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The Slepian-Bangs formula provides a very convenient way to compute the Fisher information matrix (FIM) for Gaussian distributed data. The aim of this letter is to extend it to a larger family of distributions, namely elliptically contoured (EC) distributions. More precisely, we derive a closed-form expression of the FIM in this case. This new expression involves the usual term of the Gaussian FIM plus some corrective factors that depend only on the expectations of some functions of the so-called modular variate. Hence, for most distributions in the EC family, derivation of the FIM from its Gaussian counterpart involves slight additional derivations. We show that the new formula reduces to the Slepian-Bangs formula in the Gaussian case and we provide an illustrative example with Student distributions on how it can be used.

I. INTRODUCTION

T HE CRAMÉR-RAO BOUND (CRB) provides a lower bound on the variance of any unbiased estimator and is thus the ubiquitous reference to compare the performance of a given estimator to [START_REF] Kay | Fundamentals of Statistical Signal Processing: Estimation Theory[END_REF]. The CRB is usually computed as the inverse of the Fisher information matrix (FIM) whose entries involve the derivatives of the log-likelihood function of the observation matrix where stands for the -th snapshot. When the latter are independent and identically distributed (i.i.d.) vectors drawn from a complex Gaussian distribution, i.e., when where denotes the set of unknown real-valued parameters that describe the distribution, the Slepian-Bangs formula [START_REF] Slepian | Estimation of signal parameters in the presence of noise[END_REF], [START_REF] Bangs | Array Processing With Generalized Beamformers[END_REF] provides a general expression for the FIM as [START_REF] Kay | Fundamentals of Statistical Signal Processing: Estimation Theory[END_REF] where and where, for the sake of simplicity, we have omitted the dependence of and on in the second line of [START_REF] Kay | Fundamentals of Statistical Signal Processing: Estimation Theory[END_REF]. The convenience of such formula has been thoroughly used for a myriad of statistical data models, at least under the Gaussian framework. However, in many applications, non-Gaussianity of the data has been evidenced and hence, for each non-Gaussian distribution, the FIM must be speciÞcally computed from the Þrst line of [START_REF] Kay | Fundamentals of Statistical Signal Processing: Estimation Theory[END_REF]. In this letter, we provide an extension of the Slepian-Bangs formula to a very general class of distributions, namely multivariate elliptically contoured (EC) distributions.

II. A BRIEF REVIEW OF EC DISTRIBUTIONS

Multivariate elliptically contoured distributions [START_REF] Fang | Generalized Multivariate Analysis[END_REF], [START_REF] Anderson | Theory and Applications of Elliptically Contoured and Related Distributions Dept[END_REF] constitute a large family of distributions which have been used in a variety of applications, including array processing. In this section, we brießy summarize their deÞnitions and properties so as to provide the necessary background for derivation of the FIM in the next sections. A very detailed presentation of EC distributions can be found in the book [START_REF] Fang | Generalized Multivariate Analysis[END_REF]. We would like also to point to the recent paper [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF] where a very comprehensive review of complex elliptically symmetric distributions is given. A vector follows an EC distribution if it admits the following stochastic representation [START_REF] Slepian | Estimation of signal parameters in the presence of noise[END_REF] where the non-negative real random variable , called the modular variate, is independent of the complex random vector possessing a uniform distribution on the complex sphere , which we denote as . In [START_REF] Slepian | Estimation of signal parameters in the presence of noise[END_REF], means "has the same distribution as". The full-rank matrix is such that where is the so-called scatter matrix. In this paper, we consider the absolutely continuous case where is non singular and hence . In such a case, the probability density function (p.d.f.) of can be deÞned and is given by

(3)
for some function called density generator that satisÞes Þnite moment condition . In (3), stands for proportional to. The density generator is related to the p.d.f. of the modular variate by (4)

We adopt the following notation in the following . The complex Gaussian distribution is obtained for the particular . While there is essentially a unique way to deÞne an elliptically contoured distribution for a vector, when it comes to extend it to the matrix-variate , several options are possible [START_REF] Fang | Generalized Multivariate Analysis[END_REF]. In this letter, we will focus on the two main matrix-variate distributions encountered in the array processing literature, namely [START_REF] Fang | Generalized Multivariate Analysis[END_REF], [START_REF] Anderson | Theory and Applications of Elliptically Contoured and Related Distributions Dept[END_REF] 1) the multivariate elliptical distributions where essentially all snapshots are i.i.d. and drawn from (3). We refer to this type of distribution as EMS and denote where .

2) the vector elliptical distributions where follows a (vector) EC distribution, i.e., with and . We refer this distribution as EVS and denote .

