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introduces a generalization of renewal processes named Geometric processes, where inter-arrival times are independent and identically distributed up to a multiplicative scale parameter, in a geometric fashion. We here envision a more general scaling, not necessarily geometric. The corresponding counting process is named Extended Geometric Process (EGP). Semiparametric estimates are provided and studied for an EGP, which includes consistency results and convergence rates. In a reliability context, arrivals of an EGP may stand for successive failure times of a system submitted to imperfect repairs. In this context, we study: 1) the mean number of failures on some finite horizon time; 2) a replacement policy assessed through a cost function on an infinite horizon time.

Introduction

For several years, many attention has been paid to the modeling of recurrent event data. Application fields are various and include medicine, reliability and insurance for instance. See [START_REF] Cook | The Statistical Analysis of Recurrent Events[END_REF] for an overview of models and their applications. In reliability, the events of interest typically are successive failures of a system submitted to instantaneous repair. In case of perfect repairs (As Good As New repairs), the underlying process describing the system evolution is a renewal process, which has been widely used in reliability, see [START_REF] Barlow | Mathematical theory of reliability[END_REF]. In case of imperfect repairs, the successive times to failure may however become shorter and shorter, leading to some (stochastically) decreasing sequence of lifetimes. In the same way, in case of improving systems such as software releases e.g., successive times to failure may be increasing.

Such remarks have led to the development of different models taking into account such features, among which geometric processes introduced by [START_REF] Lam | Nonparametric inference for geometric processes[END_REF]. In such a model, successive lifetimes X 1 , X 2 , . . . , X n , . . . are independent with identical distributions up to a multiplicative scale parameter: X n = a n-1 Y n where (Y n ) n≥1 is a sequence of independent and identically distributed random variables (the interarrival times of a renewal process). According to whether a ≥ 1 or 0 < a < 1, the sequence (X n ) n≥1 may be (stochastically) non-decreasing or non-increasing, which is well adapted for modelling successive lifetimes. However, [START_REF] Braun | Properties of the geometric and related processes[END_REF] point out that, in the exponential case [exponentially distributed Y n 's], the geometric process only allows for logarithmic growth or explosive growth, but nothing in between (from the conclusion of [START_REF] Braun | Properties of the geometric and related processes[END_REF]). In the same paper, it is [also] shown that the expected number of counts at an arbitrary time does not exist for the decreasing geometric process (from the abstract). Such drawbacks of geometric processes are linked to the fast increase or decrease in the successive periods, induced by the geometric progression. We here envision a more general scaling factor, where X n is of the shape X n = a bn Y n and (b n ) n≥1 stands for a non decreasing sequence. This allows for more flexibility in the progression of the X n 's. The corresponding counting process is named Extended Geometric Process (EGP) in the sequel. A similar extension is also considered in [START_REF] Finkelstein | A note on converging geometric-type processes[END_REF] where the author is only concerned with the case where the expected number of counts is not finite on any arbitrary time interval.

As a first step in the study of an EGP, we consider its semiparametric estimation based on the observation of the n first gap times. The sequence (b n ) n≥1 is assumed to be known and we start with the estimation of the Euclidean parameter a. Following the regression method proposed by [START_REF] Lam | Nonparametric inference for geometric processes[END_REF], several consistency results are obtained for the estimator â, including convergence rates. We next proceed to the estimation of the unknown distribution of the underlying renewal process. The estimation method relies on a pseudo version ( Ỹn ) n≥1 of the points (Y n ) n≥1 of the underlying renewal process, that is obtained by setting Ỹn = â-bn X n . Again, several convergence results are obtained, such as strong uniform consistency.

We next turn to applications of EGPs to reliability, with the previous interpretation of arrivals of an EGP as successive failure times. A first quantity of interest then is the mean number of instantaneous repairs on some time interval [0, t], which corresponds to the pseudo-renewal function associated to an EGP, seen as some pseudo-renewal process. The pseudo-renewal function is proved to fulfill a pseudo-renewal equation, and tools are provided for its numerical solving. In case a < 1, the system is aging and requires some action to prevent successive lifetimes to become shorter and shorter. In that case, a replacement policy is proposed: as soon as a lifetime is observed to be too short -below a predefined threshold -, the system is considered as too degraded and it is replaced by a new one. In case a ≥ 1, the system is improving at each corrective action and no replacement policy is required. In case a < 1, the replacement policy is assessed through a cost function, which is provided in full form. The replacement policy proposed here is an alternative to the one considered by [START_REF] Lam | The Geometric Process and its Applications[END_REF], where the failure times are modelled by a geometric process and the system is replaced by a new one once it has been repaired N times (with N fixed). Non negligible repair times are also considered by [START_REF] Lam | The Geometric Process and its Applications[END_REF] (modelled by another geometric process), which we do not envision here. This paper is organized as follows. Section 2 is devoted to the semiparametric estimation of an EGP. Applications and numerical examples are developed in Section 3 where the choice of (b n ) n≥1 is also discussed. In Section 4 we consider applications to reliability together with numerical experiments. Concluding remarks end this paper in Section 5.

Estimation of extended geometric processes 2.1 The model

Let (T n ) n≥0 be a sequence of failure times of a system. We have 0 =

T 0 < T 1 < • • • < T n < • • • and we set X n = T n -T n-1 for n ≥ 1. Assume that (X n ) n≥1 satisfies X n = a bn Y n where:
• (Y n ) n≥1 are the interarrival times of a renewal process (RP), with

P (Y 1 > 0) > 0,
• a ∈ (0, +∞),

• (b n ) n≥1 is a non decreasing sequence of non negative real numbers such that b 1 = 0 and b n tends to infinity as n goes to infinity.

