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Piecewise Affine Output Feedback Controller for Vehicle Lane Keeping

André Benine-Neto1, Saı̈d Mammar2

Abstract— This paper presents the design and simulation test
of a piecewise affine output-feedback controller for vehicle lane
keeping. The design of the proposed lane keeping system takes
into account the entire domain of lateral tire forces through
piecewise affine approximations of the tire forces nonlinear
behavior. The computation of the control law is casted as
Bilinear Matrix Inequalities optimization procedure which is
solved using the V-K-method to find simultaneously a piecewise
quadratic Lyapunov function and the piecewise affine regulator
and estimator structures. Simulation tests show the controlled
car is able to well achieve the standard ISO-3888-2 transient
maneuver.

I. INTRODUCTION

The development of autonomous vehicles has increased

attention of researchers in the recent years. An overview of

these activities is presented in [16]. Regarding vehicle lateral

control, it can be noted that the research has evolved from

automated lane keeping in which the lateral accelerations are

generally low (see [15] and [9]) to more recent work which

deals with the control of the vehicle in extreme dynamics

to avoid accidents ([8] and [2]). For that, it is required to

develop systems that are able to operate in the complete

domain of tire forces, including the nonlinear behavior, as

many accidents occurs due to the vehicle loss of control

when the tire forces are saturated.

The lane keeping assistance system (LKAS) presented in

[8] takes into account the nonlinear behavior of the lateral

tire forces for the design of a parallel distributed controller

based on a Takagi-Sugeno model. In [2] a Piecewise Affine

(PWA) state feedback controller is developed to avoid the

tire saturation on the lane departure avoidance maneuvers.

PWA systems have also been used in the development of

other driver assistance systems. In [5] the longitudinal tire

forces are approximated by PWA functions for a traction con-

trol system. The lateral tire forces have also been considered

in PWA form to design yaw rate controllers in [4], [3] and

[12].

In this paper, similar approximations of the lateral tire

forces are used to design an output-feedback PWA con-

troller for a LKAS, which is able to operate in the entire

domain of the tire forces. As an extension of the work

presented in [2], the measurement of the vehicle sideslip

angle requires sensors that are not available in currently

commercialized vehicles, therefore an estimator is designed

to drive the switches of the PWA controller. Following the

results obtained in [14], the control synthesis is casted as

1 IFSTTAR - LIVIC, 14 Route de la Minière, 78000 Versailles, France
(andre.benine-neto@ifsttar.fr)

3 IBISC - EA 4526 UEVE, 40 rue du Pelvoux CE1455, 91020, Evry,
Cedex, France (e-mail: said.mammar@inrets.fr)

a Bilinear Matrix Inequality (BMI) optimization problem

which is solved using the V-K method. This interactive

procedure allows the BMI to be transformed into two Linear

Matrix Inequalities (LMI) optimization problems which can

be solved more efficiently to find simultaneously the output

feedback gain and a Piecewise Quadratic Lyapunov (PWQL)

function that ensures stability of the closed loop system. The

vehicle model for control synthesis is described in Section II,

followed by the controller design shown in Section III.

The simulation results obtained on a nonlinear model are

presented in Section IV. Section V wraps up the work and

provides some perspective for the future work.

II. VEHICLE MODEL

In order to design the control law for the LKAS, a

PWA system is derived from a simple nonlinear vehicle

model, in which the lateral translational and yaw motions

are considered and the roll and pitch motions are neglected.

The wheels of the front and rear axles are lumped into one

located at the axle center leading to a bicycle model. The

equations describing this model are given by:
{

mv(β̇ + r) = fsf + fsr
Jṙ = lffsf − lrfsr ,

(1)

where the involved variables consist of the vehicle yaw rate,

denoted r and the vehicle sideslip angle, β. Concerning the

fixed parameters for the model, v represents the longitudinal

vehicle speed, m is the vehicle mass, lf (lr) is the distance

from the front (rear) axle to the center of gravity (CG), J is

the vehicle inertia with respect to the vertical axle through the

CG. All numerical values of these parameters are presented

in Table I. The lateral forces fsx, with x = f, r, for the front

and rear tires can be modeled according to the Pacejka tire

model [11]:

fsx(αx) = Dx sin(Cxatan((1−Ex)Bxαx+Exatan(Bxαx))),
(2)

where αx stands for the front (rear) tire sideslip angle.

Considering that the angles remain small, the sideslip angles

for front and rear tires are given by:

αf = δf − β −
lfr

v
, αr = −β +

lrr

v
, (3)

where δf is the steering angle.

