. In case a ≥ 1, we have:

nk (t) ≤ n1 (t) = n (t) ≤ U (t) < +∞,

where U (t) stands for the renewal function associated to the underlying

renewal process.
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In case a ∈ (0, 1), let t > 0 and k ≥ 1 be fixed. Due to the Markov

inequality, we have:

nk (t) =
+∞∑
n=1

Pk

(
e−Tn ≥ e−t

)
≤ et

+∞∑
n=1

un,k

with

un,k = Ek

(
e−Tn

)
=

k+n−1∏
i=k

E
(
e−abiY1

)
and

lim
n→+∞

n

(
un+1,k

un,k
− 1

)
= − lim

n→+∞
nabk+n × E

(
1− e−abk+nY1

abk+n

)

As 1−e−a
bk+nY1

abk+n
converges to Y1 when n → +∞ and is bounded by Y1,

we derive by Lebesgues’s theorem that:

lim
n→+∞

n

(
un+1,k

un,k
− 1

)
= − lim

n→+∞
nabn × E (Y1) < −1

by assumption. We conclude with Raabe’s rule.

Example 4.2. For bn = (log (n))β with β ≥ 0 and a ∈ (0, 1), we get

that nk (t) is finite for all t ≥ 0 and all k ≥ 1 as soon as one of the

following condition is fulfilled:

• β < 1,

• β = 1 and a > 1
e ,

• β = 1, a = 1
e , and E (Y1) > 1.

Such results show that, contrary to classical geometric processes (see

[5] and the introduction), it is possible to model decreasing successive

lifetimes with extended geometric processes and get a finite expected

number of counts at an arbitrary time.

Proposition 4.2. Assume that lim
n→+∞

nabn > 1
E(Y1)

. The function nk

fulfills the following pseudo-renewal equation:

nk = Fk + fk ∗ nk+1 (10)

for all k ≥ 1, where Fk (resp. fk) stands for the cumulative (resp.

probability) distribution function of Xk.
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Proof. Using classical arguments ([6] e.g.), we have:

nk (t) = Ek

(
N (t)1{X1≤t}

)
= Ek

(
Ek (N (t) |X1)1{X1≤t}

)
= Ek

(
Ek (N (]0, X1]) |X1)1{X1≤t}

)
+ Ek

(
Ek (N (]X1, t]) |X1)1{X1≤t}

)
= Fk (t) +

∫
[0,t]

nk+1 (t− u) fk (u) du,

which may be written as (10).

Remark 4.2. Setting ΦTn = k in case Xn+1 is distributed as abkYk
(with k ≥ n + 1) and Φt = ΦTn for Tn ≤ t < Tn+1, the process (Φt)t≥0

then appears as a semi-Markov process with semi-Markov kernel pro-

vided by

q (i, j, dx) = 1{j=i+1}dFi (x) .

Equation (10) then is the Markov renewal equation satisfied by the cor-

responding Markov renewal function.

We now provide practical tools for the numerical assessment of the

pseudo (Markov) renewal function nk (t).

Corollary 4.1. Assume a ≥ 1. Setting

un (t) = P (Tn ≤ t) ,

for all n ≥ 1, we have:

0 ≤
n (t)−

∑N
n=1 un (t)

n (t)
≤ uN (t) , (11)

for all N ≥ 1. Also, (un (t))n≥1 may be computed recursively using

u1 (t) = F (t)

un+1 (t) = (fn+1 ∗ un) (t) =
1

abn+1

∫ t

0
un (u) f

(
t− u

abn+1

)
du (12)

for all n ≥ 1, where F (resp. f) stands for the cumulative (resp. proba-

bility) distribution function of Y1.
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Proof. We may write:

n (t) =
N∑

n=1

un (t) + εN (t)

where

εN (t) =
+∞∑
m=1

P (Tm+N ≤ t) .

Using similar arguments as [11], we have

{Tm+N ≤ t} = {TN + (Tm+N − TN ) ≤ t} ⊂ {TN ≤ t}∩{Tm+N − TN ≤ t}

where TN and Tm+N − TN are independent. We derive:

εN (t) ≤ P (TN ≤ t)

+∞∑
m=1

PN (Tm ≤ t) = uN (t)nN (t) ≤ uN (t)n (t) ,

which implies (11). The remainder of the proof is straightforward.