In [START_REF] Lam | The Geometric Process and its Applications[END_REF], the sequence (b n ) n≥1 is defined by b n = n -1 for n ≥ 1. In the present paper, the sequence (b n ) n≥1 is first assumed to be fully known. The case where b n is only known up to an Euclidean parameter is further envisionned in Subsection 3.2. Unknown parameters hence are a ∈ (0, +∞) and the cumulative distribution function (c.d.f.) F of the underlying RP in a first step, plus the Euclidian parameter of the b n 's in Subsection 3.2. Consequently, in each case, it is a semiparametric model.

Estimation

Assuming that T 1 < • • • < T n are observed, we consider the problem of estimating a and F (given the sequence b n ). The following estimation method was already considered by Lam in a series of papers, see [START_REF] Lam | Nonparametric inference for geometric processes[END_REF][START_REF] Lam | Analysis of data from a series of events by a geometric process model[END_REF] and [START_REF] Lam | The Geometric Process and its Applications[END_REF].

Lam's estimation method is based on a classical regression: writing

Z n = log X n for n ≥ 1, we have Z n = b n β + µ + e n where β = log a, µ = E[log Y 1
] and e n = log Y n -µ are independent and identically distributed (i.i.d.) centered errors. Parameters µ and β are next estimated by a least square method:

(μ n , βn ) = arg min µ,β n ∑ k=1 (Z k -βb k + µ) 2 .
Here, µ is a nuisance parameter and we concentrate on the estimation of β, or equivalently on the estimation of a = exp(β). We obtain

βn = n -1 ∑ n k=1 b k Z k -n -2 ∑ n k=1 Z k ∑ n k=1 b k n -1 ∑ n k=1 b 2 k -(n -1 ∑ n k=1 b k ) 2
, and μn = Znβn bn , 

where bn = (b 1 + • • • + b n )/n and Zn = (Z 1 + • • • + Z n )/n.
Var( βn ) = σ 2 nα 2 n , (1) 
where

α 2 n = 1 n n ∑ k=1 b 2 k - ( 1 n n ∑ k=1 b k ) 2 .
If a central limit theorem holds, its formulation can only be

θ n ( βn -β) d -→ N (0, σ 2 ),
where d -→ stands for the convergence in distribution and θ n = √ nα n . Thus the convergence rate of βn towards β necessarily is of order θ n . Such a result is provided in Proposition 2.3.

Asymptotics

Asymptotic results are given with respect to n → +∞.

Euclidean parameters

We here make use of strong law of large numbers for weighted sum of i.i.d. random variables, as provided by [START_REF] Cuzick | A strong law for large for weighted sums of I.I.D. random variables[END_REF][START_REF] Bai | An extension of Hardy-Littlewood strong law[END_REF] and [START_REF] Bai | Marcinkiewicz strong laws for linear statistics[END_REF].

Proposition 2.1 (Strong consistency).

Suppose that E(Z 

A ∞ = sup n≥i≥1 |a i,n | ≤ 1 and 1 n n ∑ i=1 a 2 i,n = A 2,n ≤ 1. [3] established in their Theorem 2.1 that lim sup n→+∞ |S n | √ n log n ≤ √ 2A 2 √ E[e 2 1 ] a.s. ( 2 
)
where

A 2 = lim sup n→+∞ A 2,n . Because βn -β = 1 nα 2 n n ∑ i=1 (b i -bn )e i = 2b n nα 2 n S n
and since A 2 ≤ 1, we have by ( 2)

lim sup n→+∞ √ nα 2 n | βn -β| b n √ log n ≤ 2 √ 2σ a.s.
which proves the result.

Proposition 2.3. (Central Limit Theorem) If E([Z 2 1 ]) < +∞ and √ nα n /b n → +∞, then θ n (â n -a) d -→ N (0, a 2 σ 2 ),
where we recall that θ n = √ nα n .

Proof. We first prove that

θ n ( βn -β) d -→ N (0, σ 2 )
applying the Lindeberg-Feller theorem (see [START_REF] Feller | An introduction to probability theory and its applications[END_REF]) to

θ n ( βn -β) = 1 θ n n ∑ k=1 (b k -bn )e k .
Using (1), we already know that

Var(θ n ( βn -β)) = σ 2
for all n ≥ 1 and the first condition in the theorem is fulfilled.

We now check the second condition: for all ε > 0, we have

n ∑ k=1 (b k -bn ) 2 θ 2 n E ( e 2 k 1 { |e k |> εθn |b k -bn| } ) (3) 
≤ E ( e 2 1 1 { |e 1 |> εθn max 1≤k≤n |b k -bn| } ) × n ∑ k=1 (b k -bn ) 2 θ 2 n ≤ E ( e 2 1 1 {|e 1 |>εθn/2bn}
) .

Because

e 1 = Z 1 -µ, E(|Z 1 | 2 ) < +∞ and θ n /b n → +∞, we obtain by Lebesgue's dominated convergence theorem that E ( e 2 1 1 {|e 1 |>εθn/2bn}
) → 0. Expression (3) hence tends to zero and the second condition of the Lindeberg-Feller theorem holds.

We derive that θ n ( βn -β)

d -→ N (0, σ 2 ), and next that θ n (â n -a) d -→ N (0, a 2 σ 2
) by the δ-method theorem (see e.g. [START_REF] Van Der Vaart | Asymptotic Statistics[END_REF]).

