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On the Fisher Information Matrix for Multivariate
Elliptically Contoured Distributions
Olivier Besson, Senior Member, IEEE, and Yuri I. Abramovich, Fellow, IEEE

Abstract—The Slepian-Bangs formula provides a very conve-
nient way to compute the Fisher information matrix (FIM) for
Gaussian distributed data. The aim of this letter is to extend it to a
larger family of distributions, namely elliptically contoured (EC)
distributions. More precisely, we derive a closed-form expression
of the FIM in this case. This new expression involves the usual
term of the Gaussian FIM plus some corrective factors that
depend only on the expectations of some functions of the so-called
modular variate. Hence, for most distributions in the EC family,
derivation of the FIM from its Gaussian counterpart involves
slight additional derivations. We show that the new formula
reduces to the Slepian-Bangs formula in the Gaussian case and we
provide an illustrative example with Student distributions on how
it can be used.

Index Terms—Cramér-Rao bound, elliptically contoured distri-
butions, Fisher information matrix.

I. INTRODUCTION

T HE CRAMÉR-RAO BOUND (CRB) provides a lower
bound on the variance of any unbiased estimator and is

thus the ubiquitous reference to compare the performance of
a given estimator to [1]. The CRB is usually computed as the
inverse of the Fisher information matrix (FIM) whose entries
involve the derivatives of the log-likelihood function of the ob-
servation matrix where
stands for the -th snapshot. When the latter are independent
and identically distributed (i.i.d.) vectors drawn from a com-
plex Gaussian distribution, i.e., when
where denotes the set of unknown real-valued param-
eters that describe the distribution, the Slepian-Bangs formula
[2], [3] provides a general expression for the FIM as

(1)

where and where, for the sake of simplicity, we
have omitted the dependence of and on in the second
line of (1). The convenience of such formula has been thor-
oughly used for a myriad of statistical data models, at least

under the Gaussian framework. However, in many applications,
non-Gaussianity of the data has been evidenced and hence, for
each non-Gaussian distribution, the FIM must be speciÞcally
computed from the Þrst line of (1). In this letter, we provide an
extension of the Slepian-Bangs formula to a very general class
of distributions, namely multivariate elliptically contoured (EC)
distributions.

II. A BRIEF REVIEW OF EC DISTRIBUTIONS

Multivariate elliptically contoured distributions [4], [5] con-
stitute a large family of distributions which have been used in a
variety of applications, including array processing. In this sec-
tion, we brießy summarize their deÞnitions and properties so as
to provide the necessary background for derivation of the FIM
in the next sections. A very detailed presentation of EC distribu-
tions can be found in the book [4]. We would like also to point
to the recent paper [6] where a very comprehensive review of
complex elliptically symmetric distributions is given. A vector

follows an EC distribution if it admits the following
stochastic representation

(2)

where the non-negative real random variable , called
the modular variate, is independent of the complex random
vector possessing a uniform distribution on the complex
sphere , which we denote as

. In (2), means “has the same distribution as”.
The full-rank matrix is such that where

is the so-called scatter matrix. In this paper, we consider the
absolutely continuous case where is non singular and hence

. In such a case, the probability density function (p.d.f.)
of can be deÞned and is given by

(3)

for some function called density generator that
satisÞes Þnite moment condition

. In (3), stands for proportional to. The density generator is
related to the p.d.f. of the modular variate by

(4)

We adopt the following notation in the following
. The complex Gaussian distribution

is obtained for the particular .
While there is essentially a unique way to deÞne an ellip-

tically contoured distribution for a vector, when it comes to
extend it to the matrix-variate

, several options are possible [4]. In this letter, we will



focus on the two main matrix-variate distributions encountered
in the array processing literature, namely [4], [5]
1) the multivariate elliptical distributions where essen-

tially all snapshots are i.i.d. and drawn from
(3). We refer to this type of distribution as EMS
and denote where

.
2) the vector elliptical distributions where

follows a (vector) EC distribu-

tion, i.e., with
and . We refer to this distribution as EVS
and denote .

III. THE FIM FOR EMS DISTRIBUTIONS

Let us investigate Þrst the EMS type of distributions.
The latter include the so-called compound-Gaussian models
which have been widely considered in radar applications in
order to model clutter [7]. As we said before, we assume
that the snapshots are i.i.d random vectors drawn from

. Therefore, the p.d.f. of is given by

(5)

In the sequel, we assume that and depend on an
unknown parameter vector , which we wish to estimate from

, and we look for an expression for the FIM under this statis-
tical model. For the sake of convenience, we rewrite the likeli-
hood function in (5) as and we will omit the explicit
dependence of and on .