The Pacjeka tire model is depicted by the solid line in

Fig. 1.

The simple nonlinear model (1) shows, as well known in

literature (see for example [10]), a limited stability region

which also depends on the driver steering wheel angle, two

unstable equilibrium points and a stable one (bifurcation

1
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Fig. 1. Front tire forces described by the Pacejka magic formula and
corresponding PWA approximations and partitions.

analysis). The causes of the instability are due to the non-

linear behavior of the tire-road forces which are taken into

account in the PWA vehicle model described below.

A. Piecewise affine approximation of lateral tire forces

Considering that the front and rear tire forces described

by (2) are approximated by the following PWA functions:

{

fsf (αf ) = efi + dfiαf

fsr (αr) = eri + driαr

(4)

where dfi, dri, efi and eri depend on the front and rear tire

forces and the index (i) corresponding to the partitioning of

the tire force domain, based on the tire sideslip angles, as

illustrated by the dotted lines on Fig. 1 for the front wheel.

For the region containing the origin (i = 2), a simple linear

approximation is considered, in this case df2 = cf , dr2 =
cr, ef2 = 0, and er2 = 0. The cornering coefficients are

related to the Pacejka parameters as; cf = BfCfDf , and

cr = BrCrDr.

Replacing the PWA approximation of lateral tire forces (4)

in the vehicle model (1) leads to the PWA system:

ẋd = Ad
i x

d +Bd
i u+ adi , (5)

with the corresponding dynamics:

Ad
i =

[

−
dfi+dri

mv −1−
dfilf−drilr

mv2

drilr−dfilf
J −

dfil
2

f+dril
2

r

Jv

]

, (6)

Bd
i =

[

dfi

mv
dfilf
J

]

, adi =

[

efi+eri
mv

efilf−erilr
J

]

. (7)

where the control input is the front wheel steering angle

u = δf and the state variables are the vehicle sideslip angle,

β and the vehicle yaw rate, r, xd = [β, r]T .

Even though this approximation can be refined, it is shown

in the simulation section that improved performance can be

obtained by simply approximating the tire forces with the

proposed PWA functions.

TABLE I

VALUES OF THE VEHICLE PARAMETERS.

Parameter Value

cf , front cornering stiffness 40000 N/rad
cr , rear cornering stiffness 35000 N/rad
lf , distance form CG to front axle 1.22 m
lr , distance form CG to rear axle 1.44 m
ls, look-ahead distance 0.95 m
m, total mass 1600 kg
J , vehicle yaw moment of inertia 2454 kgm2

v, longitudinal velocity 17 m/s

B. Additional dynamics for lane keeping

For lane keeping purposes, the model (5) has to be

expanded with the dynamics of the relative yaw angle and the

lateral displacement with respect to the lane centerline. These

measurements are provided by a video sensor. Let ψL =
ψ − ψd be the yaw angle error which is the angle between

the vehicle orientation and the tangent to the road. The road

reference curvature ρref is defined by (ψ̇d = vρref ), and the

following equality can be derived:

ψ̇L = r − vρref . (8)

Denoting by ls the look-ahead distance, the equation

giving the evolution of the measurement of the lateral offset

yL from the centerline at sensor location is obtained by

ẏL = v(β + ψL)− lsr. (9)

Equations (8) and (9) are included in system (5) and the

PWA system describing the vehicle dynamics and positioning

is described by:

ẋp = Ap
i x

p +Bp
i u+Bp

ρρref + api (10)

where xp = [β, r, ψL, yL]
T and

Ap
i =





Ad
i 0 0

0 1 0 0
v ls v 0



 ,

Bp
i =

[

(Bd
i )

T 0 0
]T
,

Bp
ρ =

[

0 0 −v 0
]T
,

api =
[

(adi )
T 0 0

]T
.

(11)

An illustration of the state variables is provided in Fig. 2

III. CONTROL STRATEGY

The algorithm presented in [14] is applied for the design

of the proposed LKAS. It provides an efficient procedure

for designing a PWA output feedback controller, by means

of a BMI optimization procedure, based on the search of a

PWQL function.

According to (3), the partitions defined by the front wheel

sideslip angles, αf =±ᾱf , depend on the state variables and

control input. As mentioned in [14] the switching between

the regions should depend only on the state x, so models in

which there is a feed-through from u to a nonlinearity should

be avoided. This can be done by the inclusion of a first order

2



Fig. 2. Single track vehicle model.

actuator which is also useful to enforce continuity of the

control input at the boundaries. Therefore, the steering angle

is included as an additional state to the system as follows:

δ̇f = −τδf + uc, (12)

where uc becomes the control input of the augmented plant

and τ = 10.