Example 2.1. If b n = (n -1) α with α > 0, we have θ n +∞ ∼ αn α+1/2 (α + 1) √ 2α + 1 and θ n /b n → +∞ as n → +∞. We hence get that n α+1/2 ( βn -β) d -→ N (0, (α + 1) 2 (2α + 1) σ 2 /α 2 ).
In the special case where b n = n -1, this is consistent with the central limit result from [START_REF] Lam | Analysis of data from a series of events by a geometric process model[END_REF] which states that

n 3/2 ( βn -β) d -→ N (0, 12σ 2 ). Example 2.2. If b n = log n, we have θ n +∞ ∼ √ n and θ n /b n → +∞ as n → +∞. We hence get that n 1/2 ( βn -β) d -→ N (0, σ 2 ).
Remark 2.2. Note that from standard results on linear regression

σ2 n = 1 n -2 n ∑ k=1 ( Z k -βn b k -μn ) 2
is an unbiased consistent estimator of σ 2 . Then, the asymptotic variance of θ n (â n -a) is consistently estimated by â2 n σ2 n .

Functional parameter

The cumulative distribution function F is now estimated by

Fn (x) = 1 n n ∑ i=1 1 { Ŷi ≤x} = 1 n n ∑ i=1 1 {log Ŷi ≤log x} = 1 n n ∑ i=1 1 {log Y i +b i (β-βn)≤log x} = 1 n n ∑ i=1 1 {log Y i ≤log x+b i ( βn-β)}
for all x ∈ (0, +∞).

We also define F ± n by

F ± n (x) = 1 n n ∑ i=1 1 {log Y i ≤log x±bn| βn-β|} for all x ∈ (0, +∞),
and we have

F - n (x) ≤ Fn (x) ≤ F + n (x) (4) 
for all x ∈ (0, +∞).

Define moreover Ĝn and G by Ĝn

(x) = 1 n n ∑ i=1 1 {log Y i ≤x} , G(x) = P(log Y 1 ≤ x) for all x ∈ R.

Proposition 2.4. (Uniform Strong Consistency)

Assume that Z 1 admits a bounded density g with respect to Lebesgue measure, that Z 1 has a second order moment and that

lim sup n→+∞ b 2 n √ log n √ nα 2 n = 0. ( 5 
)
Then ∥ Fn -F ∥ ∞ converges to 0 almost surely as n tends to infinity.

Proof. We have for all x ∈ (0, +∞) :

| F + n (x) -F (x)| ≤ | Ĝn (log x + b n | βn -β|) -G(log x + b n | βn -β|)| + |G(log x + b n | βn -β|) -G(log x)| ≤ ∥ Ĝn -G∥ ∞ + ∥g∥ ∞ b n | βn -β|, (6) 
where ( 6) is obtained by applying the mean value theorem to the second term in the right hand side of the first inequality. From the Glivenko-Cantelli theorem, we know that ∥ Ĝn -G∥ ∞ → 0 a.s.. Besides, by Proposition 2.2 and (5) we have lim sup

n→+∞ b n βn -β ≤ lim sup n→+∞ √ nα 2 n b n √ log n βn -β × lim sup n→+∞ b 2 n √ log n √ nα 2 n ≤ 2 √ 2σ × 0 = 0 a.s..
Since g is bounded, we derive from ( 6) that ∥ F + n -F ∥ ∞ converges to 0 almost surely. By similar arguments, we also get that ∥ Fn -F ∥ ∞ converges to 0 almost surely. Using (4), we have

∥ Fn -F ∥ ∞ ≤ max ( ∥ F + n -F ∥ ∞ , ∥ F - n -F ∥ ∞ )
which entails that ∥ Fn -F ∥ ∞ → 0 almost surely. Hence the proposition is proved.

Remark 2.3. The boundedness condition on g is satisfied whenever f belongs to several parametric families (Weibull, Gamma, log-normal, etc.). Condition (5) on the sequence

( b 2 n √ log n √ nα 2 n ) n≥1
is satisfied for many non decreasing sequences (b n ) n≥1 tending to infinity. For example: 5) is true, using the non decreasingness of ( α 2 n ) n∈N (see Remark 2.1). As a special case, one can take b n = (log n) α with α > 0.

• if b 2 n √ log n/ √ n → 0, then Condition (
• if b n = (n -1) α with α > 0 then b 2 n √ log n √ nα 2 n +∞ ∼ (α + 1) 2 (2α + 1) √ log n α 2 √ n → 0
(see Example 2.1). Thus, Condition (5) is satisfied.

3 Numerical experiments

Monte Carlo study of the estimators

Figure 1 shows three boxplots obtained from estimates of a ∈ {0.85, 0.9, 0.95} for various sequences (b n ) n≥1 based on 1000 simulated samples of size n = 50. Here, the underlying renewal process is generated using independent inter-arrival times that follow a Weibull distribution with shape parameter 2 and scale parameter 10. These boxplots show that the convergence rate of ân heavily depends on b n . This is consistent with the fact that in Section 2, we showed that for b n = n -1, √ n or log n, the convergence rate of ân is proportional to n 3/2 , n or √ n, respectively. To better illustrate the convergence of Fn towards F , we now calculate the empirical mean of N = 1000 Mean Integrated Square Error (MISE) values. For one sample, the MISE equals

1 n n ∑ i=1 ( Fn ( Ỹ(i) ) -F ( Ỹ(i) )) 2 = 1 n n ∑ i=1 ( i/n -F ( Ỹ(i) )) 2 ,
where Ỹi = â-b i n X i for 1 ≤ i ≤ n and Ỹ(i) is the i-th order statistic. F is the Weibull cdf with scale parameter 10 and shape parameter 2, and a = 2. 