Remark 4.3. This result allows to numerically assess the pseudo

renewal function n (t) up to a given precision ε > 0 by recursively com-

puting un (t) until un (t) is smaller than ε. Note however that the ui (t)’s

are computed using discrete convolutions in (12), which induces numer-

ical errors. Such errors might be quantified using similar methods as in

[19].

In case a < 1, the previous result is not valid because nN (t) ≥
n (t). In that case, Monte-Carlo simulations may be used to compute

the pseudo-renewal function. A lower bound nc (t) may also be provided,

which converges to n (t) when c goes to zero. This bound is constructed

via the following lemma.

Lemma 4.2. For c > 0 and t ≥ 0, let

τ c = inf (n ≥ 1 : Xn < c) (13)

and

nc (t) = E

(
τc−1∑
n=1

1{Tn≤t}

)
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(0 in case of an empty sum).

Then nc (t) ≤ n (t) and

lim
c→0+

nc (t) = n (t) .

Proof. Using the fact that τ c increases to infinity when c decreases

to 0+, the result is a direct consequence of the monotone convergence

theorem.

The following lemma provides tools for the numerical assessment of

nc (t), which do not require a ≥ 1.

Lemma 4.3. Setting

ucn (t) = P (Tn ≤ t,X1 ≥ c, . . . , Xn ≥ c)

for all n ≥ 1, we have:

nc (t) =

⌊ t
c⌋∑

n=1

ucn (t) , (14)

where ⌊...⌋ stands for the floor function. Also, (ucn (t))n≥1 may be com-

puted recursively using

uc1 (t) = (F (t)− F (c))+

ucn+1 (t) =
1

abn+1

∫ (t−c)+

0
ucn (u) f

(
t− u

abn+1

)
du (15)

for all n ≥ 1.

Proof. We have:

nc (t) =

+∞∑
n=1

P (Tn ≤ t, n < τ c) =

+∞∑
n=1

P (Tn ≤ t,X1 ≥ c, . . . , Xn ≥ c) .

Noting that X1 ≥ c, . . . , Xn ≥ c implies Tn ≥ nc, the summation may

be restricted to n ≤
⌊
t
c

⌋
, which provides (14).

Equation (15) is a direct consequence of

ucn+1 (t) = E
(
E
(
1{Tn≤t−Xn+1}1{X1≥c,...,Xn≥c}|Xn+1

)
1{Xn+1≥c}

)
= E

(
ucn (t−Xn+1)1{Xn+1≥c}

)
=

1

abn+1

∫ t

c
ucn (t− u) f

( u

abn+1

)
du

for all t ≥ c.
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4.3 A replacement policy

We here consider the case where a < 1 and the following renewal policy

is considered: as soon as a lifetime Xi is observed to be shorter than the

predefined threshold s (s > 0), the system is instantaneously replaced

at some cost cR. Between replacements, the cost of an instantaneous

repair which follows a failure is denoted by cF , with cR ≥ cF . We set

c(s) to be the asymptotic unitary cost per time unit time.

The next proposition uses classical results from renewal theory to

derive the existence of c(s), and an expression for it.

Proposition 4.3. Assume a ∈ (0, 1). Setting C ([0, t]) to be the

cumulated cost on [0, t], the asymptotic cost per unit time

c(s) = lim
t→+∞

C ([0, t])

t
a.s. (16)

exists and is provided by

c(s) =
cR + cFE (τ s − 1)

E (Tτs)
, (17)

where τ s is defined as τ c, see (13).

Furthermore,

E (τ s − 1) =

+∞∑
k=1

vsk

E (Tτs) = E (Y1)

(
1 +

+∞∑
k=1

abk+1 vsk

)

with

vsk =

k∏
i=1

F̄
( s

abi

)
(18)

for all k ≥ 1 and F̄ = 1− F .