As most vehicles have understeering behavior, it is as-

sumed that the front tire forces tend to saturate firstly,

therefore only the front tire forces are approximated by PWA

functions according to (4), and a simply linear approximation

is assumed for the rear tires. Nevertheless, an analogous

approach can be considered in order to design assistances

for oversteering vehicles.

Disturbances and exogenous inputs, such as the road

curvature, are not taken into account in the control synthesis,

therefore the PWA model describing the vehicle dynamics,

positioning (10) and first order actuator (12) can be written

as:
{

ẋ = Aix+Biu+ ai,
y = Cix

(13)

with x = [β, r, ψL, yL, δf ]
T and y is the system output. The

matrices defining the dynamics are:

Ai =

[

Ap
i Bp

i

0 0 0 0 −τ

]

,

Bi =
[

0 0 0 0 τ
]T
, ai =

[

(api )
T 0

]T
,

(14)

Since the vehicle sideslip angle is not available for measure-

ment, the matrix defining the system output y is given by:

Ci =









0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1









. (15)

Each of the regions Ri (with i = 1, 2, 3) can be described

as the intersection of the half spaces:

Ri = {x|HT
i x− gi < 0} (16)

Since these regions are slab, it is preferred to express

them as degenerated ellipsoids, as suggested in [13] and [14],

because they describe exactly the slab regions and it often

requires fewer parameters than the polytopic description (16).

The degenerated ellipsoids can be described by:

||Eix+ fi||2 ≤ 1 ∀x ∈ Ri, (17)

and if Ri = {x|d < cTi x < d̄} then the degenerated ellipsoid

is described by Ei = 2cTi /(d̄−d) and fi = −(d̄+d)/(d̄−d),
as shown in [13].

For the PWA system (13), the ellipsoids describing the

slab regions are:

ET
1 = [−1,−

lf
v , 0, 0, 1]

2
−ᾱf−d , f1 = −

−ᾱf+d
−ᾱf−d ,

ET
2 = [−1,−

lf
v , 0, 0, 1]

1
ᾱf
, f2 = −

ᾱf−ᾱf

ᾱf+ᾱf
= 0,

ET
3 = [−1,−

lf
v , 0, 0, 1]

2
d̄−ᾱf

, f3 = −
d̄+ᾱf

d̄−ᾱf
,

(18)

where d and d̄ can be arbitrarily set, such that d < −ᾱf and

d̄ > ᾱf .

The ellipsoidal cell description is used to relax the con-

straints when searching the PWQL function. In order to

ensure the continuity of the PWQL function across the

boundaries, a parametric boundary description is needed [7].

Each facet boundary between the neighboring regions Ri

and Rj is contained in the hyperplanes described by:

{x|cTijx− dij = 0}. (19)

an the boundary parametric description can be obtained by:

R̄i ∩ R̄j ⊆ {x|lij + Fijs|s ∈ Rn−1} (20)

where Fij ∈ Rn×n−1 (full rank) is the matrix whose

columns span the null space of cij , and lij ∈ Rn is given

by lij = cij(c
T
ijcij)

−1dij
For the LKAS model (13) the parametric description of

the boundaries is given by:

F1,2 =













1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1
lf
v 0 0













, F2,3 =













1 0 0 −
lf
v

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0













,

l1,2 =
[

ᾱf

2+l2
f
/v2

,
ᾱf lf/v

2+l2
f
/v2

, 0, 0, −
ᾱf

2+l2
f
/v2

]

,

l2,3 =
[

−
ᾱf

2+l2
f
/v2

, −
ᾱf lf/v

2+l2
f
/v2

, 0, 0,
ᾱf

2+l2
f
/v2

]

.

(21)
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A. PWA Output-feedback control synthesis

Due to the symmetry of the lateral tire forces with respect

to the origin, only regions R1 and R2 are considered in the

control synthesis. The same gains obtained for region R1 can

be applied for region R3.