On the choice of the b n 's

We have assumed that the sequence (b n ) n≥1 was known. A natural question hence is: how can we check the validity of the sequence (b n ) n≥1 ? We here propose a residual analysis, based on the fact that, in case of a correct choice for b n and of a "good" estimate â of a, the residuals k → â-b k X k should be nearly i.i.d.. Such residuals and the corresponding estimated cdf Fn are plotted for different situations in Figures 3 and4 In case b n = g(n; θ), where g is a known link function indexed by θ ∈ Θ ∈ R p , we can estimate θ in the following way. For n ≥ 1, we have:

Z n = log X n = g(n; θ)β + µ + e n ,
where β = log a and µ = E[log Y 1 ]. Hence we can estimate µ, β and θ by minimizing the cost function c n defined by It is easy to see that both optimal parameters µ n (θ) and β n (θ) can be expressed as functions of θ, with:

c n (µ, β, θ) = n ∑ k=1 (Z k -βg(k; θ) -µ) 2 .
µ n (θ) = ( ∑ n k=1 g(k; θ)) ( ∑ n k=1 y k g(k; θ)) -( ∑ n k=1 y k ) (∑ n k=1 g 2 (k; θ) ) ( ∑ n k=1 g(k; θ)) 2 -n ( ∑ n k=1 g 2 (k; θ)) , ( 7 
)
β n (θ) = ( ∑ n k=1 g(k; θ)) ( ∑ n k=1 y k ) -n ( ∑ n k=1 y k g(k; θ)) ( ∑ n k=1 g(k; θ)) 2 -n ( ∑ n k=1 g 2 (k; θ)) . ( 8 
)
Plugging these two functions into c n (µ, β, θ), we obtain a new cost function C n which only depends on θ :

C n (θ) = n ∑ k=1 (Z k -β n (θ)g(k; θ) -µ n (θ)) 2 .
We next minimize C n (θ) with respect to θ, which provides an estimate θn for θ, and hence an estimate for b n 's ( bn = g(n; θn )). This procedure is illustrated in Figures 5 and6 for g(k; θ) = k θ , which show its efficiency.

Aircraft data

We end this session with the study of a real data set of size n = 29. This data set contains successive times to failure (operating hours) of an airconditioning equipment of a Boeing 720 aircraft and it is taken from data corresponding to 13 different aircraft. These data were studied in [START_REF] Proschan | Theoretical explanation of observed decreasing failure rate[END_REF] and are available in [START_REF] Lindsey | Statistical Analysis of Stochastic Processes in Time[END_REF].

Figure 7 shows the successive failure times (operating hours).

Optimizing the criterion θ → C n (θ) for b n = (n -1) θ , we obtain θ = 0.788, see Fig. 8. Table 2 summarizes the results obtained for the estimation of parameter a for various b n 's. The estimate â of a is given with a 95% It is interesting to note that, whatever the choice for b n , the estimate of a belongs to (0, 1). This implies that the times between successive failures are stochastically non increasing. Note also that if we test H 0 : a = 1 by rejecting the hypothesis H 0 whenever the 95% Confidence Interval (CI) for a does not contain 1, then we do not reject H 0 when b n = (n -1) θ with θ = 0.788, 1 or 1.5 while this hypothesis is rejected when b n is log n or √ n -1 (see Tab. 2). It however is highly likely that a < 1. Finally, Fig. 9 shows that the estimates of the cdf F also are sensitive to the choice of b n : the further b n is from the optimal sequence, the further the cdf estimates are from the empirical cdf obtained for b n = (n -1) 0.788 .

Application to reliability

A repairable system is now considered, with instantaneous repairs at failure times and successive life-times modeled by an EGP. Once the process has been statistically estimated, it may be used for prediction purposes and/or optimization of replacement policies. As for prediction purpose, a typical quantity of interest is the mean number of failures on some time interval [0, t]. In case of non increasing lifetimes (a ≤ 1), a replacement policy is next studied, where the system is renewed as soon as a lifetime is observed to be too short. We begin with some preliminary results.

Preliminary results

Lemma 4.1.

Setting T ∞ = lim n→+∞ T n , we have the following dichotomy:

1. If ∑ +∞ i=1 a b i < +∞, then E (T ∞ ) < +∞ (and T ∞ < +∞ a.s.). 2. If ∑ +∞ i=1 a b i = +∞, then T ∞ = +∞ a.s. (and E (T ∞ ) = +∞).
Proof. In case a ≥ 1 (which implies ∑ +∞ i=1 a b i = +∞), we clearly have:

T n ≥ S n , where S n = ∑ n j=1 Y j .
As S ∞ = +∞ a.s. (renewal case), we get T ∞ = +∞ a.s.. Let us now assume a ∈ (0, 1). If ∑ +∞ i=1 a b i < +∞, we easily derive the first point, due to

E (T n ) = n ∑ i=1 E (X i ) = E (Y 1 ) n ∑ i=1 a b i . ( 9 
)
As for the second point, let

c n = ∑ n i=1 a b i . As c n ≥ na bn , we have a 2bn /c 2 n ≤ 1/n 2 and ∑ +∞ n=1 a 2bn c 2 n < +∞. We derive that +∞ ∑ n=1 Var (X n ) c 2 n = Var (Y 1 ) +∞ ∑ n=1 a 2bn c 2 n < +∞
and in case ∑ +∞ i=1 a b i = +∞, Theorem 6.7 from [START_REF] Petrov | Limit Theorems of Probability Theory: Sequences of Independent Random Variables[END_REF] implies that:

T n -E (T n ) c n = T n c n -E (Y 1 ) → 0 a.s.
so that T ∞ = +∞ a.s.. Remark 4.1. Such results extend similar results from [START_REF] Lam | Some limit theorems in geometric processes[END_REF] provided in the special case where b i = i -1.

We now look at an example.