Proof. The evolution of the maintained system may be described by

a regenerative process, with cycles delimited by the replacement of the
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system and generic length Tτs . Moreover

E (Tτs) =
+∞∑
k=2

E
(
Tk

(
1{τs≥k} − 1{τs≥k+1}

))
+ E

(
T11{τs=1}

)
=

+∞∑
k=3

E
(
(Tk − Tk−1)1{τs≥k}

)
+ E

(
T21{τs≥2}

)
+ E

(
X11{τs=1}

)
=

+∞∑
k=1

ws
k,

with

ws
k = E

(
Xk1{τs≥k}

)
= abkE (Yk)P (X1 ≥ s, ..., Xk−1 ≥ s)

= abkE (Y1) vsk−1,

for all k ≥ 2 and ws
1 = E (Y1).

Now, as

lim
k→+∞

ws
k+1

ws
k

= lim
k→+∞

abk+1−bk F̄
( s

abk

)
= 0,

the series with generic term ws
k is convergent and E (Tτs) < +∞.

We derive the existence of c(s) and formula (17) (see [1] e.g.), noting

that the mean cost on a generic cycle is cR + cFE (τ s − 1).

The quantity E (τ s) may finally be computed via:

E (τ s) =
+∞∑
i=1

P (τ s ≥ i) = 1+
+∞∑
i=2

P (X1 ≥ s, ...,Xi−1 ≥ s) = 1+
+∞∑
i=2

vsi−1.

We next provide tools for the numerical assessment of c(s).

Proposition 4.4. Assume a ∈ (0, 1). We have the following bounds

for c (s) :

mN
c (s) ≤ c(s) ≤ MN

c (s) ,

where

mN
c (s) =

cR + cF SN
1 (s)

E (Y1)
(
1 + SN

2 (s) + abN+2 vsN+1/F
(

s

abN+2

)) ,
MN

c (s) =
cR + cF

(
SN
1 (s) + vsN+1/F

(
s

abN+2

))
E (Y1)

(
1 + SN

2 (s)
) ,
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and

SN
1 (s) =

N∑
k=1

vsk,

SN
2 (s) =

N∑
k=1

abk+1vsk

(with vsk defined by (18)). Moreover we have∣∣∣∣c(s)− mN
c (s) +MN

c (s)

2

∣∣∣∣ ≤ ∆cNmax (s) :=
MN

c (s)−mN
c (s)

2
.

Proof. We have

1 +
N∑
k=1

abk+1 vsk ≤ E (Tτs)

E (Y1)
≤ 1 +

N∑
k=1

abk+1 vsk +
+∞∑

k=N+1

abk+1 vsk,

with
+∞∑

k=N+1

abk+1 vsk ≤ abN+2

+∞∑
k=N+1

vsk,

and

+∞∑
k=N+1

vsk ≤ vsN+1 ×
+∞∑

k=N+1

(
F̄
( s

abN+2

))k−N−1
=

vsN+1

F
(

s

abN+2

) .
We derive

E (Y1)
(
1 + SN

2 (s)
)
≤ E (Tτs) ≤ E (Y1)

1 + SN
2 (s) +

abN+2vsN+1

F
(

s

abN+2

)
 .

A similar method is used for bounding E (τ s), which provides the

result.

This proposition allows to numerically assess the cost function c (s)

up to a given precision ε by recursively computing SN
1 (s) and SN

2 (s)

until ∆cNmax (s) is smaller than ε.
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4.4 Numerical experiments

4.4.1 Computation of the pseudo-renewal function

We first consider the case where a ≥ 1. The random variable Y1 is

Gamma distributed with shape parameter 1.2 and scale parameter 2.5

(which provides E (Y1) = 3, Var (Y1) = 7.5). This distribution is denoted

by Γ (1.2, 2.5). We also take bn = n0.3 and a = 1.2. The approxima-

tion of the pseudo-renewal function n (t) provided by Corollary 4.1 is

plotted against t in Figure 10 for N = 20. The maximal relative error

provided by the approximation is about 4.2 × 10−6. We also plot n (t)

computed by Monte-Carlo simulations and the 95% confidence band for

103 trajectories in the same figure. The results are quite similar.