The goal is to stabilize (13) with a PWA dynamic con-

troller with state space representation of each region of the

form:
{

ẋc(t) = Acixc + Liy + bci
u = Kixc +mi

(22)

An augmented state x̃ = [x, xc]
T is defined, so the closed

loop system can be written as:

˙̃x = Ãix̃+ b̃i (23)

where;

Ãi =

[

Ai BiKi

LiCi Aci

]

and b̃i =

[

bi +Bimi

bci

]

(24)

The PWQL function for the augmented system (23) has

the form:

Vi(x) = x̃T P̃ix̃+ 2q̃Ti x̃+ r̃i. (25)

where P̃i = P̃T
i , P̃i ∈ R2n×2n, q̃i ∈ R2n and r̃i ∈ R.

Vi(x) is a Lyapunov function with a decay rate αi, for the

region Ri if, for a fixed ǫ ≥ 0,

x ∈ Ri,

{

Vi(x) > ǫ||x− xeq||2

d
dtVi(x) < −αiVi(x),

(26)

where xeq is the equilibrium point of the closed loop system.

Under strong lateral solicitations, the controller should

bring the vehicle to the condition where the tire forces

behavior is linear (R2). In order to do so, the desired

equilibrium point of the closed loop system is placed at

the origin (xeq = 0). The equilibrium point must also be

the extrema of the Lyapunov function candidate for the

corresponding region (see [14]). In consequence, q2 = 02n×1

and r2 = 0 to ensure that V (0) = 0.

As the closed loop system has a single equilibrium point,

the equilibrium points of R1, denoted xeq1 and R3, xeq3,

must not be contained in its own region, enforcing a transi-

tion through the boundaries with R2. This can be done using

the constraint:

Ãixeqi + b̃i = 0. (27)

The stability of system (23) can be guaranteed by S-

procedure [6], using the ellipsoidal cell description (17) on

conditions (26), if there exists P̃i = P̃T
i ≻ 0, and positive

constants λ1 and γ1 that satisfy:
































P̃1 − ǫIn + λ1Ẽ
T
1 Ẽ1 q̃1 + ǫxeq + λ1Ẽ

T
1 f1

∗

(

r̃1 − ǫxTeqxeq
+λ1(f

T
1 f1 − 1)

)






≻ 0

[

P̃2 − ǫIn
]

≻ 0

(28)









































ÃT
1 P̃1 + P̃1 + Ã1

−γ1Ẽ
T
1 Ẽ1 + α1P̃1

P̃1b̃1 + ÃT
1 q̃1

−γ1Ẽ
T
1 f1 + α1q̃1

∗
2b̃T1 q̃1 + α1r̃1
−γ1(f

T
1 f1 − 1)











≺ 0

[

ÃT
2 P̃2 + P̃2 + Ã2 + α2P̃2

]

≺ 0
(29)

where ∗ means transposed and Ẽi = [Ei, 0].
The parametric description of the boundaries (21) are

adjusted to the augmented system as:

F̃ij =

[

Fij 0
0 I

]

and l̃ij =

[

lij
0

]

(30)

so that the continuity of the PWQL function candidate is

ensured by:











F̃T
12(P̃1 − P̃2)F̃12 = 0

F̃T
12(P̃1 − P̃2)l̃12 + F̃T

12q̃1 = 0

l̃T12(P̃1 − P̃2)l̃12 + 2q̃T1 l̃12 + r̃1 = 0
(31)

The switches of the controller can be driven only by the

system outputs, therefore controller has to be designed with

the structure of a regulator and an estimator. Thus, the front

wheel sideslip angle must be computed with the estimate of

the vehicle sideslip angle and the measurements of yaw rate

and steering angle, according to (3). For that, the following

constraints is added:
{

Aci = Ai +BiKi − LiCi

bci = Bimi + bi + (Ai − LiCi)xeq
(32)

Defining a performance criterion as: J = min
i
αi, The goal

is to find Aci, Ki Li, mi, bci, and a a PWQL function (25)

that maximize the performance criterion J . This optimization

problem can be cast as a BMI as:

maxmin
i
αi

such that: (27), (28), (29), (31), (32),

ǫ > 0 γ1 > 0 λ1 > 0 α1,2 > l0 > 0

−l1 < Ki < l1 − l2 < mi < l2

(33)

where l0 is a scalar bound, l1 and l2 are vector bounds.

B. Solution of BMI optimization problem

The BMI problem (33) was solved using the V-K method,

in which LMIs are solved in an iterative fashion. For that, the

equilibrium point of the dynamics corresponding to the affine

region xeq1, is chosen a-priori, such that it is not located in

R1. For the specific lane keeping problem, the algorithm

becomes.