Example 4.1. Let b n = n α (log (n)) β with α ≥ 0 and β ≥ 0, and let a ∈ (0, 1). Then ∑ +∞ i=1 a b i = +∞ if and only if α = 0 and one of the following conditions is fulfilled:

• β < 1, • β = 1 and a ≥ 1/e. Proof. In case α > 0, we have 0 ≤ a bn = a n α (log n) β ≤ a n α for all n ≥ 3. If α ≥ 1, then 0 ≤ a bn ≤ a n α ≤ a n , from which we derive that ∑ +∞ i=1 a b i < +∞.
If 0 < α < 1, we have:

a (n+1) α a n α = 1 + α log (a) n α-1 + o ( n α-1 )
from where we derive that

lim n→+∞ n ( a (n+1) α a n α -1 ) = lim n→+∞ α log (a) n α = -∞ < -1.
This implies that ∑ +∞ n=1 a n α < +∞ using Raabe's rule, and hence

∑ +∞ i=1 a b i < +∞.
In case (α, β) = (0, 1), we have a bn = n log(a) , so that ∑ +∞ i=1 a b i < +∞ if and only if a < 1/e.

For α = 0 and β ̸ = 1, the series ∑ +∞ i=1 a b i has the same behavior as

∫ +∞ 1 a (log(u)) β du, with lim u→+∞ u θ a (log(u)) β = lim u→+∞ e ((log(u)) β-1 log(a)+θ) log(u) = { 0 if β > 1, +∞ if β < 1,
for all θ > 0. We deduce that ∑ +∞ i=1 a b i < +∞ if and only if β > 1, which completes this proof.

Mean number of failures

In order to get a "pseudo-renewal" equation for the "pseudo-renewal" function associated to the EGP, we here envision the case where the first interarrival time X 1 of the EGP is distributed as

X k = a b k Y k , with k ≥ 1.
This means that at time T 0 = 0, the system has already been repaired k -1 times. The successive interarrival times then are distributed as X k , X k+1 , . . . This situation is denoted by Φ 0 = k.

For k ≥ 1, we set P k to be the conditional probability measure given that Φ 0 = k, with k ≥ 1 and E k the associated conditional expectation. In case k = 1, we have: P = P 1 and E = E 1 . For any interval I ⊂ R + , we also set N (I) to be the number of failures (or arrivals of the EGP) on I, with

N (I) = +∞ ∑ n=1 1 {Tn∈I}
In case I = [0, t], we simply set:

N (t) = N ([0, t]).
Given that Φ 0 = k, the "pseudo-renewal" function is

n k (t) = E k (N (t)) = +∞ ∑ n=1 P k (T n ≤ t)
and n k (t) stands for the mean number of failures on [0, t]. In case k = 1, we set n (t) = n 1 (t). A necessary condition for n k (t) to be finite for all t ≥ 0 is T ∞ = +∞ a.s. (see [START_REF]Introduction to Stochastic Processes[END_REF] in the more general set up of Markov renewal functions), which here writes ∑ +∞ i=1 a b i = +∞, see Lemma 4.1. We next provide a sufficient condition.

Proposition 4.1. Assume E (Y 1 ) < +∞ and lim n→+∞ na bn > 1 E(Y 1 ) (and hence ∑ +∞ i=1 a b i = +∞).
Then n k (t) < +∞ for all t ≥ 0 and all k ≥ 1.

Proof. In case a ≥ 1, we have:

n k (t) ≤ n 1 (t) = n (t) ≤ U (t) < +∞,
where U (t) stands for the renewal function associated to the underlying renewal process.

In case a ∈ (0, 1), let t > 0 and k ≥ 1 be fixed. Due to the Markov inequality, we have:

n k (t) = +∞ ∑ n=1 P k ( e -Tn ≥ e -t ) ≤ e t +∞ ∑ n=1 u n,k with u n,k = E k ( e -Tn ) = k+n-1 ∏ i=k E ( e -a b i Y 1 ) and lim n→+∞ n ( u n+1,k u n,k -1 ) = -lim n→+∞ na b k+n × E ( 1 -e -a b k+n Y 1 a b k+n ) As 1-e -a b k+n Y 1 a b k+n
converges to Y 1 when n → +∞ and is bounded by Y 1 , we derive by Lebesgues's theorem that:

lim n→+∞ n ( u n+1,k u n,k -1 ) = -lim n→+∞ na bn × E (Y 1 ) < -1
by assumption. We conclude with Raabe's rule.

Example 4.2. For b n = (log (n)) β with β ≥ 0 and a ∈ (0, 1), we get that n k (t) is finite for all t ≥ 0 and all k ≥ 1 as soon as one of the following condition is fulfilled:

• β < 1,
• β = 1 and a > 1 e ,

• β = 1, a = 1 e , and E (Y 1 ) > 1.

Such results show that, contrary to classical geometric processes (see [START_REF] Braun | Properties of the geometric and related processes[END_REF] and the introduction), it is possible to model decreasing successive lifetimes with extended geometric processes and get a finite expected number of counts at an arbitrary time.

Proposition 4.2. Assume that

lim n→+∞ na bn > 1 E(Y 1 )
. The function n k fulfills the following pseudo-renewal equation:

n k = F k + f k * n k+1 ( 10 
)
for all k ≥ 1, where F k (resp. f k ) stands for the cumulative (resp. probability) distribution function of X k .