Figure 10: n (t) with respect to t by Monte-Carlo simulations (MC) and

by the approximation provided by Corollary 4.1.

We next consider the case where a < 1 (and lim
n→+∞

nabn > 1
E(Y1)

):

the random variable Y1 follows Γ (2.5, 1) with E (Y1) = Var (Y1) = 2.5,

bn = (log n)0.7 and a = 0.8. The lower bound nc (t) for n (t) is computed

via the results of Lemma 4.3 for different values of c (c = 0.05, c = 0.1,

c = 0.25, c = 0.5). The results are displayed in Figure 11. As expected

(see Lemma 4.2), nc (t) is stabilizing when c goes to zero and the values

for c = 0.05 and c = 0.1 are nearly super-imposed. We also plot n (t)

computed by Monte-Carlo simulations and the 95% confidence band for
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103 trajectories in Figure 12, as well as nc (t) for c = 0.05. We observe

that nc (t) is a good approximation of n (t) for small c.

Figure 11: nc (t) with respect to t for different values of c.

Figure 12: n (t) by Monte-Carlo simulations and nc (t) for c = 0.05.

4.4.2 The replacement policy

The random variable Y1 follows Γ (2.5, 1) with E (Y1) = Var (Y1) = 2.5,

bn = (log n)0.7, a = 0.8, cR = 1 and cF = 0.5.



Extended Geometric Processes 31

For N = 100, the maximal absolute error ∆cNmax (s) decreases very

quickly as s increases (∆cNmax (0.4) ≃ 8× 10−5, ∆cNmax (0.7) ≃ 3× 10−12,

beyond the machine precision for s ≥ 0.9). The cost function c(s) is

plotted against s in Figure 13. The cost function reaches its minimum

at sopt ≃ 1.70, with min
s>0

c(s) = c
(
sopt
)
≃ 0.17.

Figure 13: c (s) with respect to s.

5 Concluding Remarks and Prospects

Contrary to renewal processes, geometric processes proposed by [17]

and their present extension both allow successive inter-arrival times to

be (stochastically) increasing or decreasing. From a modelling point of

view, the extended version has however been seen to be more flexible.

Also, in an applied context, the expected number of arrivals of the un-

derlying counting process on some finite time interval is expected to be

finite at any time. This had previously been seen by [5] to be incom-

patible with a decreasing geometric process. In contrast, GP’s extended

geometric processes do not suffer from this drawback. Extended geo-

metric processes may hence be a simple alternative to the virtual age

models proposed by [9] and [13] for the modeling of imperfect mainte-

nance actions e.g..

From the estimation point of view, we saw that the convergence

rate of the estimator of the Euclidean parameter a strongly depends on
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the sequence (bn)n≥1. A miss-specification of the sequence (bn)n≥1 will

naturally lead to biased estimates. To make the model more flexible,

we hence considered a parametrized version of the sequence (bn)n≥1 by

setting bn = g(n, θ), where θ is an additional Euclidean parameter. Some

procedure has been provided for its estimation.

Note the lack of a central limit theorem for the estimator F̂ of the

underlying cumulative distribution function F . Indeed, standard meth-

ods cannot be used here, because of the deterministic nature of the

bn’s. This problem hence requires some more investigation along with

the study of the properties of the estimator of θ for parametrized se-

quences bn = g(n; θ). Such a result would however be useful for testing

the hypothesis that the underlying cumulative distribution function F

belongs to some parametric family. Another possible issue would be to

include covariates in this model in order to describe (e.g.) the effect of

the environment on the monotonicity of the EGP.

In case a < 1, a lower bound has been provided for the pseudo-

renewal function, which is easy to compute using Lemma 4.3. However,

we haven’t been able to provide a computable upper bound, although

it is necessary for the numerical assessment of the results precision. In-

deed, the usual tools such as those used in case a ≥ 1 are inappropriate

here, and new tools should be developed. As for the replacement policy,

because of the random character of the successive lifetimes, an alternate

policy based on a predefined number m of consecutive lifetimes under a

threshold s, might be better adapted than the present policy, based on

a replacement at the first observation of a single lifetime below s.
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