III. THE FIM FOR EMS DISTRIBUTIONS

Let us investigate Þrst the EMS type of distributions. The latter include the so-called compound-Gaussian models which have been widely considered in radar applications in order to model clutter [START_REF] Conte | Asymptotically optimum radar detection in compound-Gaussian clutter[END_REF]. As we said before, we assume that the snapshots are i.i.d random vectors drawn from . Therefore, the p.d.f. of is given by [START_REF] Anderson | Theory and Applications of Elliptically Contoured and Related Distributions Dept[END_REF] In the sequel, we assume that and depend on an unknown parameter vector , which we wish to estimate from , and we look for an expression for the FIM under this statistical model. For the sake of convenience, we rewrite the likelihood function in [START_REF] Anderson | Theory and Applications of Elliptically Contoured and Related Distributions Dept[END_REF] as and we will omit the explicit dependence of and on . In order to obtain the FIM, we must Þrst compute the Þrstorder derivative of the log-likelihood function [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF] where

. Differentiating (6) with respect to (w.r.t.) , we obtain [START_REF] Conte | Asymptotically optimum radar detection in compound-Gaussian clutter[END_REF] where . Now,

Let us Þrst prove that [START_REF] Sadler | Performance analysis for direction Þnding in non-Gaussian noise[END_REF] which is a necessary condition for the CRB theory to apply. 

(20)
It is remarkable that despite the high generality of EC distributions, the formula for the FIM remains quite simple. Indeed, it is reminiscent of the FIM for Gaussian distributions (one recognizes the two terms of the Slepian-Bangs formula) but for different scaling factors. The latter depend only on the expected values of some functions of , and deviation from the Gaussian distribution manifests itself only through these terms. Overall, it means that any Fisher information matrix derived under the Gaussian assumption needs to be modiÞed only slightly to obtain the FIM for EMS distributions: indeed, only computation of is necessary. In some cases, see below, one can obtain an analytic expression for them. Would that not be the case, numerical tools to compute integrals or stochastic simulation methods can be advocated to compute . This property paves the way to extension of many FIM derived so far under the Gaussian umbrella. We also observe that if is known, then the FIM for EMS distributions is directly proportional to the Gaussian FIM: hence, non-Gaussianity results in scaling of the CRB. Accordingly, if where depends only on and depends only on , then the FIM is block-diagonal. Moreover, the FIM for estimation of only is proportional to the Gaussian FIM, a fact that was already discovered in [START_REF] Swami | Cramér-Rao bounds for deterministic signals in additive and multiplicative noise[END_REF], [START_REF] Sadler | Performance analysis for direction Þnding in non-Gaussian noise[END_REF]. In contrast, when the two FIM are no longer proportional, due to the term . We now provide illustrative examples of how this formula can be used. Of course, we start with the Gaussian assumption for which and . In this case, we have and . Reporting this value in (20) yields the Slepian-Bangs formula [START_REF] Kay | Fundamentals of Statistical Signal Processing: Estimation Theory[END_REF].

Let us now consider the well-known Student distribution with degrees of freedom which corresponds to and hence .

Moreover, , and hence follows a scaled -distribution:

(21) Some straightforward calculations show that, in this case and . Consequently, in the Student case, the FIM has the following expression (22) One can verify, as expected, that .

IV. THE FIM FOR EVS DISTRIBUTIONS

Let us now study the case where ( 23) with . This model has been used in the array processing context, e.g., in [START_REF] Richmond | A note on non-Gaussian adaptive array detection and signal parameter estimation[END_REF] where Christ Richmond investigated the extension of Kelly's generalized likelihood ratio test in Gaussian settings to EVS distributions. We now have the p.d.f. of as (24)

Similarly to the previous section, we let and . The log-likelihood function is now where we have used [START_REF] Swami | Cramér-Rao bounds for deterministic signals in additive and multiplicative noise[END_REF]. Let us again prove that (9) holds. Since , it follows that (27) which, when reported in (26), proves [START_REF] Sadler | Performance analysis for direction Þnding in non-Gaussian noise[END_REF]. The entry of the FIM can thus be written as Gathering the previous equations, we Þnally obtain the FIM for EVS distributions:

(33) Again, let us prove that when the data is Gaussian distributed, we recover the Slepian-Bangs formula. For Gaussian distributed data, one has In this case, and , and (33) reduces to (1).

V. CONCLUSION

In this letter, we proceeded to the extension of the well-known Slepian-Bangs formula of the FIM for Gaussian distributed data to the larger family of elliptically contoured distributions. Surprisingly enough, the new expression is rather simple and involves only slight modiÞcations compared to its Gaussian counterpart. Only the expectation of some functions of the (scalar) modular variate are to be derived, which can be done often analytically otherwise numerically. This result paves the way to derivation of new Cramér-Rao bounds, e.g., for structured covariance matrix estimation or clutter and/or external noise parameters estimation in non-Gaussian environments.
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