In order to obtain the FIM, we must Þrst compute the Þrst-
order derivative of the log-likelihood function

(6)

where . Differentiating (6) with
respect to (w.r.t.) , we obtain

(7)

where . Now,

(8)

Let us Þrst prove that

(9)

which is a necessary condition for the CRB theory to apply.

Making use of , one can observe that

and

with . Therefore,

(10)

and are independent. Moreover : hence
and . Thus

(11)

(12)

It ensues that

(13)

Reporting this equation in (7) proves (9).
Let us now turn to the derivation of the entry of the

FIM, as given by

(14)

Since , we have

(15)

Therefore, we need to evaluate the expected value of the three
different terms in (15). Let us Þrst consider

(16)

Next, we have

(17)



Indeed, let us consider for some vector
and Hermitian matrix . Let and note

that where , i.e.,
, and are independent. Since is

Gaussian distributed, one has . How-
ever,
and . Therefore, which
proves (17).

It remains to derive the last term in (15). Similarly to what was
done before, let us consider with . It
is well known that

(18a)

(18b)

Consequently

(19)

Using (15), (16), (17) and (19) in the expression (14) of the FIM,
we Þnally obtain the following extension of the Slepian-Bangs
formula to EMS distributions:

(20)

It is remarkable that despite the high generality of EC distri-
butions, the formula for the FIM remains quite simple. Indeed,
it is reminiscent of the FIM for Gaussian distributions (one
recognizes the two terms of the Slepian-Bangs formula) but
for different scaling factors. The latter depend only on the
expected values of some functions of , and deviation from
the Gaussian distribution manifests itself only through these
terms. Overall, it means that any Fisher information matrix
derived under the Gaussian assumption needs to be modiÞed
only slightly to obtain the FIM for EMS distributions: indeed,
only computation of is necessary. In
some cases, see below, one can obtain an analytic expression for
them. Would that not be the case, numerical tools to compute
integrals or stochastic simulation methods can be advocated
to compute . This property paves the way to
extension of many FIM derived so far under the Gaussian
umbrella. We also observe that if is known, then the FIM
for EMS distributions is directly proportional to the Gaussian
FIM: hence, non-Gaussianity results in scaling of the CRB.
Accordingly, if where depends only on

and depends only on , then the FIM is block-diagonal.
Moreover, the FIM for estimation of only is proportional
to the Gaussian FIM, a fact that was already discovered in

[8], [9]. In contrast, when the two FIM are no longer
proportional, due to the term .

We now provide illustrative examples of how this formula
can be used. Of course, we start with the Gaussian assumption
for which and . In this case, we
have and

. Reporting this value in (20) yields the Slepian-
Bangs formula (1).

Let us now consider the well-known Student distribution
with degrees of freedom which corresponds to

and hence .

Moreover, , and hence follows a scaled
-distribution:

(21)

Some straightforward calculations show that, in this
case and

. Consequently, in the Student case, the FIM has
the following expression

(22)

One can verify, as expected, that
.

IV. THE FIM FOR EVS DISTRIBUTIONS

Let us now study the case where

(23)

with . This model has been used in the array
processing context, e.g., in [10] where Christ Richmond investi-
gated the extension of Kelly’s generalized likelihood ratio test in
Gaussian settings to EVS distributions. We now have the p.d.f.
of as

(24)

Similarly to the previous section, we let

and . The log-likelihood
function is now

(25)



Differentiating (25) with respect to yields

(26)

where we have used (8). Let us again prove that (9) holds. Since

, it follows that

(27)

which, when reported in (26), proves (9). The entry of the
FIM can thus be written as

(28)

Now, we have

(29)

Proceeding along the same lines as in the previous section, it is
straightforward to show that

(30)

(31)

(32)

Gathering the previous equations, we Þnally obtain the FIM for
EVS distributions:

(33)

Again, let us prove that when the data is Gaussian distributed,
we recover the Slepian-Bangs formula. For Gaussian distributed
data, one has

In this case, and
, and (33) reduces to (1).

V. CONCLUSION

In this letter, we proceeded to the extension of the well-known
Slepian-Bangs formula of the FIM for Gaussian distributed data
to the larger family of elliptically contoured distributions. Sur-
prisingly enough, the new expression is rather simple and in-
volves only slight modiÞcations compared to its Gaussian coun-
terpart. Only the expectation of some functions of the (scalar)
modular variate are to be derived, which can be done often an-
alytically otherwise numerically. This result paves the way to
derivation of new Cramér-Rao bounds, e.g., for structured co-
variance matrix estimation or clutter and/or external noise pa-
rameters estimation in non-Gaussian environments.
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