V-step: Given a fixed controller, and a fixed αi, solve:

Find: P1, q1, r1 and P2,

such that: (31), (28), (29),

ǫ > 0, γ1 > 0, λ1 > 0,

(34)
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K-step: For P1, q1, r1 and P2 fixed at the previous step,

solve:

maxmin
i
αi

such that (27), (28), (29), (32),

ǫ > 0, γ1 > 0, λ1 > 0, α1,2 > l0 > 0,

−l1 < Ki < l1, −l2 < mi < l2,

(35)

For each iteration of the K-step, the decay rates α1

and α2 must be greater than the value computed at the

previous iteration. The loop must be repeated until there is

no significant improvement on the cost or the LMIs become

infeasible.

To design the initial controller for the first iteration on

the V-step, it was supposed that all the state variables are

available for measurement. A state feedback only for R2

was computed using the algorithm from [9], and the gain

for the observer was computed by pole-placement such that

its poles are 10 times faster than the closed loop of the state

feedback. The regulator and estimator structure was obtained

from (32), and the same structure was considered for R1 and

R3.

The resulting gains from the V-K method after 4 iterations

are:

K1 = [ −0.8505 − 0.2780 − 1.5037 − 0.7683 − 0.5072],
K2 = [ −0.7278 − 0.3558 − 1.7699 − 0.9394 − 0.8112],

K3 = K1, m1 = −m3 = 0.023, m2 = 0
α1 = 16.2349 and α2 = 14.8648.

(36)

IV. SIMULATION RESULTS

Simulation have been carried out on the Matlab/Simulink

environment, in order to verify the performance of the PWA

controller. The dynamics of the model used for simulation

consists of nonlinear 4-wheels vehicle according to [1],

which is considered to capture the essential vehicle lateral

steering dynamics:

m(v̇y + rv) = fsf cos δf + fsr
Jṙ = lffsf cos δf − lrfsr

(37)

where vy is the lateral velocity, and the lateral forces are

given by (2). The sideslip angles αf,r are given by:

αf(left) = δf − arctan
(

vβ+rlf
v− a

2
r

)

αf(right) = δf − arctan
(

vβ+rlf
v+ a

2
r

)

αr(left) = −arctan
(

vβ−rlr
v− a

2
r

)

αr(right) = −arctan
(

vβ−rlr
v+ a

2
r

)

(38)

The vehicle model has been submitted to the obstacle

avoidance maneuver defined in ISO 3888-2 standard, at a

constant longitudinal velocity of v = 21m/s. Fig. 3 shows

the displacement of the vehicle within the area delimited by

the cones, confirming that the maneuver was successfully

achieved.

It can be seem from Fig. 4 that the vehicle reaches the

nonlinear behavior of tire lateral forces, overshooting the
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Fig. 4. Active region for PWA control and front wheels estimated sideslip
angle

limit ᾱf . The corresponding operating regions from the

switches of the controller are shown in the upper subplot

Fig. 4, while the estimated front sideslip angle is shown in

the bottom subplot.

The control input required to perform the maneuver,

as well as the corresponding steering angle are depicted

respectively in the upper and bottom subplots of Fig. 5.

The vehicle sideslip angle and yaw rate are shown in

subplots of Fig. 6. The relative yaw angle and lateral offset

at look-ahead distance, representing the vehicle positioning

on the road are depicted in Fig 7.

V. CONCLUSION

In this paper the design and simulation of a PWA controller

for LKAS has been described. The nonlinear behavior of the

lateral tire forces are approximated by PWA functions. As

only understeering vehicles are considered in this work, the

regions describing the PWA vehicle model can be exactly

described as degenerated ellipsoids which are used to relax

the conditions for the existence of a PWQL function. The
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Fig. 5. Control input and Steering angle for vehicles with PWA controller
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Fig. 6. Vehicle dynamics response
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Fig. 7. Positioning state variables

simultaneous search of a PWQL function and a PWA ob-

server based output-feedback gain has been casted as a BMI

optimization problem and its solution has been computed

using the V-K method in which the BMIs are transformed

into two LMI optimization procedures that have been solved

iteratively. The resulting PWA controller has been tested

according to the double lane change standard maneuver ISO-

3888-2, showing that the PWA controller can handle the

nonlinearity of the tyre lateral force. The switches are based

on the state estimation, avoiding measurement of the vehicle

sideslip angle, which requires a sensor that is not available in

currently commercialized vehicles and are also very costly.

System robustness with respect to parameter variations,

as for example vehicle longitudinal speed and load transfers

should be taken into account in the future work as well as

implementation on prototype vehicle.
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