Proof. Using classical arguments ([6] e.g.), we have:

n k (t) = E k ( N (t) 1 {X 1 ≤t} ) = E k ( E k (N (t) |X 1 ) 1 {X 1 ≤t} ) = E k ( E k (N (]0, X 1 ]) |X 1 ) 1 {X 1 ≤t} ) + E k ( E k (N (]X 1 , t]) |X 1 ) 1 {X 1 ≤t} ) = F k (t) + ∫ [0,t] n k+1 (t -u) f k (u) du,
which may be written as [START_REF] Finkelstein | A note on converging geometric-type processes[END_REF].

Remark 4.2. Setting Φ Tn = k in case X n+1 is distributed as a b k Y k (with k ≥ n + 1) and Φ t = Φ Tn for T n ≤ t < T n+1 the process (Φ t ) t≥0
then appears as a semi-Markov process with semi-Markov kernel provided by q (i, j, dx) = 1 {j=i+1} dF i (x) .

Equation ( 10) then is the Markov renewal equation satisfied by the corresponding Markov renewal function.

We now provide practical tools for the numerical assessment of the pseudo (Markov) renewal function n k (t). 

u n (t) = P (T n ≤ t) ,
for all n ≥ 1, we have:

0 ≤ n (t) - ∑ N n=1 u n (t) n (t) ≤ u N (t) , (11) 
for all N ≥ 1. Also, (u n (t)) n≥1 may be computed recursively using

u 1 (t) = F (t) u n+1 (t) = (f n+1 * u n ) (t) = 1 a b n+1 ∫ t 0 u n (u) f ( t -u a b n+1 ) du ( 12 
)
for all n ≥ 1, where F (resp. f ) stands for the cumulative (resp. probability) distribution function of Y 1 .

Proof. We may write:

n (t) = N ∑ n=1 u n (t) + ε N (t)
where

ε N (t) = +∞ ∑ m=1 P (T m+N ≤ t) .
Using similar arguments as [START_REF] Feller | An introduction to probability theory and its applications[END_REF], we have

{T m+N ≤ t} = {T N + (T m+N -T N ) ≤ t} ⊂ {T N ≤ t}∩{T m+N -T N ≤ t}
where T N and T m+N -T N are independent. We derive:

ε N (t) ≤ P (T N ≤ t) +∞ ∑ m=1 P N (T m ≤ t) = u N (t) n N (t) ≤ u N (t) n (t) ,
which implies [START_REF] Feller | An introduction to probability theory and its applications[END_REF]. The remainder of the proof is straightforward.

Remark 4.3.

This result allows to numerically assess the pseudo renewal function n (t) up to a given precision ε > 0 by recursively computing u n (t) until u n (t) is smaller than ε. Note however that the u i (t)'s are computed using discrete convolutions in [START_REF] Feller | An introduction to probability theory and its applications[END_REF], which induces numerical errors. Such errors might be quantified using similar methods as in [START_REF] Mercier | Numerical bounds for semi-markovian quantities and application to reliability[END_REF].

In case a < 1, the previous result is not valid because n N (t) ≥ n (t). In that case, Monte-Carlo simulations may be used to compute the pseudo-renewal function. A lower bound n c (t) may also be provided, which converges to n (t) when c goes to zero. This bound is constructed via the following lemma. Lemma 4.2. For c > 0 and t ≥ 0, let

τ c = inf (n ≥ 1 : X n < c) ( 13 
)
and

n c (t) = E ( τ c -1 ∑ n=1 1 {Tn≤t}
) (0 in case of an empty sum).

Then n c (t) ≤ n (t) and

lim c→0 + n c (t) = n (t) .
Proof. Using the fact that τ c increases to infinity when c decreases to 0 + , the result is a direct consequence of the monotone convergence theorem.

The following lemma provides tools for the numerical assessment of n c (t), which do not require a ≥ 1.

Lemma 4.3. Setting u c n (t) = P (T n ≤ t, X 1 ≥ c, . . . , X n ≥ c)
for all n ≥ 1, we have:

n c (t) = ⌊ t c ⌋ ∑ n=1 u c n (t) , ( 14 
)
where ⌊...⌋ stands for the floor function. Also, (u c n (t)) n≥1 may be computed recursively using

u c 1 (t) = (F (t) -F (c)) + u c n+1 (t) = 1 a b n+1 ∫ (t-c) + 0 u c n (u) f ( t -u a b n+1 ) du ( 15 
)
for all n ≥ 1.

Proof. We have:

n c (t) = +∞ ∑ n=1 P (T n ≤ t, n < τ c ) = +∞ ∑ n=1 P (T n ≤ t, X 1 ≥ c, . . . , X n ≥ c) .
Noting that X 1 ≥ c, . . . , X n ≥ c implies T n ≥ nc, the summation may be restricted to n ≤ ⌊ t c ⌋ , which provides [START_REF] Lam | Nonparametric inference for geometric processes[END_REF]. Equation ( 15) is a direct consequence of

u c n+1 (t) = E ( E ( 1 {Tn≤t-X n+1 } 1 {X 1 ≥c,...,Xn≥c} |X n+1 ) 1 {X n+1 ≥c} ) = E ( u c n (t -X n+1 ) 1 {X n+1 ≥c} ) = 1 a b n+1 ∫ t c u c n (t -u) f ( u a b n+1
) du for all t ≥ c.

A replacement policy

We here consider the case where a < 1 and the following renewal policy is considered: as soon as a lifetime X i is observed to be shorter than the predefined threshold s (s > 0), the system is instantaneously replaced at some cost c R . Between replacements, the cost of an instantaneous repair which follows a failure is denoted by c F , with c R ≥ c F . We set c(s) to be the asymptotic unitary cost per time unit time.

The next proposition uses classical results from renewal theory to derive the existence of c(s), and an expression for it.

Proposition 4.3.

