Leveraging lexical cohesion and disruption for topic segmentation
Résumé
Topic segmentation classically relies on one of two criteria, either finding areas with coherent vocabulary use or detecting discontinuities. In this paper, we propose a segmentation criterion combining both lexical cohesion and disruption, enabling a trade-off between the two. We provide the mathematical formulation of the criterion and an efficient graph based decoding algorithm for topic segmentation. Experimental results on standard textual data sets and on a more challenging corpus of automatically transcribed broadcast news shows demonstrate the benefit of such a combination. Gains were observed in all conditions, with segments of either regular or varying length and abrupt or smooth topic shifts. Long segments benefit more than short segments.However the algorithm has proven robust on automatic transcripts with short segments and limited vocabulary reoccurrences.
Domaines
Traitement du texte et du documentOrigine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...