Assume a ∈ (0, 1). Setting C ([0, t]) to be the cumulated cost on [0, t], the asymptotic cost per unit time

c(s) = lim t→+∞ C ([0, t]) t a.s. ( 16 
)
exists and is provided by

c(s) = c R + c F E (τ s -1) E (T τ s ) , ( 17 
)
where τ s is defined as τ c , see [START_REF] Kijima | Stochastic models in reliability and maintenance[END_REF].

Furthermore,

E (τ s -1) = +∞ ∑ k=1 v s k E (T τ s ) = E (Y 1 ) ( 1 + +∞ ∑ k=1 a b k+1 v s k ) with v s k = k ∏ i=1 F ( s a b i ) ( 18 
)
for all k ≥ 1 and F = 1 -F .

Proof. The evolution of the maintained system may be described by a regenerative process, with cycles delimited by the replacement of the system and generic length T τ s . Moreover

E (T τ s ) = +∞ ∑ k=2 E ( T k ( 1 {τ s ≥k} -1 {τ s ≥k+1} )) + E ( T 1 1 {τ s =1} ) = +∞ ∑ k=3 E ( (T k -T k-1 ) 1 {τ s ≥k} ) + E ( T 2 1 {τ s ≥2} ) + E ( X 1 1 {τ s =1} ) = +∞ ∑ k=1 w s k , with w s k = E ( X k 1 {τ s ≥k} ) = a b k E (Y k ) P (X 1 ≥ s, ..., X k-1 ≥ s) = a b k E (Y 1 ) v s k-1 , for all k ≥ 2 and w s 1 = E (Y 1 ). Now, as lim k→+∞ w s k+1 w s k = lim k→+∞ a b k+1 -b k F ( s a b k ) = 0,
the series with generic term w s k is convergent and E (T τ s ) < +∞. We derive the existence of c(s) and formula [START_REF] Lam | The Geometric Process and its Applications[END_REF] (see [START_REF] Asmussen | Applied probability and queues[END_REF] e.g.), noting that the mean cost on a generic cycle is c R + c F E (τ s -1).

The quantity E (τ s ) may finally be computed via:

E (τ s ) = +∞ ∑ i=1 P (τ s ≥ i) = 1 + +∞ ∑ i=2 P (X 1 ≥ s, ..., X i-1 ≥ s) = 1 + +∞ ∑ i=2 v s i-1 .
We next provide tools for the numerical assessment of c(s).

Proposition 4.4. Assume a ∈ (0, 1). We have the following bounds for c (s) :

m N c (s) ≤ c(s) ≤ M N c (s) , where m N c (s) = c R + c F S N 1 (s) E (Y 1 ) ( 1 + S N 2 (s) + a b N +2 v s N +1 /F ( s a b N +2 )) , M N c (s) = c R + c F ( S N 1 (s) + v s N +1 /F ( s a b N +2
))

E (Y 1 ) ( 1 + S N 2 (s)
) , and

S N 1 (s) = N ∑ k=1 v s k , S N 2 (s) = N ∑ k=1 a b k+1 v s k (with v s k defined by (18)). Moreover we have c(s) - m N c (s) + M N c (s) 2 ≤ ∆c N max (s) := M N c (s) -m N c (s) 2 .
Proof. We have

1 + N ∑ k=1 a b k+1 v s k ≤ E (T τ s ) E (Y 1 ) ≤ 1 + N ∑ k=1 a b k+1 v s k + +∞ ∑ k=N +1 a b k+1 v s k , with +∞ ∑ k=N +1 a b k+1 v s k ≤ a b N +2 +∞ ∑ k=N +1 v s k ,
and

+∞ ∑ k=N +1 v s k ≤ v s N +1 × +∞ ∑ k=N +1 ( F ( s a b N +2 )) k-N -1 = v s N +1 F ( s a b N +2
) .

We derive

E (Y 1 ) ( 1 + S N 2 (s) ) ≤ E (T τ s ) ≤ E (Y 1 )   1 + S N 2 (s) + a b N +2 v s N +1 F ( s a b N +2 )   .
A similar method is used for bounding E (τ s ), which provides the result.

This proposition allows to numerically assess the cost function c (s) up to a given precision ε by recursively computing S N 1 (s) and S N 2 (s) until ∆c N max (s) is smaller than ε.

10 3 trajectories in Figure 12, as well as n c (t) for c = 0.05. We observe that n c (t) is a good approximation of n (t) for small c. 

Concluding Remarks and Prospects

Contrary to renewal processes, geometric processes proposed by [START_REF] Lam | The Geometric Process and its Applications[END_REF] and their present extension both allow successive inter-arrival times to be (stochastically) increasing or decreasing. From a modelling point of view, the extended version has however been seen to be more flexible. Also, in an applied context, the expected number of arrivals of the underlying counting process on some finite time interval is expected to be finite at any time. This had previously been seen by [START_REF] Braun | Properties of the geometric and related processes[END_REF] to be incompatible with a decreasing geometric process. In contrast, GP's extended geometric processes do not suffer from this drawback. Extended geometric processes may hence be a simple alternative to the virtual age models proposed by [START_REF] Doyen | Classes of imperfect repair models based on reduction of failure intensity or virtual age[END_REF] and [START_REF] Kijima | Stochastic models in reliability and maintenance[END_REF] for the modeling of imperfect maintenance actions e.g.. From the estimation point of view, we saw that the convergence rate of the estimator of the Euclidean parameter a strongly depends on the sequence (b n ) n≥1 . A miss-specification of the sequence (b n ) n≥1 will naturally lead to biased estimates. To make the model more flexible, we hence considered a parametrized version of the sequence (b n ) n≥1 by setting b n = g(n, θ), where θ is an additional Euclidean parameter. Some procedure has been provided for its estimation.

Note the lack of a central limit theorem for the estimator F of the underlying cumulative distribution function F . Indeed, standard methods cannot be used here, because of the deterministic nature of the b n 's. This problem hence requires some more investigation along with the study of the properties of the estimator of θ for parametrized sequences b n = g(n; θ). Such a result would however be useful for testing the hypothesis that the underlying cumulative distribution function F belongs to some parametric family. Another possible issue would be to include covariates in this model in order to describe (e.g.) the effect of the environment on the monotonicity of the EGP.

In case a < 1, a lower bound has been provided for the pseudorenewal function, which is easy to compute using Lemma 4.3. However, we haven't been able to provide a computable upper bound, although it is necessary for the numerical assessment of the results precision. Indeed, the usual tools such as those used in case a ≥ 1 are inappropriate here, and new tools should be developed. As for the replacement policy, because of the random character of the successive lifetimes, an alternate policy based on a predefined number m of consecutive lifetimes under a threshold s, might be better adapted than the present policy, based on a replacement at the first observation of a single lifetime below s.
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 1 Figure 1: Comparison of boxplots of 1000 estimates of a ∈ {0.85, 0.9, 0.95} obtained from samples of size 50 for b n = n -1, √ n -1 and log n.
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 2 Figure 2: 100 estimates Fn (grey solid lines) and the true F (black solid line) for various values of n.
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  , with b n = n θ 0 . Such figures clearly illustrate the consequences of a bad choice for b n . Looking at the residuals can hence help to chose between several possible choices for b n (between b n = n, √ n or n 3/2 in the previous examples). When the possible choices for b n are unknown, another approach is required.

Figure 3 :

 3 Figure 3: n = 100, a = 0.98, θ 0 = 1.5, columns 1 to 3 correspond to b n = n, b n = √ n and b n = n 3/2 (true) respectively. At the top are residuals k → â-b k X k while at the bottom are both the estimated cdf of the renewal process (dotted) and the true cdf (solid).

Figure 4 :

 4 Figure 4: n = 400, a = 0.95, θ 0 = 1, columns 1 to 3 correspond to b n = n (true), b n = √ n and b n = n 3/2 respectively. At the top are residuals k → â-b k X k while at the bottom are both the estimated cdf of the renewal process (dotted) and the true cdf (plain).

Figure 5 :

 5 Figure 5: n = 100, a = 0.98, θ 0 = 1.5, θ → C n (θ) is the plain curve, θ 0 and θn are superimposed vertical lines.

Figure 6 :

 6 Figure 6: n = 100, a = 0.90, θ 0 = 0.5, θ → C n (θ) is the plain curve, θ 0 is the vertical plain line, θn is the vertical dotted line.
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 7 Figure 7: Successive failure times of the air-conditioning equipment.
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 8 Figure 8: θ → C n (θ) for the aircraft data.
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 9 Figure 9: Empirical cumulative distribution function for the aircraft data.
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 41 Assume a ≥ 1. Setting
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 11 Figure 11: n c (t) with respect to t for different values of c.
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 12442 Figure 12: n (t) by Monte-Carlo simulations and n c (t) for c = 0.05.

Figure 13 :

 13 Figure 13: c (s) with respect to s.

Remark 2.1. It is straightforward to verify that

  

	Then α n ( βn -β)	a.s. -→ 0.						2 1 ) < +∞.
	Proof. Remember that e i = log Y i -µ, and let S n =	∑ n i=1 a i,n e i , where
	weights a i,n are defined by				
		a i,n =	b i -bn α n	(setting α 1 = 1).
	Then, we have nα n ( βn -β) = S n . The e i 's are i.i.d. centered random
	variables and have finite second order moment, because E(|Z 1 | 2 ) < +∞.
	Moreover, following the notations in [4], we have
		A n,2 =	(	1 n	i=1 n ∑	a 2 i,n	) 1/2	= 1
	and hence lim sup n A n,2 = 1. Applying Theorem 1.1 in [8], we obtain
	that S n /n = α n ( βn -β) → 0 a.s..	
		α 2 n+1 = α 2 n +	n n + 1	(	b n+1 -bn	) 2 ,
	which implies that (α n ) n≥1 is a non decreasing sequence. This mono-
	tonicity plus the previous consistency result imply that βn	a.s. -→ β.

Proposition 2.2. (Law of Iterated Logarithm) If

  , where the e i 's are i.i.d. centered random variables with finite second order moment. Weights a i,n are now chosen equal to (b i -bn )/2b n and satisfy

	Proof. Let us consider again S n =	∑ n i=1 a i,n e i
						E[Z 2 1 ] < +∞
	then	lim sup n→+∞	√ nα 2 n b n √ log n	| βn -β| ≤ 2 √	2σ a.s.
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 1 3/2 0.0073 0.0039 0.0019 0.0010 Mean of N = 1000 MISE values

Table 2 :

 2 

Estimates of a and various b n 's for the aircraft data.

Numerical experiments

Computation of the pseudo-renewal function

We first consider the case where a ≥ 1. The random variable Y 1 is Gamma distributed with shape parameter 1.2 and scale parameter 2.5 (which provides E (Y 1 ) = 3, Var (Y 1 ) = 7.5). This distribution is denoted by Γ (1.2, 2.5). We also take b n = n 0.3 and a = 1.2. The approximation of the pseudo-renewal function n (t) provided by Corollary 4.1 is plotted against t in Figure 10 for N = 20. The maximal relative error provided by the approximation is about 4.2 × 10 -6 . We also plot n (t) computed by Monte-Carlo simulations and the 95% confidence band for 10 3 trajectories in the same figure. The results are quite similar.